

TCAN2450-Q1, TCAN2451-Q1

SLLSG00 - APRIL 2024

TCAN245x-Q1 Automotive Signal Improvement Capable CAN FD System Basis Chip (SBC) with Integrated Buck Regulator and Watchdog

1 Features

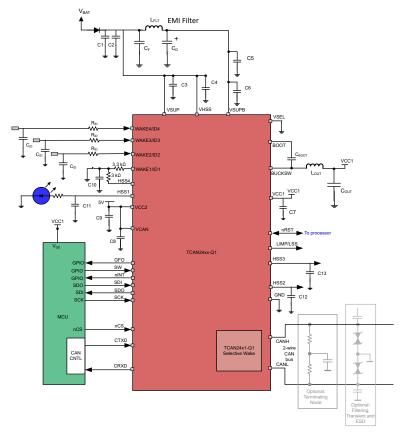
- AEC-Q100 qualified for automotive applications
- Meets the requirements of ISO 11898-2:2024 for CAN-FD and CAN-FD Signal Improvement Capability (SIC)
- Integrated 3.3V or 5V Buck regulator (VCC1) with 1 A output capability
 - Pin-selectable output (3.3V or 5V) based on VSEL pin connection
 - Switching frequency options from 1.8MHz to 2.4MHz to enable a smaller on-board inductor
 - Integrated spread spectrum modulation to improve EMC performance
- 5V LDO regulator (VCC2) supporting up to 200mA with off-board capability and short-tobattery protection
- Multiple methods to wake-up from Sleep mode
 - CAN bus wake-up pattern (WUP)
 - Local wake up (LWU) via four WAKE pins
 - Cyclic sensing wake-up using a high-side switch (HSS4)
 - Selective wake/partial networking capability, TCAN2451-Q1 only
 - Digital wake-up using SW pin
- WAKE pins configurable as ID pins to identify ECU location in the vehicle
- Four high-side switches to support multiple loads and allow for cyclic sensing wake
- Fail-safe output pin (LIMP) that can also be used optionally as a low-side switch
- ±58V Bus fault protection
- Advanced CAN bus fault diagnostics
- Timeout, window and Q&A watchdog support
- Access to EEPROM to save device configuration
- Available in 32-pin leadless package with wettable flank for improved automated optical inspection (AOI) capability

2 Applications

- Body electronics and lighting
- Car access and security
- Hybrid, electric and powertrain systems
- Industrial transportation

3 Description

The TCAN245x-Q1 is a family of system basis chips (SBC) that provide a control area network flexible data rate capable (CAN FD) transceiver that meets the physical layer requirements of ISO-11898:2-2024 including the SIC specification. The CAN FD transceiver supports data rates up to 8Mbps. The TCAN245x-Q1 integrates a buck regulator (VCC1) that can output either 3.3V or 5V, and provide up to 1A output current. The buck regulator integrates spread spectrum modulation to improve EMC performance. VCC2 LDO provides 5V output for loads up to 200 mA. TCAN2451-Q1 supports Partial Networking by recognizing a selective wakeup frame (WUF)


The TCAN245x-Q1 includes features such as LIMP, four local wake inputs and four high side switches. The high side switch can be on/off, 10-bit PWM or timer controlled. Using the GFO pin, it is possible to control an external CAN FD, LIN transceiver, CAN SBC or LIN SBC. The WAKE pins can be configured for static sensing, cyclic sensing (with HSS4 pin) and pulse based for waking up. These devices provide EEPROM to store specific device configuration information thus avoiding extensive reprogramming after power fluctuations.

Package Information

PART NUMBER	PACKAGE ⁽¹⁾	PACKAGE SIZE ⁽²⁾
TCAN2450-Q1 TCAN2451-Q1	VQFN (32)	5mm x 5mm

- For more information, see Section 7.
- The package size (length × width) is a nominal value and includes pins, where applicable.

Typical Application Diagram

4 Pin Configuration and Functions

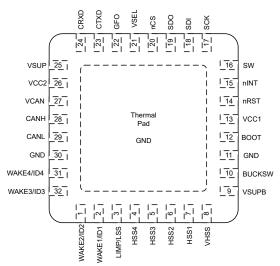


Figure 4-1. RHB Package, 32 Pin (VQFN) (Top View)

Table 4-1. Pin Functions

NAME	PIN NO.	TYPE(1)	DECODIDATION				
NAME	RHB	I TPE(")	DESCRIPTION				
WAKE2/ID2	1	ı	High voltage (HV) capable. Local wake input terminal. Configurable as an ID pin				
WAKE1/ID1	2	I	HV capable. Local wake input terminal. Configurable as an ID pin				
LIMP/LSS	3	0	HV capable. Limp home output (Active low; open-drain output)				
HSS4	4	0	HV. High side switch 4 output				
HSS3	5	0	HV. High side switch 3 output				
HSS2	6	0	HV. High side switch 2 output				
HSS1	7	0	HV. High side switch 1 output				
VHSS	8	Р	HV. Separate input supply for the high side switches. Typically connected to the battery but can also be supplied independently.				
			HV. Input supply from the battery for the buck regulator.				
VSUPB	9	Р	VSUPB and VSUP must be to the same battery supply, but separated by the EMI filter as shown in the				
			application schematic to reduce the conducted EMI on the VSUP pin.				
BUCKSW	10	Р	HV. Buck regulator switching node. Connect to power inductor.				
GND	11	G	Ground				
воот	12	Р	HV. Bootstrap supply voltage for internal high-side driver. Connect a high-quality 100nF capacitor from this pin to the BUCKSW pin.				
VCC1	13	Р	Buck regulator output 3.3V or 5V. Connect a high-quality capacitor to GND.				
nRST	14	I/O	Low-voltage (LV) digital. VCC1 under-voltage monitor output pin (active low) and device reset input				
nINT	15	0	LV digital. Interrupt output (active low)				
			LV digital . Programming mode input pin (SPI configurable active high or active low).				
SW	16	'	Internal pull-up (active low configuration) or pull-down (active high configuration) of 60 k Ω				
SCK	17	I	LV digital. SPI clock input				
			LV digital. SPI data input.				
SDI	18	l i	Internal pull-up of $60k\Omega$				
SDO	19	0	LV digital. SPI data output.				
			LV digital. Chip select input (active low).				
nCS	20	I	Internal pull-up of $60k\Omega$				

Table 4-1. Pin Functions (continued)

	PIN NO.										
NAME	PIN NO.	TYPE ⁽¹⁾	DESCRIPTION								
	RHB		2-0.181 1101								
VSEL	21	I	LV digital. VCC1 output voltage selector pin. 1. Connected to GND: VCC1 = 5V 2. Floating: VCC1 = $3.3V$. Internal pull-up of $30k\Omega$								
GFO	22	0	LV digital. General function output pin (SPI configurable); Push-pull								
CTXD	23	I	LV digital. CAN transmit data input (low for dominant and high for recessive bus states); Internal pull-up of $60k\Omega$.								
CRXD	24	0	LV digital. CAN receive data output (low for dominant and high for recessive bus states), tri-state								
VSUP	25	Р	HV. Input supply pin, typically connected to battery.								
VCC2	26	Р	5V LDO output. Short-to-battery protected.								
VCAN	27	Р	5V power supply input for the CAN FD transceiver								
CANH	28	I/O	HV capable. High level CAN bus I/O line								
CANL	29	I/O	HV capable . Low level CAN bus I/O line								
GND	30	G	Ground connection: Must be soldered to ground								
WAKE4/ID4	31	I	HV capable. Local wake input terminal. Configurable as ID pin								
WAKE3/ID3	32	I I	HV. Local wake input terminal. Configurable as an ID pin								
NC	-	NC	Not connected internally.								
GND	Thermal Pad	G	Ground connection: Must be soldered to ground								

(1) I = Input, O = Output, I/O = Input or Output, G = Ground, P = Power, NC = No Connect

Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

5 Device and Documentation Support

This device will conform to the following CAN standards. The core of what is needed is covered within this system spec, however reference should be made to these standards and any discrepancies pointed out and discussed. This document should provide all the basics of what is needed. However, for a full understanding of CAN including the protocol these additional sources will be very helpful as the scope of CAN protocol in detail is outside the scope of this physical layer (transceiver) specification.

5.1 Documentation Support

5.1.1 CAN Transceiver Physical Layer Standards:

- ISO 11898-2:2024: High speed medium access unit with low power mode (super sets -2 standard electrically in several specs and adds the original wake up capability via the bus in low power mode)
- ISO 8802-3: CSMA/CD referenced for collision detection from ISO11898-2
- SAE J2284-2: High Speed CAN (HSC) for Vehicle Applications at 250 kbps
- SAE J2284-3: High Speed CAN (HSC) for Vehicle Applications at 500 kbps

5.1.2 EMC Requirements:

- SAEJ2962-2: US3 requirements for CAN Transceivers (-2, -5, GM will propose updates to address -6 + FD, but this is the best place for a working start)
- HW Requirements for CAN, LIN, FR V1.3: German OEM requirements for CAN and LIN
- ISO 10605: Road vehicles Test methods for electrical disturbances from electrostatic discharge
- ISO 11452-4:2011: Road vehicles Component test methods for electrical disturbances from narrowband radiated electromagnetic energy - Part 4: Harness excitation methods
- ISO 7637-1:2015: Road vehicles Electrical disturbances from conduction and coupling Part 1: Definitions and general considerations
- ISO 7637-3: Road vehicles Electrical disturbances from conduction and coupling Part 3: Electrical transient transmission by capacitive and inductive coupling via lines other than supply lines
- IEC 62132-4:2006: Integrated circuits Measurement of electromagnetic immunity 150 kHz to 1 GHz Part 4:
 Direct RF power injection method
- IEC 61000-4-2
- IEC 61967-4
- CISPR25

5.1.3 Conformance Test Requirements:

- HS TRX Test Spec V 1 0: GIFT / ICT CAN test requirements for High Speed Physical Layer
- ISO/DIS 17987-7.2: Road vehicles -- Local Interconnect Network (LIN) -- Part 7: Electrical Physical Layer (EPL) conformance test specification
- SAEJ2602-2: LIN Network for Vehicle Applications Conformance Test

5.1.4 Related Documentation

- "A Comprehensible Guide to Controller Area Network", Wilfried Voss, Copperhill Media Corporation
- "CAN System Engineering: From Theory to Practical Applications", 2nd Edition, 2013; Dr. Wolfhard Lawrenz, Springer.

5.2 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on *Notifications* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

5.3 Support Resources

TI E2E[™] support forums are an engineer's go-to source for fast, verified answers and design help — straight from the experts. Search existing answers or ask your own question to get the quick design help you need.

Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

5.4 Trademarks

TI E2E[™] is a trademark of Texas Instruments.

All trademarks are the property of their respective owners.

5.5 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

5.6 Glossary

TI Glossary

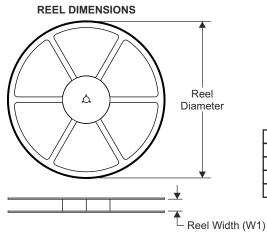
This glossary lists and explains terms, acronyms, and definitions.

6 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

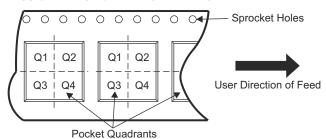
DATE	REVISION	NOTES
April 2024	*	Initial release.

7 Mechanical, Packaging, and Orderable Information

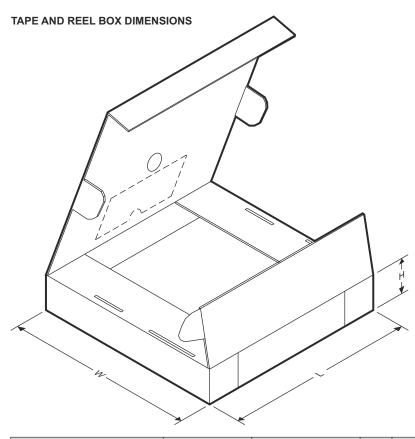

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated


7.1 Tape and Reel Information

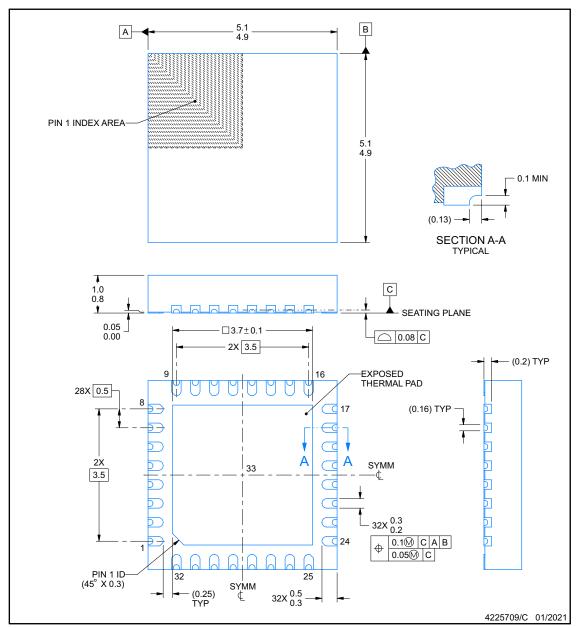
TAPE DIMENSIONS KO P1 BO W Cavity AO Cavity


Α0	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
PTCAN2450RHBRQ1	VQFN	RHB	32	5000	330.0	12.4	5.3	5.3	1.1	8.0	12.0	Q2
PTCAN2451RHBRQ1	VQFN	RHB	32	5000	330.0	12.4	5.3	5.3	1.1	8.0	12.0	Q2

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
PTCAN2450RHBRQ1	VQFN	RHB	32	5000	367.0	367.0	35.0
PTCAN2451RHBRQ1	VQFN	RHB	32	5000	367.0	367.0	35.0


7.2 Mechanical Data

RHB0032U

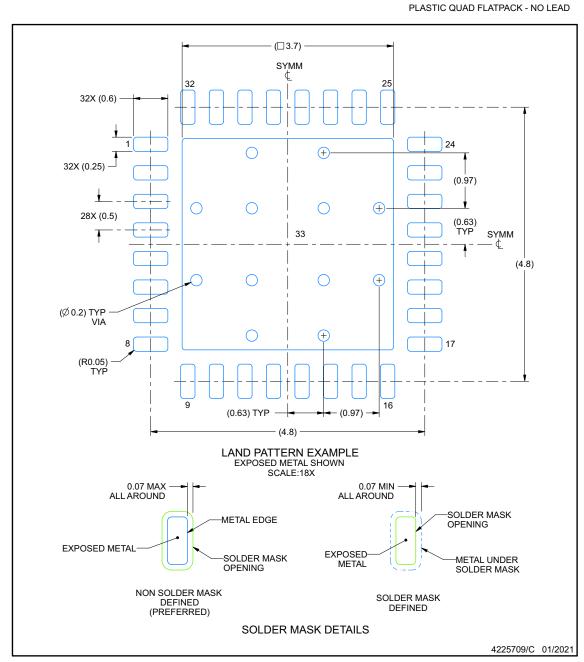
PACKAGE OUTLINE

VQFN - 1 mm max height

PLASTIC QUAD FLATPACK - NO LEAD

NOTES:

- All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
 This drawing is subject to change without notice.
- 3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.



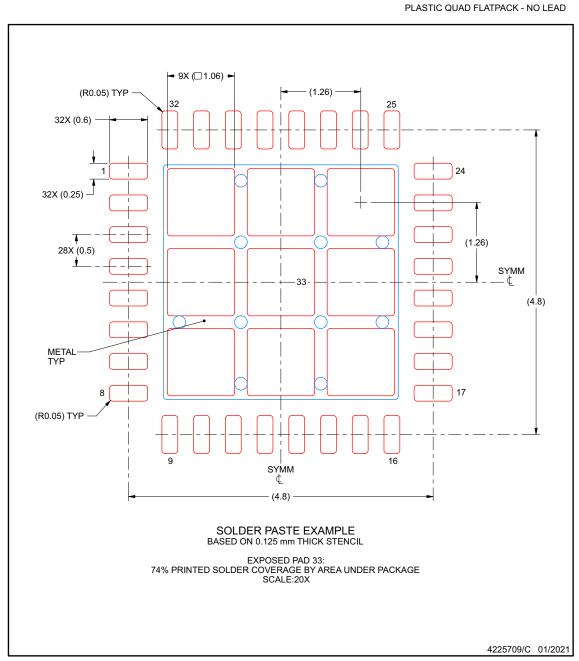
EXAMPLE BOARD LAYOUT

RHB0032U

VQFN - 1 mm max height

NOTES: (continued)

- 4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).
- 5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented.



EXAMPLE STENCIL DESIGN

RHB0032U

VQFN - 1 mm max height

NOTES: (continued)

6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

www.ti.com 4-May-2024

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
PTCAN2450RHBRQ1	ACTIVE	VQFN	RHB	32	5000	TBD	Call TI	Call TI	-40 to 125		Samples
PTCAN2451RHBRQ1	ACTIVE	VQFN	RHB	32	5000	TBD	Call TI	Call TI	-40 to 125		Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead finish/Ball material Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE OPTION ADDENDUM

www.ti.com 4-May-2024

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2024, Texas Instruments Incorporated