

AM26C32, AM26C32C, AM26C32M, AM26C32I SLLS104M - DECEMBER 1990 - REVISED OCTOBER 2023

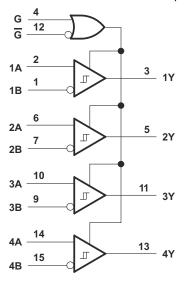
AM26C32 Quadruple Differential Line Receiver

1 Features

- Meets or exceeds the requirements of ANSI TIA/EIA-422-B, TIA/EIA-423-B, and ITU recommendation V.10 and V.11
- Low power, $I_{CC} = 10$ mA typical
- ±7-V Common-mode range with ±200-mV sensitivity
- Input hysteresis: 60 mV typical
- t_{pd} = 17 ns typical
- Operates from a single 5-V supply
- 3-State outputs
- Input fail-safe circuitry
- Improved replacements for AM26LS32 device
- Available in Q-temp automotive

2 Applications

- High-reliability automotive applications
- Factory automation
- ATM and cash counters
- Smart grid
- AC and servo motor drives


3 Description

The AM26C32 device is a quadruple differential line receiver for balanced or unbalanced digital data transmission. The enable function is common to all four receivers and offers a choice of activehigh or active-low input. The 3-state outputs permit connection directly to a bus-organized system. Failsafe design specifies that if the inputs are open, the outputs always are high. The AM26C32 devices are manufactured using a BiCMOS process, which is a combination of bipolar and CMOS transistors. This process provides the high voltage and current of bipolar with the low power of CMOS to reduce the power consumption to about one-fifth that of the standard AM26LS32, while maintaining AC and DC performance.

Package Information

PART NUMBER	PACKAGE ⁽¹⁾	PACKAGE SIZE ⁽²⁾	
	PDIP (N, 16)	19.3 mm × 9.4 mm	
	SO (NS, 16)	10.2 mm × 7.8 mm	
	SOIC (D, 16)	9.9 mm × 6 mm	
AM26C32	SSOP (DB, 16)	6.2mm × 7.8mm	
AIVI20C32	TSSOP (PW, 16)	5 mm × 6.4 mm	
	CDIP (J, 16)	mm × 6.92 mm	
	CFP (W, 16)	10.3 mm × 6.73 mm	
	LCCC (FK, 20)	8.90 mm × 8.90 mm	

- For more Information, see Section 11.
- The package size (length × width) is a nominal value and includes pins, where applicable.

Simplified Schematic

Table of Contents

1 Features	1	7.3 Feature Description	
2 Applications		7.4 Device Functional Modes	
3 Description		8 Application and Implementation	10
4 Pin Configuration and Functions		8.1 Application Information	10
5 Specifications	4	8.2 Typical Application	
5.1 Absolute Maximum Ratings		8.3 Power Supply Recommendations	
5.2 ESD Ratings		8.4 Layout	
5.3 Recommended Operating Conditions		9 Device and Documentation Support	
5.4 Thermal Information	5	9.1 Receiving Notification of Documentation Updates.	13
5.5 Thermal Information	5	9.2 Support Resources	13
5.6 Electrical Characteristics	5	9.3 Trademarks	13
5.7 Switching Characteristics	6	9.4 Electrostatic Discharge Caution	13
5.8 Typical Characteristics	6	9.5 Glossary	13
6 Parameter Measurement Information		10 Revision History	
7 Detailed Description	8	11 Mechanical, Packaging, and Orderable	
7.1 Overview		Information	14
7.2 Functional Block Diagram	8		

4 Pin Configuration and Functions

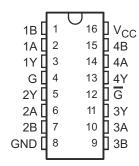


Figure 4-1. D, DB, N, NS, PW, J or W Package 16-Pin SOIC, PDIP, SO, TSSOP, CDIP, or CFP (Top View)

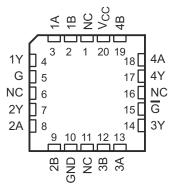


Figure 4-2. FK Package, 20-Pin LCCC (Top View)

PIN				
NAME	LCCC	SOIC, PDIP, SO, TSSOP, CFP, or CDIP	I/O	DESCRIPTION
1A	3	2	I	RS422/RS485 differential input (noninverting)
1B	2	1	I	RS422/RS485 differential input (inverting)
1Y	4	3	0	Logic level output
2A	8	6	I	RS422/RS485 differential input (noninverting)
2B	9	7	I	RS422/RS485 differential input (inverting)
2Y	7	5	0	Logic level output
3A	13	10	I	RS422/RS485 differential input (noninverting)
3B	12	9	I	RS422/RS485 differential input (inverting)
3Y	14	11	0	Logic level output
4A	18	14	I	RS422/RS485 differential input (noninverting)
4B	19	15	I	RS422/RS485 differential input (inverting)
4Y	17	13	0	Logic level output
G	5	4	I	Active-high select
G	15	12	I	Active-low select
GND	10	8	_	Ground
	1			
NC ⁽¹⁾	6]		Do not connect
INC	11	_	_	Do not connect
	16	1		
V _{CC}	20	16	_	Power Supply

(1) NC – no internal connection.

5 Specifications

5.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted) (1)

			MIN	MAX	UNIT
V _{CC}	Supply voltage ⁽²⁾			7	V
V _I Input volta	Input voltage	A or B inputs	-11	14	V
	input voltage	G or \overline{G} inputs	-0.5	V _{CC} + 0.5	\ \ \
V _{ID}	Differential input voltage		-14	14	V
Vo	Output voltage		-0.5	V _{CC} + 0.5	V
Io	Output current			±25	mA
T _{stg}	Storage temperature		-65	150	°C

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

5.2 ESD Ratings

			VALUE	UNIT
		Human body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾	±3000	
V _(ESD)	Electrostatic discharge	Charged-device model (CDM), per JEDEC specification JESD22-C101 ⁽²⁾	±2000	V

⁽¹⁾ JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

5.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

		,	MIN	NOM M	AX UI	NIT
V _{CC}	Supply voltage		4.5	5	5.5	V
V _{IH}	High-level input voltage		2		/ _{cc}	V
V _{IL}	Low-level input voltage		0).8	V
V _{IC}	Common-mode input voltage		-7		+7	V
I _{OH}	High-level output current				_6 n	nΑ
I _{OL}	Low-level output current				6 n	nA
		AM26C32C	0		70	
_	Operating free air temperature	AM26C32I	-40		85	°C
T _A	Operating free-air temperature	AM26C32Q	-40	1	25	C
		-55	1	25		

⁽²⁾ All voltage values, except differential voltages, are with respect to the network ground terminal.

⁽²⁾ JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

5.4 Thermal Information

	THERMAL METRIC ⁽¹⁾	D (SOIC)	DB (SSOP)	N (PDIP)	NS (SO)	PW (TSSOP)	UNIT
		16 PINS	16 PINS	16 PINS	16 PINS	16 PINS	5
R _{0JA}	Junction-to-ambient thermal resistance	84.6	102.6	60.6	88.5	107.5	°C/W
R _{0JC(top)}	Junction-to-case(top) thermal resistance	43.5	48.7	48.1	46.2	38.4	°C/W
R _{0JB}	Junction-to-board thermal resistance	43.2	54.3	40.6	50.7	53.7	°C/W
Ψ_{JT}	Junction-to-top characterization parameter	10.4	11.8	27.5	13.5	3.2	°C/W
Ψ_{JB}	Junction-to-bottom characterization parameter	42.8	53.5	40.3	50.3	53.1	°C/W

⁽¹⁾ For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.

5.5 Thermal Information

	THERMAL METRIC(1)	J (CDIP)	FK (LCCC)	W (CFP)	UNIT
	THERWIAL WETRICKY	16 PINS	20 PINS	16 PINS	UNII
$R_{\theta JA}$	Junction-to-ambient thermal resistance	65.6	61.6	99.5	°C/W
R _{0JC(top)}	Junction-to-case(top) thermal resistance	54.6	36.8	51.5	°C/W
$R_{\theta JB}$	Junction-to-board thermal resistance	42.1	36.1	86.5	°C/W
Ψ_{JT}	Junction-to-top characterization parameter	22.9	31	23.7	°C/W
Ψ_{JB}	Junction-to-bottom characterization parameter	41.6	36	80.2	°C/W
R _θ JC(bottom)	Junction-to-case(bottom) thermal resistance	N/A	4.2	N/A	°C/W

For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.

5.6 Electrical Characteristics

over operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CON	MIN	TYP ⁽¹⁾	MAX	UNIT	
V _{IT+}	Differential input high-threshold	$V_{O} = V_{OH(min)}, I_{OH} = -440$	$V_{IC} = -7 V \text{ to } 7 V$			0.2	V
V +	voltage	μΑ	V_{IC} = 0 V to 5.5 V			0.1	V
V _{IT} _	Differential input low-threshold	$V_{O} = 0.45 \text{ V}, I_{OI} = 8 \text{ mA}$	$V_{IC} = -7 \text{ V to } 7 \text{ V}$	-0.2 ⁽²⁾			V
VII-	voltage	VO - 0.43 V, IOL - 0 IIIA	V_{IC} = 0 V to 5.5 V	-0.1 ⁽²⁾			V
V _{hys}	Hysteresis voltage (V _{IT+} – V _{IT-})				60		mV
V _{IK}	Enable input clamp voltage	$V_{CC} = 4.5 \text{ V}, I_{I} = -18 \text{ mA}$				-1.5	V
V _{OH}	High-level output voltage	$V_{ID} = 200 \text{ mV}, I_{OH} = -6 \text{ mA}$	V _{ID} = 200 mV, I _{OH} = -6 mA				V
V _{OL}	Low-level output voltage	$V_{ID} = -200 \text{ mV}, I_{OL} = 6 \text{ mA}$			0.2	0.3	V
I _{OZ}	OFF-state (high-impedance state) output current	V _O = V _{CC} or GND			±0.5	±5	μΑ
1.	Line input current	V _I = 10 V, Other input at 0 V	•			1.5	mA
I _I	Line input current	V _I = -10 V, Other input at 0	V			-2.5	mA
I _{IH}	High-level enable current	V _I = 2.7 V				20	μA
I _{IL}	Low-level enable current	V _I = 0.4 V				-100	μA
r _i	Input resistance	One input to ground		12	17		kΩ
I _{CC}	Quiescent supply current	V _{CC} = 5.5 V	V _{CC} = 5.5 V		10	15	mA

⁽¹⁾ All typical values are at $V_{CC} = 5 \text{ V}$, $V_{IC} = 0$, and $T_A = 25^{\circ}\text{C}$.

(2) The algebraic convention, in which the less positive (more negative) limit is designated minimum, is used in this data sheet for common-mode input voltage.

5.7 Switching Characteristics

over operating free-air temperature range, C_L = 50 pF (unless otherwise noted)

	PARAMETER	TEST CONDITIONS		M26C32C M26C32I			AM26C32Q AM26C32M		UNIT
			MIN	TYP ⁽¹⁾	MAX	MIN	TYP ⁽¹⁾	MAX	
t _{PLH}	Propagation delay time, low- to high-level output	See Figure 6-1	9	17	27	9	17	27	ns
t _{PHL}	Propagation delay time, high- to low-level output	See Figure 6-1	9	17	27	9	17	27	ns
t _{TLH}	Output transition time, low- to high-level output	See Figure 6.4		4	9		4	10	ns
t _{THL}	Output transition time, high- to low-level output	See Figure 6-1		4	9		4	9	ns
t _{PZH}	Output enable time to high-level	See Figure 6-2		13	22		13	22	ns
t _{PZL}	Output enable time to low-level	See Figure 0-2		13	22		13	22	ns
t _{PHZ}	Output disable time from high-level	See Figure 6.2		13	22		13	26	ns
t _{PLZ}	Output disable time from low-level	See Figure 6-2		13	22		13	25	ns

(1) All typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$.

5.8 Typical Characteristics

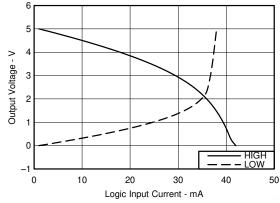
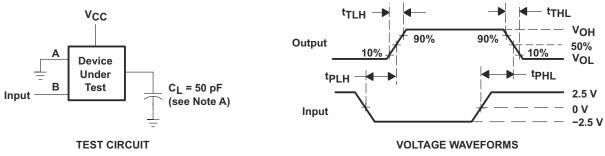
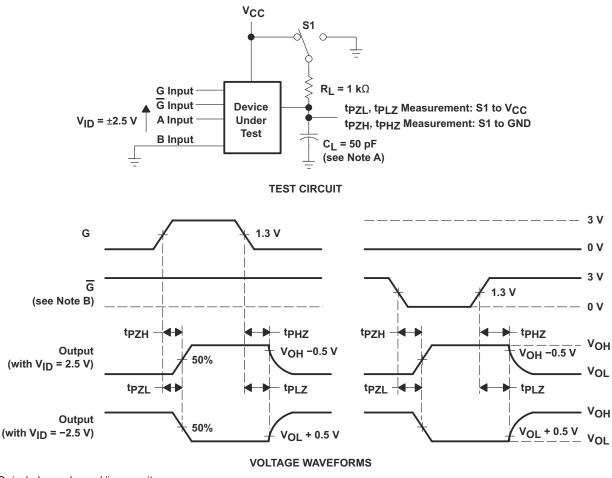



Figure 5-1. Output Voltage vs Input Current



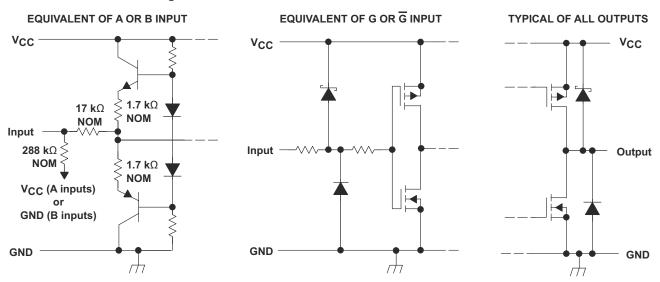
6 Parameter Measurement Information

A. C_L includes probe and jig capacitance.

Figure 6-1. Switching Test Circuit and Voltage Waveforms

- C_L includes probe and jig capacitance.
- B. The input pulse is supplied by a generator having the following characteristics: PRR = 1 MHz, duty cycle \leq 50%, $t_r = t_f = 6$ ns.

Figure 6-2. Enable/Disable Time Test Circuit and Output Voltage Waveforms



7 Detailed Description

7.1 Overview

The AM26C32 is a quadruple differential line receiver that meets the necessary requirements for NSI TIA/EIA-422-B, TIA/EIA-423-B, and ITU Recommendation V.10 and V.11. This device allows a low power or low voltage MCU to interface with heavy machinery, subsystems and other devices through long wires of up to 1000m, giving any design a reliable and easy to use connection. As any RS422 interface, the AM26C32 works in a differential voltage range, which enables very good signal integrity.

7.2 Functional Block Diagram

7.3 Feature Description

7.3.1 ±7-V Common-Mode Range With ±200-mV Sensitivity

For a common-mode voltage varying from -7V to 7V, the input voltage is acceptable in low ranges greater than 200 mV as a standard.

7.3.2 Input Fail-Safe Circuitry

RS-485 specifies that the receiver output state should be logic high for differential input voltages of $V_{AB} \ge +200$ mV and logic low for $V_{AB} \le -200$ mV. For input voltages in between these limits, a receiver's output state is not defined and can randomly assume high or low. Removing the uncertainty of random output states, modern transceiver designs include internal biasing circuits that put the receiver output into a defined state (typically high) in the absence of a valid input signal.

A loss of input signal can be caused by an pen circuit caused by a wire break or the unintentional disconnection of a transceiver from the bus. The AM26C32 has an internal circuit that ensures functionality during an idle bus.

7.3.3 Active-High and Active-Low

The device can be configure using the G and \overline{G} logic inputs to select receiver output. The high voltage or logic 1 on the G pin, allows the device to operate on an active-high and having a low voltage or logic 0 on the \overline{G} enables active low operation. These are simply a way to configure the logic to match that of the receiving or transmitting controller or microprocessor.

7.3.4 Operates from a Single 5-V Supply

Both the logic and receivers operate from a single 5-V rail, making designs much more simple. The line drivers and receivers can operate off the same rail as the host controller or a similar low voltage supply, thus simplifying power structure.

7.4 Device Functional Modes

7.4.1 Enable and Disable

The receivers implemented in these RS422 devices can be configured using the G and \overline{G} pins to be enabled or disabled. This allows users to ignore or filter out transmissions as desired.

Table 7-1. Function Table (Each Receiver)

DIFFERENTIAL INPUT	ENAB	OUTPUT	
A/B	G	G	Υ
V >V	Н	X	Н
$V_{ID} \ge V_{IT+}$	X	L	Н
V - V - V	Н	X	?
$V_{IT} < V_{ID} < V_{IT+}$	X	L	?
\/ < \/	Н	X	L
V _{ID} ≤ V _{IT-}	Х	L	L
X	L	Н	Z

⁽¹⁾ H = High level, L = Low level, X = Irrelevant, Z = High impedance (off), ? = Indeterminate

8 Application and Implementation

Note

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes, as well as validating and testing their design implementation to confirm system functionality.

8.1 Application Information

When designing a system that uses drivers, receivers, and transceivers that comply with RS-422 or RS-485, proper cable termination is essential for highly reliable applications with reduced reflections in the transmission line. Because RS-422 allows only one driver on the bus, if termination is used, it is placed only at the end of the cable near the last receiver. In general, RS-485 requires termination at both ends of the cable. Factors to consider when determining the type of termination usually are performance requirements of the application and the ever-present factor, cost. The different types of termination techniques discussed are unterminated lines, parallel termination, AC termination, and multipoint termination. Laboratory waveforms for each termination technique (except multipoint termination) illustrate the usefulness and robustness of RS-422 (and, indirectly, RS-485). Similar results can be obtained if 485-compliant devices and termination techniques are used. For laboratory experiments, 100 feet of $100-\Omega$, 24-AWG, twisted-pair cable (Bertek) was used. A single driver and receiver, TI AM26C31C and AM26C32C, respectively, were tested at room temperature with a 5-V supply voltage. Two plots per termination technique are shown. In each plot, the top waveform is the driver input and the bottom waveform is the receiver output. To show voltage waveforms related to transmission-line reflections, the first plot shows output waveforms from the driver at the start of the cable; the second plot shows input waveforms to the receiver at the far end of the cable.

8.2 Typical Application

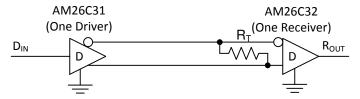


Figure 8-1. Differential Terminated Configuration

8.2.1 Design Requirements

Resistor and capacitor (if used) termination values are shown for each laboratory experiment, but vary from system to system. For example, the termination resistor, R_T , must be within 20% of the characteristic impedance, Zo , of the cable and can vary from about 80 Ω to 120 Ω .

8.2.2 Detailed Design Procedure

Figure 8-1 shows a configuration with no termination. Although reflections are present at the receiver inputs at a data signaling rate of 200 kbps with no termination, the RS-422-compliant receiver reads only the input differential voltage and produces a clean signal at the output.

8.2.3 Application Curve

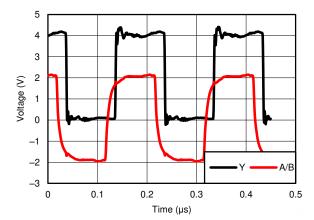


Figure 8-2. Differential 120-Ω Terminated Output Waveforms (Cat 5E Cable)

8.3 Power Supply Recommendations

Place 0.1-µF bypass capacitors close to the power-supply pins to reduce errors coupling in from noisy or high impedance power supplies.

8.4 Layout

8.4.1 Layout Guidelines

For best operational performance of the device, use good PCB layout practices, including:

- Noise can propagate into analog circuitry through the power pins of the circuit as a whole, as well as the
 operational amplifier. Bypass capacitors are used to reduce the coupled noise by providing low impedance
 power sources local to the analog circuitry.
 - Connect low-ESR, 0.1-µF ceramic bypass capacitors between each supply pin and ground, placed as close to the device as possible. A single bypass capacitor from V+ to ground is applicable for single supply applications.
- Separate grounding for analog and digital portions of circuitry is one of the simplest and most-effective
 methods of noise suppression. One or more layers on multilayer PCBs are usually devoted to ground planes.
 A ground plane helps distribute heat and reduces EMI noise pickup. Make sure to physically separate digital
 and analog grounds, paying attention to the flow of the ground current.
- To reduce parasitic coupling, run the input traces as far away from the supply or output traces as possible. If it is not possible to keep them separate, it is much better to cross the sensitive trace perpendicular as opposed to in parallel with the noisy trace.
- Place the external components as close to the device as possible. Keeping RF and RG close to the inverting input minimizes parasitic capacitance.
- Keep the length of input traces as short as possible. Always remember that the input traces are the most sensitive part of the circuit.
- Consider a driven, low-impedance guard ring around the critical traces. A guard ring can significantly reduce leakage currents from nearby traces that are at different potentials.

8.4.2 Layout Example

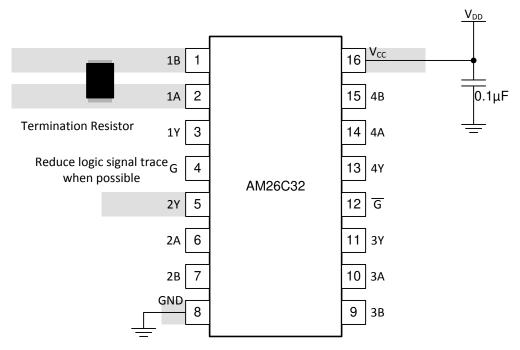


Figure 8-3. Trace Layout on PCB and Recommendations

9 Device and Documentation Support

9.1 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on *Subscribe to updates* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

9.2 Support Resources

TI E2E[™] support forums are an engineer's go-to source for fast, verified answers and design help — straight from the experts. Search existing answers or ask your own question to get the quick design help you need.

Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

9.3 Trademarks

TI E2E™ is a trademark of Texas Instruments.

All trademarks are the property of their respective owners.

9.4 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

9.5 Glossary

TI Glossary

This glossary lists and explains terms, acronyms, and definitions.

10 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from Rev	ision K (October 2018) to Revision M (October 2023)	Page
	Information table to the Package Information table	
Changes from Rev	ision K (June 2015) to Revision L (October 2018)	Page
 Changed I_I unit v 	value From: μA To: mA in the <i>Electrical Characteristics</i> table	5
Added Pin Config Functional Mode section, Device a	rision J (February 2014) to Revision K (June 2015) guration and Functions section, ESD Ratings table, Feature Descriptions, Application and Implementation section, Power Supply Recommentation Documentation Support section, and Mechanical, Packaging, and	ndations section, Layout d Orderable Information
Changes from Rev	ision I (September 2004) to Revision J (February 2014)	Page
	ent to new TI data sheet format - no specification changes g Information table	

11 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

28-Aug-2024 www.ti.com

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
5962-9164001Q2A	ACTIVE	LCCC	FK	20	55	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	5962- 9164001Q2A AM26C32 MFKB	Samples
5962-9164001QEA	ACTIVE	CDIP	J	16	25	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	5962-9164001QE A AM26C32MJB	Samples
5962-9164001QFA	ACTIVE	CFP	W	16	25	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	5962-9164001QF A AM26C32MWB	Samples
AM26C32CD	OBSOLETE	SOIC	D	16		TBD	Call TI	Call TI	0 to 70	AM26C32C	
AM26C32CDBR	OBSOLETE	SSOP	DB	16		TBD	Call TI	Call TI		26C32	
AM26C32CDR	OBSOLETE	SOIC	D	16		TBD	Call TI	Call TI	0 to 70	AM26C32C	
AM26C32CN	ACTIVE	PDIP	N	16	25	RoHS & Green	NIPDAU	N / A for Pkg Type	0 to 70	AM26C32CN	Samples
AM26C32CNE4	ACTIVE	PDIP	N	16	25	RoHS & Green	NIPDAU	N / A for Pkg Type	0 to 70	AM26C32CN	Samples
AM26C32CNSR	OBSOLETE	SO	NS	16		TBD	Call TI	Call TI	0 to 70	26C32	
AM26C32ID	OBSOLETE	SOIC	D	16		TBD	Call TI	Call TI	-40 to 85	AM26C32I	
AM26C32IDBR	ACTIVE	SSOP	DB	16	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	(26C32, 26C32I)	Samples
AM26C32IDR	ACTIVE	SOIC	D	16	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	AM26C32I	Samples
AM26C32IDRE4	ACTIVE	SOIC	D	16	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	AM26C32I	Samples
AM26C32IDRG4	ACTIVE	SOIC	D	16	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	AM26C32I	Samples
AM26C32IN	ACTIVE	PDIP	N	16	25	RoHS & Green	NIPDAU	N / A for Pkg Type	-40 to 85	AM26C32IN	Samples
AM26C32INSR	ACTIVE	SO	NS	16	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	26C32I	Samples
AM26C32IPW	OBSOLETE	TSSOP	PW	16		TBD	Call TI	Call TI	-40 to 85	26C32I	
AM26C32IPWR	ACTIVE	TSSOP	PW	16	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	26C32I	Samples
AM26C32IPWRG4	ACTIVE	TSSOP	PW	16	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	26C32I	Samples

www.ti.com 28-Aug-2024

Orderable Device	Status	Package Type	Package Drawing		Package Qty	Eco Plan	Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
AM26C32MFKB	ACTIVE	LCCC	FK	20	55	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	5962- 9164001Q2A AM26C32 MFKB	Samples
AM26C32MJB	ACTIVE	CDIP	J	16	25	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	5962-9164001QE A AM26C32MJB	Samples
AM26C32MWB	ACTIVE	CFP	W	16	25	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	5962-9164001QF A AM26C32MWB	Samples
AM26C32QD	OBSOLETI	SOIC	D	16		TBD	Call TI	Call TI	-40 to 125	AM26C32Q	
AM26C32QDG4	OBSOLETI	SOIC	D	16		TBD	Call TI	Call TI	-40 to 125	26C32Q	
AM26C32QDR	ACTIVE	SOIC	D	16	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	AM26C32Q	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

⁽⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

PACKAGE OPTION ADDENDUM

www.ti.com 28-Aug-2024

(6) Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

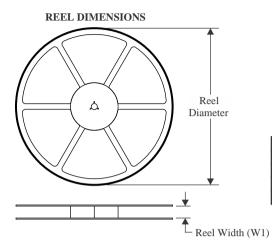
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

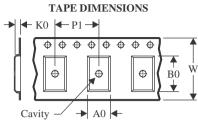
OTHER QUALIFIED VERSIONS OF AM26C32, AM26C32M:

Catalog : AM26C32

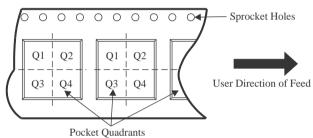
Enhanced Product: AM26C32-EP, AM26C32-EP

Military : AM26C32M


NOTE: Qualified Version Definitions:

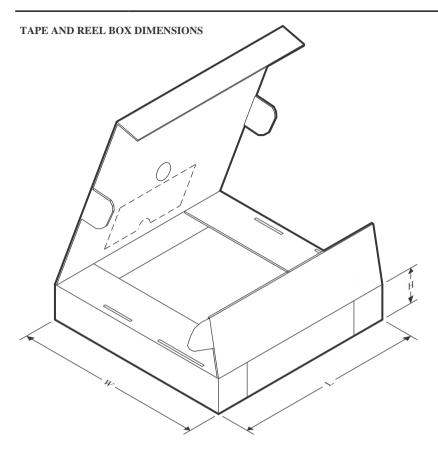

- Catalog TI's standard catalog product
- Enhanced Product Supports Defense, Aerospace and Medical Applications
- Military QML certified for Military and Defense Applications

www.ti.com 17-Jun-2024


TAPE AND REEL INFORMATION

A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

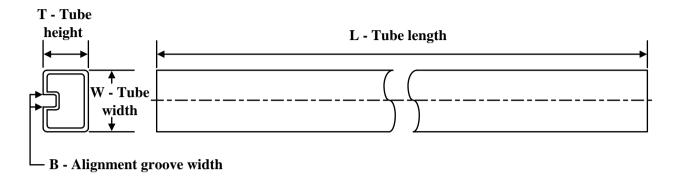
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE



*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
AM26C32CDBR	SSOP	DB	16	2000	330.0	16.4	8.35	6.6	2.4	12.0	16.0	Q1
AM26C32CDR	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.1	8.0	16.0	Q1
AM26C32CNSR	so	NS	16	2000	330.0	16.4	8.2	10.5	2.5	12.0	16.0	Q1
AM26C32IDBR	SSOP	DB	16	2000	330.0	16.4	8.35	6.6	2.4	12.0	16.0	Q1
AM26C32IDBR	SSOP	DB	16	2000	330.0	16.4	8.35	6.6	2.4	12.0	16.0	Q1
AM26C32IDR	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.1	8.0	16.0	Q1
AM26C32INSR	so	NS	16	2000	330.0	16.4	8.2	10.5	2.5	12.0	16.0	Q1
AM26C32INSR	so	NS	16	2000	330.0	16.4	8.2	10.5	2.5	12.0	16.0	Q1
AM26C32IPWR	TSSOP	PW	16	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1
AM26C32QDR	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.1	8.0	16.0	Q1

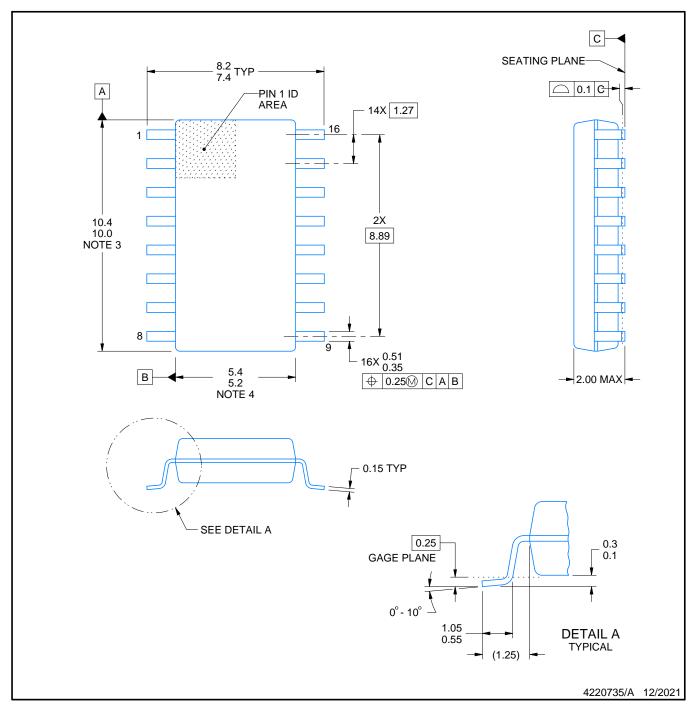
www.ti.com 17-Jun-2024


*All dimensions are nominal

annonoione are nomina							
Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
AM26C32CDBR	SSOP	DB	16	2000	356.0	356.0	35.0
AM26C32CDR	SOIC	D	16	2500	340.5	336.1	32.0
AM26C32CNSR	SO	NS	16	2000	356.0	356.0	35.0
AM26C32IDBR	SSOP	DB	16	2000	353.0	353.0	32.0
AM26C32IDBR	SSOP	DB	16	2000	356.0	356.0	35.0
AM26C32IDR	SOIC	D	16	2500	353.0	353.0	32.0
AM26C32INSR	SO	NS	16	2000	353.0	353.0	32.0
AM26C32INSR	SO	NS	16	2000	367.0	367.0	38.0
AM26C32IPWR	TSSOP	PW	16	2000	367.0	367.0	35.0
AM26C32QDR	SOIC	D	16	2500	350.0	350.0	43.0

www.ti.com 17-Jun-2024

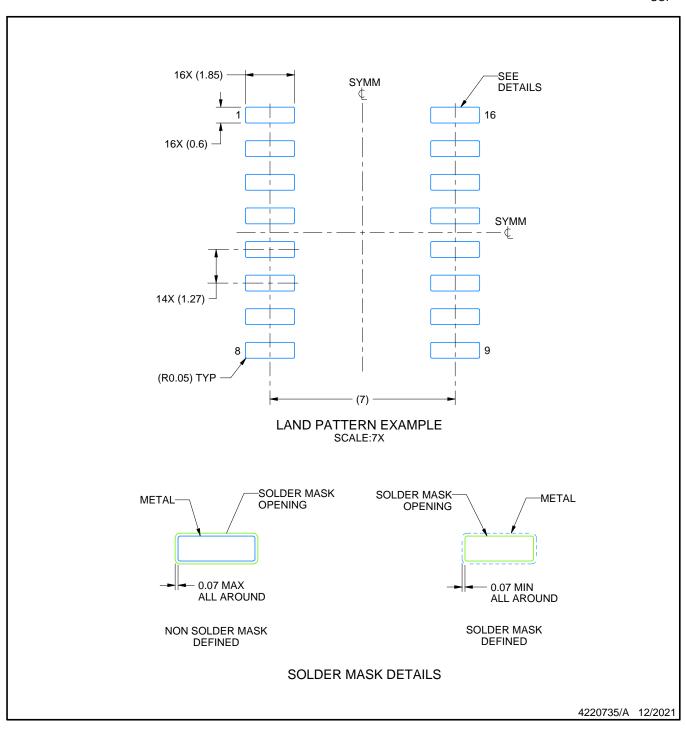
TUBE



*All dimensions are nominal

Device	Package Name	Package Type	Pins	SPQ	L (mm)	W (mm)	T (µm)	B (mm)
5962-9164001Q2A	FK	LCCC	20	55	506.98	12.06	2030	NA
5962-9164001QFA	W	CFP	16	25	506.98	26.16	6220	NA
AM26C32CD	D	SOIC	16	40	507	8	3940	4.32
AM26C32CDB	DB	SSOP	16	80	530	10.5	4000	4.1
AM26C32CDE4	D	SOIC	16	40	507	8	3940	4.32
AM26C32CN	N	PDIP	16	25	506	13.97	11230	4.32
AM26C32CN	N	PDIP	16	25	506	13.97	11230	4.32
AM26C32CNE4	N	PDIP	16	25	506	13.97	11230	4.32
AM26C32CNE4	N	PDIP	16	25	506	13.97	11230	4.32
AM26C32ID	D	SOIC	16	40	507	8	3940	4.32
AM26C32IDE4	D	SOIC	16	40	507	8	3940	4.32
AM26C32IDG4	D	SOIC	16	40	507	8	3940	4.32
AM26C32IN	N	PDIP	16	25	506	13.97	11230	4.32
AM26C32IPW	PW	TSSOP	16	90	530	10.2	3600	3.5
AM26C32IPWG4	PW	TSSOP	16	90	530	10.2	3600	3.5
AM26C32MFKB	FK	LCCC	20	55	506.98	12.06	2030	NA
AM26C32MWB	W	CFP	16	25	506.98	26.16	6220	NA
AM26C32QD	D	SOIC	16	40	505.46	6.76	3810	4
AM26C32QDG4	D	SOIC	16	40	505.46	6.76	3810	4

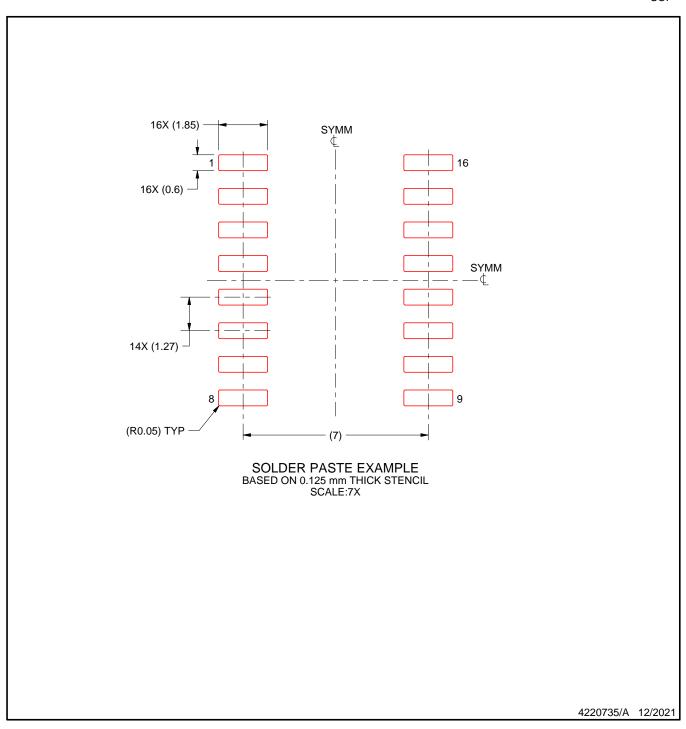
SOP


- 1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing
- per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm, per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm, per side.

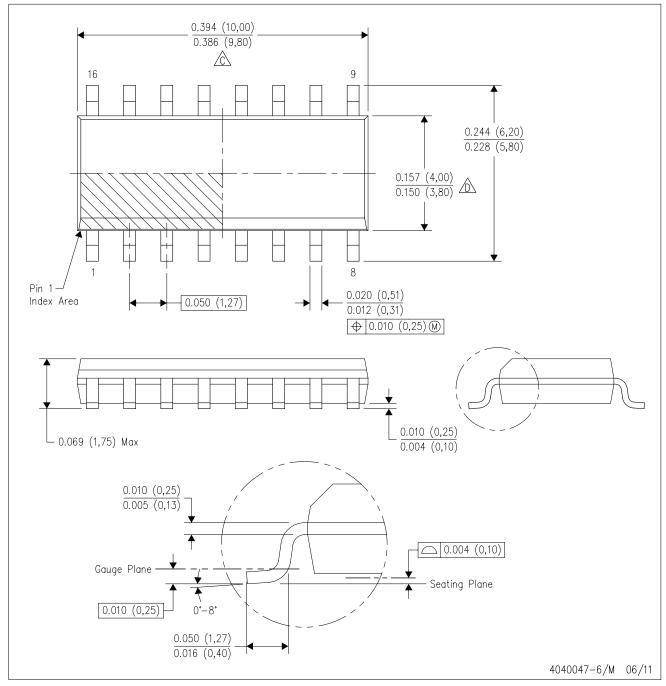
SOF



NOTES: (continued)

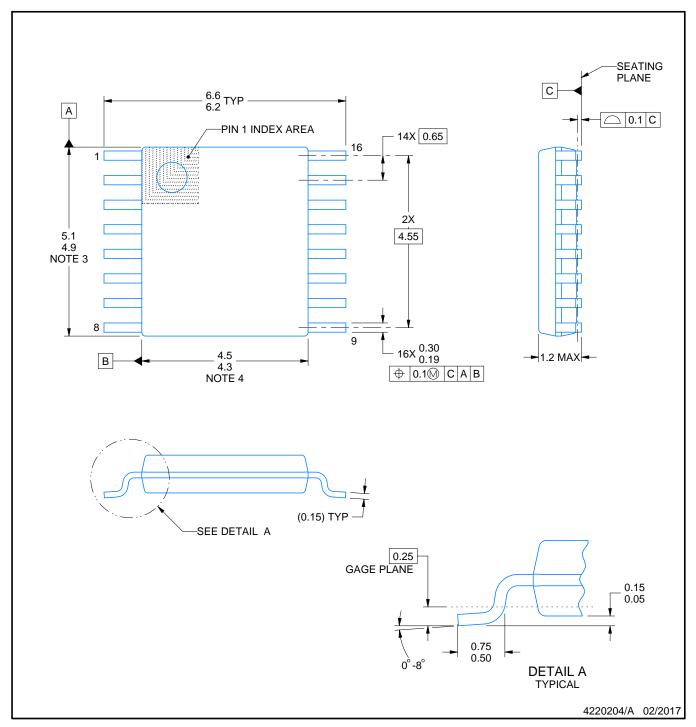
- 5. Publication IPC-7351 may have alternate designs.
- 6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SOF

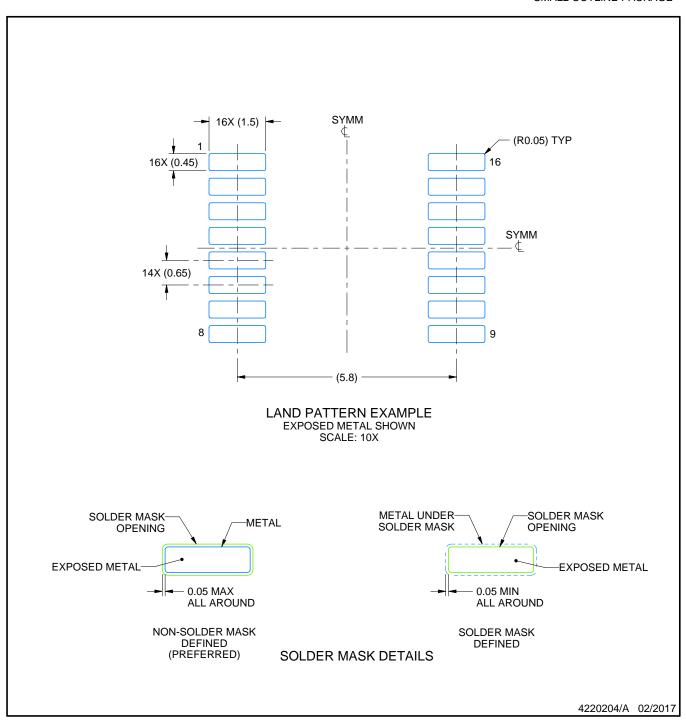

NOTES: (continued)

- 7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 8. Board assembly site may have different recommendations for stencil design.

D (R-PDS0-G16)


PLASTIC SMALL OUTLINE

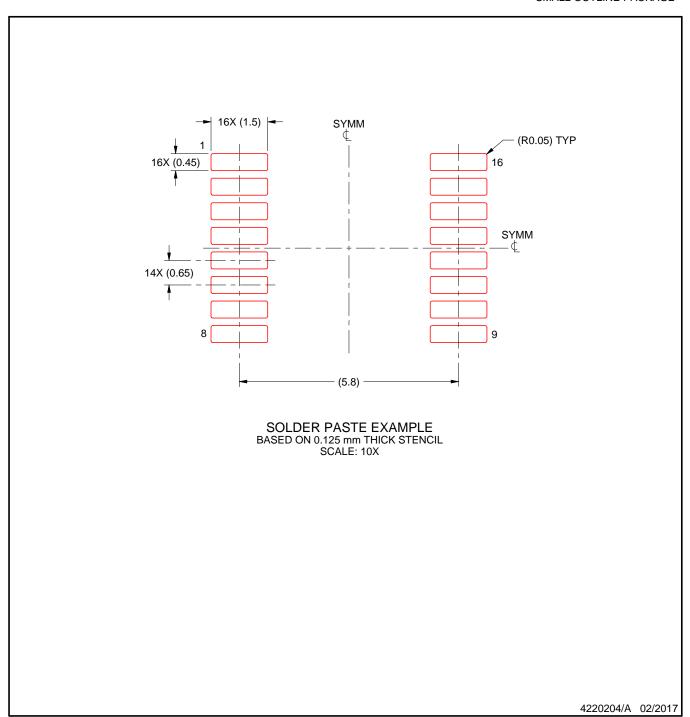
- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AC.



- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

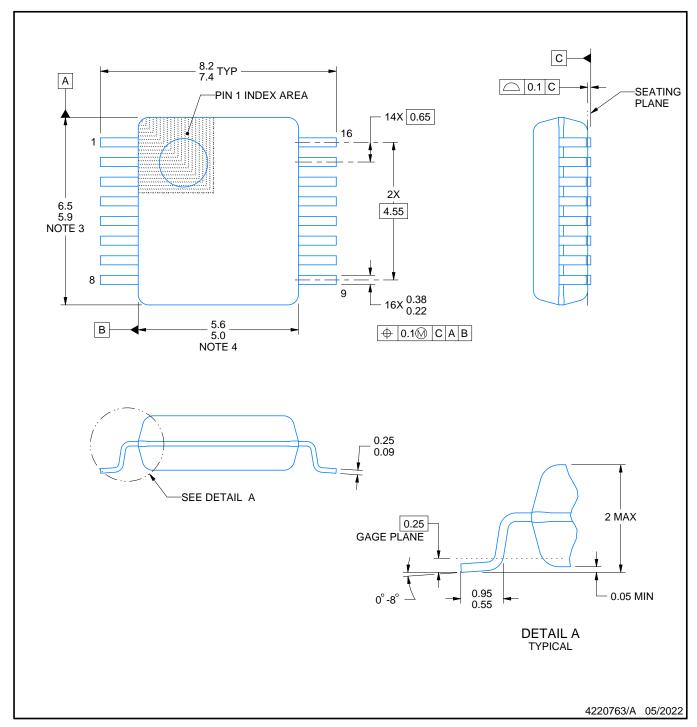
 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MO-153.



NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.



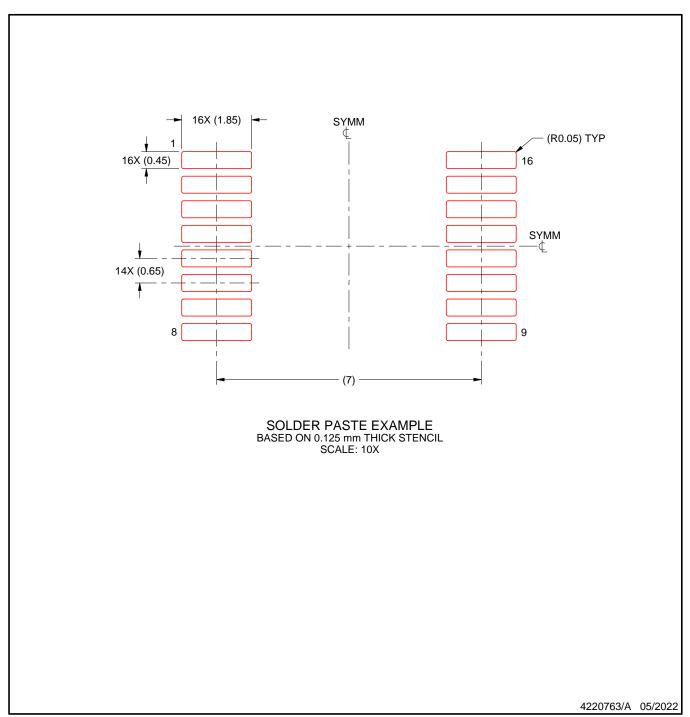
NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
 4. Reference JEDEC registration MO-150.

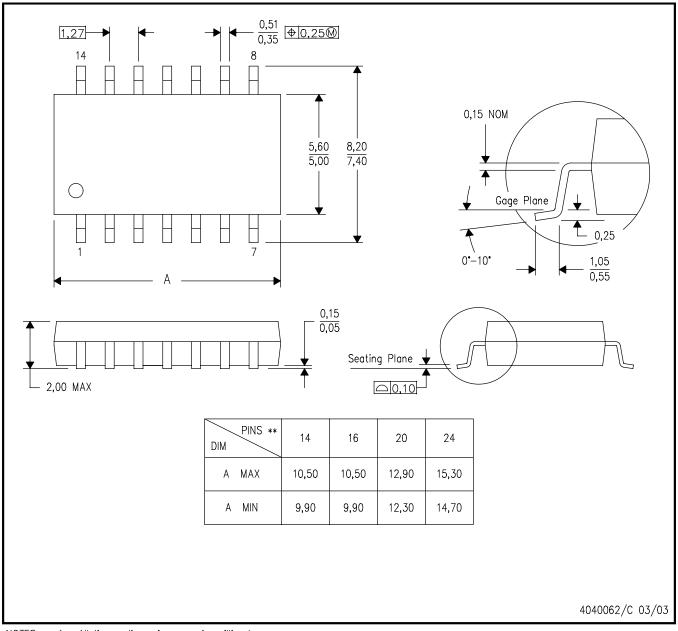


NOTES: (continued)

- 5. Publication IPC-7351 may have alternate designs.
- 6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

NOTES: (continued)

- 7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 8. Board assembly site may have different recommendations for stencil design.

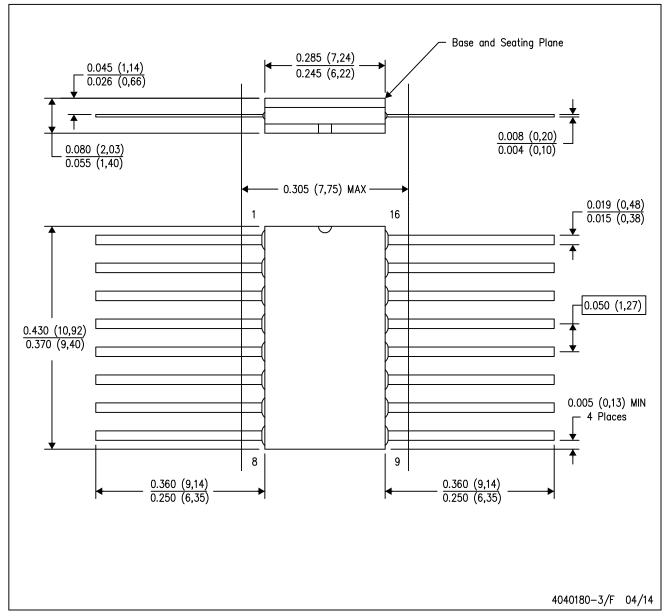


MECHANICAL DATA

NS (R-PDSO-G**)

14-PINS SHOWN

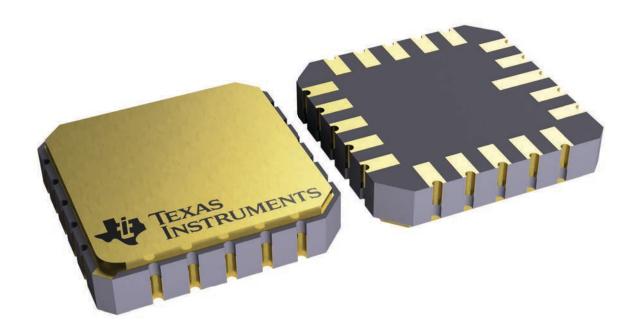
PLASTIC SMALL-OUTLINE PACKAGE

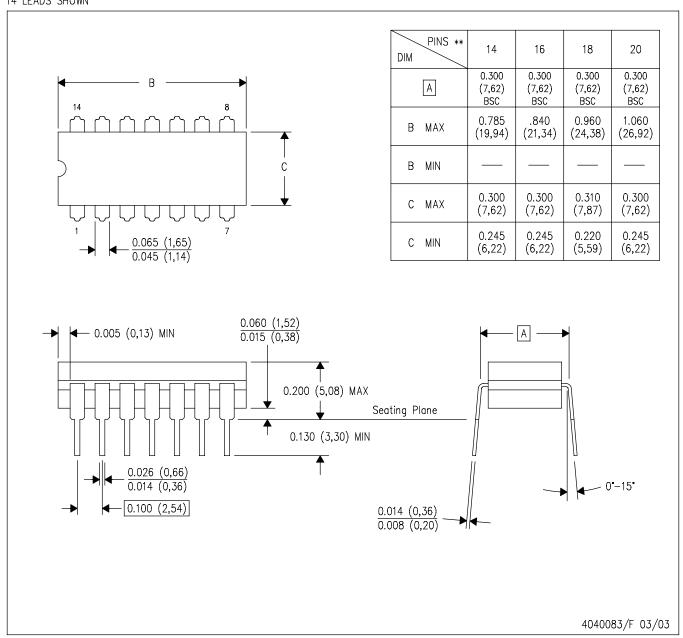


- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

W (R-GDFP-F16)

CERAMIC DUAL FLATPACK

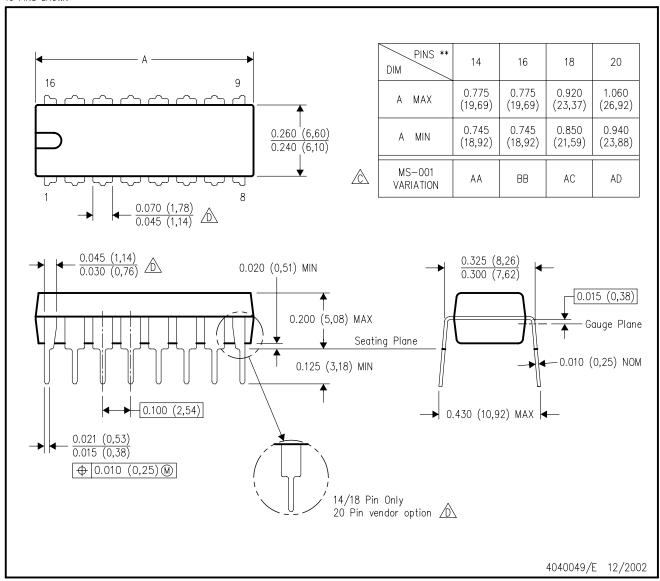

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. This package can be hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only.
- E. Falls within MIL STD 1835 GDFP2-F16


8.89 x 8.89, 1.27 mm pitch

LEADLESS CERAMIC CHIP CARRIER

This image is a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

14 LEADS SHOWN



- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. This package is hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
- E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20.

N (R-PDIP-T**)

PLASTIC DUAL-IN-LINE PACKAGE

16 PINS SHOWN

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- The 20 pin end lead shoulder width is a vendor option, either half or full width.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2024, Texas Instruments Incorporated