
Application Report
SPRA654 - March 2000

1

Autoscaling Radix-4 FFT for TMS320C6000 
Yao-Ting Cheng Taiwan Semiconductor Sales & Marketing

ABSTRACT

Fixed-point digital signal processors (DSPs) have limited dynamic range to deal with digital
data. This application report proposes a scheme to test and scale the result output from each
Fast Fourier Transform (FFT) stage in order to fix the accumulation overflow. The radix-4 FFT
algorithm is selected since it provides fewer stages than radix-2 algorithm. Thus, the scaling
operations are minimized. This application report is organized as follows:

• Basics of FFT

• Multiplication and addition overflow

• Algorithm to test bit growth and scaling the result

• Implementation by C and Linear Assembly on the C6000 DSP

• List of the codes

Contents

1 FFT (Fast Fourier Transform) 2.

2 Multiplication and Additions Overflow 3.

3 Bit-Growth Detection and Scaling Algorithm 5.

4 Example 1 – Main Program 6.

5 Example 2 – Autoscaling Radix-4 FFT With C6000 C Intrinsics 7.

6 Example 3 – Autoscaling Radix-4 FFT With C6000 Linear Assembly 8.

7 References 11.

List of Figures

Figure 1. Radix-2 FFT for N=8 2.
Figure 2. Radix-4 Butterfly 3.

TMS320C6000 is a trademark of Texas Instruments.

SPRA654

2 Autoscaling Radix-4 FFT for TMS320C6000

1 FFT (Fast Fourier Transform)

Many applications require the processing of signals in the digital world, digital signal processing.
Because we may need to process a signal based on its frequency characteristics, there is a
need to reformat the signal. The Discrete Fourier Transform (DFT) is one of the ways to convert
the signal from time domain to frequency domain. DFT is a discrete version of Fourier Transform
and is very computable by the modern microprocessor. The DFT equation is listed below:

X(k) �
N�1�

n � 0
x(n)W

nk
N , k � 0 to N � 1 where Wn � e�j2��N

Many calculations are needed. There are N2 complex multiplications and N2 complex additions
for an N-point DFT. One of the algorithms that can reduce dramatically the number of
computations is the radix-2 FFT, which takes advantage of the periodicity of the Twiddle Factor

W
nk
N . For example, if n=N, then

W
nk
N � W

Nk
N � e�j�2�

N
�NK � e�j2�k � � 1.

The radix-2 FFT equation is listed below:

X(k) �
N�1�

n � 0
x(n)W

nk
N �

N
2
�1

�
n � 0

� x(n) � (�1)k x�n � N
2
��W

nk
N

The radix-2 FFT equation simply divides the DFT into two smaller DFTs. Each of the smaller
DFTs is then further divided into smaller ones and so on (see Figure 1). It consists of log2N
stages and each stage consists of N/2 butterflies. Each butterfly consists of two additions for the
input data and one multiplication to the twiddle factor.

x(0)

x(1)

x(2)

x(3)

x(4)

x(5)

x(6)

x(7)

X(0)

X(4)

X(2)

X(6)

X(1)

X(5)

X(3)

X(7)
–1

–1

–1

–1

–1

–1

–1

–1

–1

–1

–1

–1

Stage 1 Stage 3Stage 2

W
0
N

W
1
N

W
2
N

W
3
N

W
0
N

W
2
N

W
0
N

W
2
N

W
0
N

W
0
N

W
0
N

W
0
N

Figure 1. Radix-2 FFT for N=8

SPRA654

3 Autoscaling Radix-4 FFT for TMS320C6000

The other popular algorithm is the radix-4 FFT, which is even more efficient than the radix-2 FFT.
The radix-4 FFT equation is listed below:

X(k) �

N
4
�1

�
n � 0

� x(n) � (�j)k x�n � N
4
� � (�1)k x�n � N

2
�� (j)k x�n � 3N

4
� �W

nk
N

The radix-4 FFT equation essentially combines two stages of a radix-2 FFT into one, so that half
as many stages are required (see Figure 2). Since the radix-4 FFT requires fewer stages and
butterflies than the radix 2 FFT, the computations of FFT can be further improved. For example,
to calculate a 16-point FFT, the radix-2 takes log216=4 stages but the radix-4 takes only
log416=2 stages. Next, we discuss the numerical issue that arises from a finite length problem.
Most people use a fixed-point DSP to perform the calculation in their embedded system because
the fixed-point DSP is highly programmable and is cost efficient. The drawback is that the
fixed-point DSP has limited dynamic range, which is worsened by the summation overflow
problem that occurs all the time in FFT. A scheme is needed to overcome this issue.

–j

–1
j

–1

1

–1

j

–1

–j

W
0
N

W
r
N

W
2r
N

W
3r
N

Figure 2. Radix-4 Butterfly

2 Multiplication and Additions Overflow

FFT is nothing but a bundle of multiplications and summations which may overflow during
multiplication and addition. This application report adopts the radix-4 algorithm developed by C.
S. Burrus and T. W. Parks to explain how to solve these two kinds of overflow on a C6000 DSP.
The radix-4 FFT C equivalent program is listed below:

void radix4(int n, short x[], short w[])
{
 int n1, n2, ie, ia1, ia2, ia3, i0, i1, i2, i3, j, k;
 short t, r1, r2, s1, s2, co1, co2, co3, si1, si2, si3;

 n2 = n;
 ie = 1;
 for (k = n; k > 1; k >>= 2) { // number of stages
 n1 = n2;

SPRA654

4 Autoscaling Radix-4 FFT for TMS320C6000

 n2 >>= 2;
 ia1 = 0;
 for (j = 0; j < n2; j++) { // number of butterflies
 ia2 = ia1 + ia1; // per stage
 ia3 = ia2 + ia1;
 co1 = w[ia1 * 2 + 1];
 si1 = w[ia1 * 2];
 co2 = w[ia2 * 2 + 1];
 si2 = w[ia2 * 2];
 co3 = w[ia3 * 2 + 1];
 si3 = w[ia3 * 2];
 ia1 = ia1 + ie;
 for (i0 = j; i0 < n; i0 += n1) { // loop for butterfly
 i1 = i0 + n2; // calculations
 i2 = i1 + n2;
 i3 = i2 + n2;
 r1 = x[2 * i0] + x[2 * i2];
 r2 = x[2 * i0] - x[2 * i2];
 t = x[2 * i1] + x[2 * i3];
 x[2 * i0] = r1 + t;
 r1 = r1 - t;
 s1 = x[2 * i0 + 1] + x[2 * i2 + 1];
 s2 = x[2 * i0 + 1] - x[2 * i2 + 1];
 t = x[2 * i1 + 1] + x[2 * i3 + 1];
 x[2 * i0 + 1] = s1 + t;
 s1 = s1 - t;
 x[2 * i2] = (r1 * co2 + s1 * si2) >> 15;
 x[2 * i2 + 1] = (s1 * co2 - r1 * si2)>> 15;
 t = x[2 * i1 + 1] - x[2 * i3 + 1];
 r1 = r2 + t;
 r2 = r2 - t;
 t = x[2 * i1] - x[2 * i3];
 s1 = s2 - t;
 s2 = s2 + t;
 x[2 * i1] = (r1 * co1 + s1 * si1) >> 15;
 x[2 * i1 + 1] = (s1 * co1 - r1 * si1)>> 15;
 x[2 * i3] = (r2 * co3 + s2 * si3) >> 15;
 x[2 * i3 + 1] = (s2 * co3 - r2 * si3)>> 15;
 }
 }
 ie <<= 2;
}

To deal with the multiplication overflow, we need to interpret all input samples and twiddle

factors, Wnk
N , as fractional numbers because a fractional number times a fractional number is

always less than or equal to one. For the C6000 DSP, the largest 16-bit positive fractional binary
number is 0.111 1111 1111 1111, which is mapped as 32767 in integer domain (or 0x7FFF in
hexadecimal). The smallest negative number is 1.000 0000 0000 0000, which is noted as 32768
in integer (or 0x8000 in hexadecimal). The only exception that multiplication still occurs is –1
times –1; the result of which should be equal to positive 1. However, we have the largest positive
number 0.111 1111 1111 1111, which is very close to one but not precisely the perfect 1. The

SPRA654

5 Autoscaling Radix-4 FFT for TMS320C6000

C6000 DSP provides Saturation Multiplication instructions such as SMPY that can fix this
problem.

The second overflow comes from additions. According to the algorithm listed above, up to five
additions are needed to calculate the output. For example, one of the FFT output data is
calculated as

x[2 * i1] = r1 * co1 + s1 * si1
 = (r2 + t) * co1 + (s2 - t) * si1
 = (r2 + (x[2*i1+1] – x[2*i3+1])) * co1 +
 (s2 – (x[2*i1] – x[2*i3])) * s11.

It can contribute up to a 3-bit growth within the butterflies. The easiest way to fix it is to scale
down the input samples 3 bits at each stage. Somehow, it costs a lot of dynamic range. The
other way to fix it is to detect if the bit grows at the output of each stage. Then, scale down the
result based on how many bits have grown before feeding the result into the next stage.

3 Bit-Growth Detection and Scaling Algorithm

The C6000 DSP provides the instruction NORM that can help detect how many bits grow after
each addition. For example, assume the content of the 32-bit register A1 is 0000 0000 0000
0000 0010 0010 1100 1111. After performing the NORM operation such as

NORM.L1 A1, A2

The A1 will stay unchanged and A2 will be 17, which is simply the number of non-redundant sign
bits as shown with double underscore. If the content of A1 grows 3 bits as 0000 0000 0000 0001
0010 0010 0011 0011, the result of NORM will be 14 because the non-redundant sign bit is
decreased by 3 bits. Once we have the number of bit-growth, we can properly scale down the
result by right-shifting the content of the register. One more issue to be considered is the input
data format. Generally, the Q15 number is adopted for most of the system. It means that there is
one sign bit in the most significant bit (MSB) for 16-bit data such as S.XXX XXXX XXXX XXXX,
where S is the sign bit. To prevent addition overflow for radix-4 FFT, we need three guard bits;
therefore, the data should be Q12, such as SSSS. XXXX XXXX XXXX. It is a reasonable
approach since the resolution of most of the analog-to-digital converters is less than or equal to
12 bits. The result returned by the NORM instruction for Q12 data is therefore 19. The algorithm
is summarized below:

Step 1: Input data should be in the format of Q12 to gain three guard bits. Set exp = 19,
which is the number of non-redundant sign bits of Q12 data.

Step 2: At the end of each butterfly calculation, take the test of bit growth and record the
maximum as follows:
if ((exp_temp = _norm(X[k])) < 19)
 if (exp_temp < exp) exp = exp_temp;

Step 3: At the end of each stage, test to see if FFT is not in the last stage. There is no need
to scale the last output. Then, test if the bit grows. If it does, scale down the output
back to Q12.
if (!last_stage) {
 if (exp < 19) {
 for (i=0; i<(2*N); i++) X[I]>>=(18-exp);

SPRA654

6 Autoscaling Radix-4 FFT for TMS320C6000

 scale += (19-exp);

 exp = 18;

 }

}

Example programs are listed below. Example 1 is the main program that provides the input
samples and the twiddle factors for 16-point FFT. Example 2 is the autoscaling radix-4 FFT
implemented in C with C6000 intrinsics. Example 3 is the FFT subroutine implemented with
C6000 linear assembly.

4 Example 1 – Main Program

#define Q12_SCALE 8
extern int r4_fft(short, short*, short*);
short x[32]={ 0, 0, // input samples
 4617/Q12_SCALE, 0, // Scale the data from Q15 to Q12
 9118/Q12_SCALE, 0,
 13389/Q12_SCALE, 0,
 17324/Q12_SCALE, 0,
 20825/Q12_SCALE, 0,
 23804/Q12_SCALE, 0,
 26187/Q12_SCALE, 0,
 27914/Q12_SCALE, 0,
 28941/Q12_SCALE, 0,
 29242/Q12_SCALE, 0,
 28811/Q12_SCALE, 0,
 27658/Q12_SCALE, 0,
 25811/Q12_SCALE, 0,
 23318/Q12_SCALE, 0,
 20241/Q12_SCALE, 0 };
short w[32]={ 0, 32767, // Twiddle Factors
 12540, 30274, // 32768*sin(2PI*n/N), 32768*cos(2PI*n/N)
 23170, 23170,
 30274, 12540,
 32767, 0,
 30274, -12540,
 23170, -23170,
 12540, -30274,
 0, -32767,
 -12540, -30274,
 -23170, -23170,
 -30274, -12540,
 -32767, 0,
 -30274, 12540,
 -23170, 23170,
 -12540, 30274 };
short index[16]={ 0, 4, 8, 12, // index for 16-points digit reverse
 1, 5, 9, 13,
 2, 6, 10, 14,
 3, 7, 11, 15 };
short y[32]; // outputs
main()

SPRA654

7 Autoscaling Radix-4 FFT for TMS320C6000

{
 int n=16;
 int i;
 int scale;
 scale = r4_fft(n,x,w);
 for(i=0; i<n; i++) {
 y[2*i] = x[index[i]*2];
 y[2*i+1] = x[index[i]*2+1];
 }
}

5 Example 2 – Autoscaling Radix-4 FFT With C6000 C Intrinsics

int r4_fft(short n, int x[], const int w[])
{
 int n1, n2, ie, ia1, ia2, ia3, i0, i1, i2, i3, j, k;
 int t0, t1, t2;
 int xtmph, xtmpl;
 int shift, exp=19, scale=0;
 n2 = n;
 ie = 1;
 for (k=n; k>1; k>>=2) {
 n1 = n2;
 n2 >>= 2;
 ia1 = 0;
 for (j=0; j<n2; j++) {
 ia2 = ia1 + ia1;
 ia3 = ia2 + ia1;
 for (i0=j; i0<n; i0+=n1) {
 i1 = i0 + n2;
 i2 = i1 + n2;
 i3 = i2 + n2;
 t0 = _add2(x[i1],x[i3]);
 t1 = _add2(x[i0],x[i2]);
 t2 = _sub2(x[i0],x[i2]);
 x[i0] = _add2(t0,t1);
 t1 = _sub2(t1,t0);
 xtmph = (_smpyh(t1,w[ia2]) - _smpy(t1,w[ia2])) & 0xffff0000;
 xtmpl = ((_smpylh(t1,w[ia2]) + _smpyhl(t1,w[ia2])) >> 16) &
 0x0000ffff;
 x[i2] = xtmph | xtmpl;
 t0 = _sub2(x[i1],x[i3]);
 t1 = -(t0 << 16);
 t0 = t1 | ((t0 >> 16) & 0x0000ffff);
 t1 = _add2(t2,t0);
 t2 = _sub2(t2,t0);
 xtmph = (_smpyh(t1,w[ia1]) - _smpy(t1,w[ia1])) & 0xffff0000;
 xtmpl = ((_smpylh(t1,w[ia1]) + _smpyhl(t1,w[ia1])) >> 16) &
 0x0000ffff;
 x[i1] = xtmph | xtmpl;
 xtmph = (_smpyh(t2,w[ia3]) - _smpy(t2,w[ia3])) & 0xffff0000;
 xtmpl = ((_smpylh(t2,w[ia3]) + _smpyhl(t2,w[ia3])) >> 16) &
 0x0000ffff;

SPRA654

8 Autoscaling Radix-4 FFT for TMS320C6000

 x[i3] = xtmph | xtmpl;
 }
 ia1 = ia1 + ie;
 }
 if (k > 4) {
 ie <<= 2;
 j=0;
 while ((exp > 16) && (j < n)) {
 xtmph = _norm(x[j] >> 16);
 xtmpl = _norm(x[j] << 16 >> 16);
 if (xtmph < exp) exp=xtmph;
 if (xtmpl < exp) exp=xtmpl;
 j++;
 }
 if (exp < 19) {
 shift = 19-exp;
 exp = 19;
 scale += shift;
 _nassert(j>15);
 for (j=0; j<n; j++) {
 xtmph = (x[j] >> shift) & 0xffff0000;
 xtmpl = ((x[j] << 16) >> (16+shift)) & 0x0000ffff;
 x[j] = xtmph | xtmpl;
 }
 }
 }
 }
 return scale;
}

6 Example 3 – Autoscaling Radix-4 FFT With C6000 Linear Assembly

 .title ”r4_fft.sa”
 .def _r4_fft
 .text
_r4_fft .cproc n, p_x, p_w
 .reg n1, n2, ie, ia1, ia2, ia3, i0, i1, i2, i3, j, k;
 .reg t0, t1, t2, w, x0, x1, x2, x3;
 .reg tmp, mskh, xtmph, xtmpl;
 .reg exp, scale;
 add n, 0, n2
 mvk 1, ie
 zero mskh
 mvkh 0xffff0000, mskh
 zero scale
 add n, 0, k
stage_loop:
 add n2, 0, n1
 shr n2, 2, n2
 zero ia1
 zero j
group_loop:

SPRA654

9 Autoscaling Radix-4 FFT for TMS320C6000

 add ia1, ia1, ia2
 add ia2, ia1, ia3
 add j, 0, i0
butterfly_loop:
 add i0, n2, i1
 add i1, n2, i2
 add i2, n2, i3
 ldw *+p_x[i0], x0
 ldw *+p_x[i1], x1
 ldw *+p_x[i2], x2
 ldw *+p_x[i3], x3
 add2 x1, x3, t0
 add2 x0, x2, t1
 sub2 x0, x2, t2
 add2 t0, t1, x0 ; x0
 sub2 t1, t0, t1
 ldw *+p_w[ia2], w ; load twiddle factor w2
 smpyh t1, w, tmp
 smpy t1, w, xtmph
 sub tmp, xtmph, xtmph
 and xtmph, mskh, xtmph
 smpylh t1, w, tmp
 smpyhl t1, w, xtmpl
 add tmp, xtmpl, xtmpl
 shru xtmpl, 16, xtmpl
 or xtmph, xtmpl, x2 ; x2
 sub2 x1, x3, t0
 shl t0, 16, t1
 neg t1, t1
 extu t0, 0 ,16, t0
 or t1, t0, t0
 add2 t2, t0, t1
 sub2 t2, t0, t2
 ldw *+p_w[ia1], w ; load twiddle factor w1
 smpyh t1, w, tmp
 smpy t1, w, xtmph
 sub tmp, xtmph, xtmph
 and xtmph, mskh, xtmph
 smpylh t1, w, tmp
 smpyhl t1, w, xtmpl
 add tmp, xtmpl, xtmpl
 shru xtmpl, 16, xtmpl
 or xtmph, xtmpl, x1 ; x1
 ldw *+p_w[ia3], w ; load twiddle factor w2
 smpyh t2, w, tmp
 smpy t2, w, xtmph
 sub tmp, xtmph, xtmph
 and xtmph, mskh, xtmph
 smpylh t2, w, tmp
 smpyhl t2, w, xtmpl
 add tmp, xtmpl, xtmpl

SPRA654

10 Autoscaling Radix-4 FFT for TMS320C6000

 shru xtmpl, 16, xtmpl
 or xtmph, xtmpl, x3 ; x3
 stw x0, *+p_x[i0]
 stw x1, *+p_x[i1]
 stw x2, *+p_x[i2]
 stw x3, *+p_x[i3]
 add i0, n1, i0
 cmplt i0, n, tmp
 [tmp]b butterfly_loop ; branch to butterfly loop
 add ia1, ie, ia1
 add j, 1, j
 cmplt j, n2, tmp
 [tmp]b group_loop ; branch to group loop
 cmpeq k, 4, tmp ; test if last stage
 [tmp]b end ; if true, branch to end
 mvk 2, exp ; initialize exponent
 zero j ; initialize index
 mvkl 0x0000ffff, t2 ; mask for masking xtmpl
 mvkh 0x0000ffff, t2
test_bit_growth: .trip 16
 ldw *+p_x[j], tmp
 norm tmp, xtmph ; test for redundant sign bit of HI half
 shl tmp, 16, xtmpl
 norm xtmpl, xtmpl ; test for redundant sign bit of LO half
 cmplt xtmph, exp, tmp ; test if bit grow
 [tmp]add xtmph, 0, exp
 cmplt xtmpl, exp, tmp ; test if bit grow
 [tmp]add xtmpl, 0, exp
 cmpgt exp, 2, tmp ; if exp>2 than no scaling
 [tmp]b no_scale

 cmpeq exp, 0, tmp ; compare if bit grow 3 bits
 [tmp]sub 3, exp, t0 ; calculate shift
 [tmp]mvk 0x0213, t1 ; csta & cstb to ext xtmpl
 [tmp]add scale, t0, scale ; accumulate scale
 [tmp]b scaling
 cmpeq exp, 1, tmp ; compare if bit grow 2 bit
 [tmp]sub 3, exp, t0
 [tmp]mvk 0x0212, t1 ; csta & cstb to ext xtmpl
 [tmp]add scale, t0, scale ; accumulate scale
 [tmp]b scaling

 sub 3, exp, t0 ; grows 1 bit
 mvk 0x0211, t1 ; csta & cstb to ext xtmpl
 add scale, t0, scale ; accumulate scale
 b scaling
no_scale:
 add j, 1, j
 cmplt j, n, tmp ; compare if test all output
 [tmp]b test_bit_growth ; if not, test next output
 b next_stage ; else go to next stage

SPRA654

11 Autoscaling Radix-4 FFT for TMS320C6000

scaling:
 zero j
scaling_loop: .trip 16
 ldw *+p_x[j], tmp
 shr tmp, t0, xtmph ; scaling HI half
 and xtmph, mskh, xtmph ; mask HI half
 ext tmp, t1, xtmpl ; scaling LO half
 and xtmpl, t2, xtmpl ; mask LO half by 0x0000ffff
 or xtmph, xtmpl, tmp ; x[j]=[xtmph | xtmpl]
 stw tmp, *+p_x[j]
 add j, 1, j
 cmplt j, n, tmp
 [tmp]b scaling_loop
next_stage:
 shl ie, 2, ie
 shr k, 2, k
 b stage_loop ; end of stage loop
end:
 .return scale
 .endproc

7 References
1. C.S. Burrus and T.W. Parks, DFT/FFT and Convolution Algorithms and Implementation, John

Wiley & Sons, New York, 1985.

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue
any product or service without notice, and advise customers to obtain the latest version of relevant information
to verify, before placing orders, that information being relied on is current and complete. All products are sold
subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those
pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent
TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily
performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF
DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL
APPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER
CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO
BE FULLY AT THE CUSTOMER’S RISK.

In order to minimize risks associated with the customer’s applications, adequate design and operating
safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other
intellectual property right of TI covering or relating to any combination, machine, or process in which such
semiconductor products or services might be or are used. TI’s publication of information regarding any third
party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.

Copyright  2000, Texas Instruments Incorporated

