








THS4021, THS4022 SLOS265F – AUGUST 1999 – REVISED JULY 2024

# THS402x 2GHz, 10V/V Stable, Low-Noise, High-Speed Amplifiers

### **1** Features

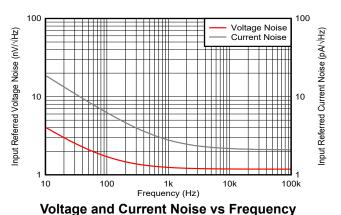
Texas

INSTRUMENTS

- Ultra-low 1.2nV/√Hz voltage noise
- High speed:
  - 2GHz gain-bandwidth product
  - 470V/µs slew rate
  - 30ns settling time (0.1%)
- Stable at gains ≥10V/V
- Output drive, I<sub>O</sub> = 200mA (typical)
- · Very low distortion:
  - THD = -68dBc (f = 1MHz, R<sub>L</sub> = 150 $\Omega$ )
  - Wide range of power supplies:
  - V<sub>CC</sub> = ±4.5V to ±16V
- Offset nulling pins on the THS4021

## **2** Applications

- Ultrasound scanner
- Source measurement unit (SMU)
- Power quality meter


### **3 Description**

The THS4021 and THS4022 (THS402x) are ultra-low voltage noise, high-speed voltage-feedback amplifiers that are an excellent choice for applications requiring low voltage noise, including communication and imaging. The single-amplifier THS4021 and the dual-amplifier THS4022 offer very good ac performance with a 290MHz closed-loop bandwidth, 470V/µs slew rate, and 30ns settling time (0.1%) for a gain of 10V/V. The THS402x are stable at gains of 10V/V or greater and –9V/V or less. These amplifiers have a high drive capability of 200mA and draw only 7.5mA of supply current per amplifier. With a total harmonic distortion (THD) of –68dBc at f = 1MHz, the THS402x are designed for applications requiring low distortion.

**Device Information** 

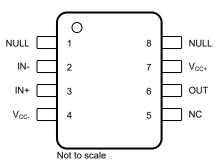
| Bottoo intornation |                  |                        |  |  |  |
|--------------------|------------------|------------------------|--|--|--|
| PART NUMBER        | AMPLIFIERS       | PACKAGE <sup>(1)</sup> |  |  |  |
| THS4021            | One              | D (SOIC, 8)            |  |  |  |
| 1H54021            |                  | DGN (HVSSOP, 8)        |  |  |  |
| THS4022            | Two DGN (HVSSOP, |                        |  |  |  |

(1) For more information, see Section 10.



1kΩ




# **Table of Contents**

| 1 Features                                    | 1               |
|-----------------------------------------------|-----------------|
| 2 Applications                                |                 |
| 3 Description                                 |                 |
| 4 Pin Configuration and Functions             | 3               |
| 5 Specifications                              | 4               |
| 5.1 Absolute Maximum Ratings                  | 4               |
| 5.2 ESD Ratings                               | 4               |
| 5.3 Recommended Operating Conditions          | 4               |
| 5.4 Thermal Information - THS4021             | 5               |
| 5.5 Thermal Information - THS4022             | 5               |
| 5.6 Electrical Characteristics - THS4021D and |                 |
| THS4022DGN                                    | 6               |
| 5.7 Electrical Characteristics - THS4021DGN   | <mark>8</mark>  |
| 5.8 Typical Characteristics: THS4021D and     |                 |
| THS4022DGN                                    | 10              |
| 5.9 Typical Characteristics: THS4021DGN       | 16              |
| 6 Detailed Description                        | <mark>21</mark> |
| 6.1 Overview                                  | 21              |
|                                               |                 |

| 6.2 Functional Block Diagram                        | 21   |
|-----------------------------------------------------|------|
| 6.3 Feature Description.                            |      |
| 6.4 Device Functional Modes                         |      |
| 7 Application and Implementation                    | 23   |
| 7.1 Application Information                         |      |
| 7.2 Power Supply Recommendations                    |      |
| 7.3 Layout                                          |      |
| 8 Device and Documentation Support                  | 27   |
| 8.1 Documentation Support                           | 27   |
| 8.2 Receiving Notification of Documentation Updates | 27   |
| 8.3 Support Resources                               | . 27 |
| 8.4 Trademarks                                      | 27   |
| 8.5 Electrostatic Discharge Caution                 | 27   |
| 8.6 Glossary                                        |      |
| 9 Revision History                                  | . 27 |
| 10 Mechanical, Packaging, and Orderable             |      |
| Information                                         | 28   |
|                                                     |      |



## **4** Pin Configuration and Functions



### Figure 4-1. THS4021: D Package, 8-Pin SOIC, or DGN Package, 8-pin HVSSOP (Top View)

Table 4-1. Pin Functions: THS4021

| PIN              |      | ТҮРЕ   | DESCRIPTION           |  |  |
|------------------|------|--------|-----------------------|--|--|
| NAME             | NO.  |        | DESCRIPTION           |  |  |
| IN–              | 2    | Input  | Inverting input       |  |  |
| IN+              | 3    | Input  | Noninverting input    |  |  |
| NC               | 5    | _      | No connection         |  |  |
| NULL             | 1, 8 | Input  | Voltage offset adjust |  |  |
| OUT              | 6    | Output | Output of amplifier   |  |  |
| V <sub>CC-</sub> | 4    | _      | Negative power supply |  |  |
| V <sub>CC+</sub> | 7    |        | Positive power supply |  |  |

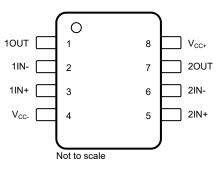





Table 4-2. Pin Functions: THS4022

| PIN              |     | ТҮРЕ   | DESCRIPTION                  |  |
|------------------|-----|--------|------------------------------|--|
| NAME             | NO. |        | DESCRIPTION                  |  |
| 1IN-             | 2   | Input  | Channel 1 inverting input    |  |
| 1IN+             | 3   | Input  | Channel 1 noninverting input |  |
| 10UT             | 1   | Output | Channel 1 output             |  |
| 2IN-             | 6   | Input  | Channel 2 inverting input    |  |
| 2IN+             | 5   | Input  | Channel 2 noninverting input |  |
| 20UT             | 7   | Output | Channel 2 output             |  |
| V <sub>CC</sub>  | 4   | _      | Negative power supply        |  |
| V <sub>CC+</sub> | 8   | _      | Positive power supply        |  |



### **5** Specifications

#### 5.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)<sup>(1)</sup>

|                                         |                                        |                              | MIN | MAX          | UNIT |
|-----------------------------------------|----------------------------------------|------------------------------|-----|--------------|------|
| V <sub>CC-</sub> to<br>V <sub>CC+</sub> | Supply voltage                         |                              |     | 33           | V    |
| VI                                      | Input voltage                          | out voltage                  |     | $\pm V_{CC}$ | V    |
| I <sub>O</sub>                          | Output current <sup>(2)</sup>          |                              |     | 240          | mA   |
| V <sub>IO</sub>                         | Differential input voltage             |                              |     | ±1.5         | V    |
| I <sub>IN</sub>                         | Continuous input current               |                              |     | 10           | mA   |
| TJ                                      | Maximum junction temperature           | Maximum junction temperature |     | 150          | °C   |
| т                                       | Operating free-air temperature         | C-suffix                     | 0   | 70           | °C   |
| IA                                      | Operating nee-an temperature           | I-suffix                     | -40 | 85           | C    |
| T <sub>stg</sub>                        | Storage temperature                    |                              | -65 | 150          | °C   |
|                                         | Lead temperature 1.6 mm (1/16 inch) fi | rom case for 10 seconds      |     | 300          | °C   |

(1) Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If used outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime.

(2) When continuously operating at any output current, do not exceed the maximum junction temperature. Keep the output current less than the absolute maximum rating regardless of time interval.

### 5.2 ESD Ratings

|                    |                         |                                                                                 | VALUE | UNIT |
|--------------------|-------------------------|---------------------------------------------------------------------------------|-------|------|
| M                  | Electrostatic discharge | Human body model (HBM), per ANSI/ESDA/<br>JEDEC JS-001, all pins <sup>(1)</sup> | ±1000 | V    |
| V <sub>(ESD)</sub> | Electrostatic discharge | Charged device model (CDM), per JEDEC specification JESD22-C101 <sup>(2)</sup>  | ±1000 | v    |

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

### **5.3 Recommended Operating Conditions**

over operating free-air temperature range (unless otherwise noted)

|                 |                                |               | MIN  | NOM | MAX | UNIT |
|-----------------|--------------------------------|---------------|------|-----|-----|------|
| V               | Supply voltage                 | Dual-supply   | ±4.5 | ±15 | ±16 | V    |
| V <sub>CC</sub> | Supply Voltage                 | Single-supply | 9    | 30  | 32  | v    |
| т               | Operating free-air temperature | C-suffix      | 0    | 25  | 70  | °C   |
| 'A              | Operating nee-an temperature   | I-suffix      | -40  | 25  | 85  | C    |



### 5.4 Thermal Information - THS4021

|                       |                                              | THS      | 4021         |      |
|-----------------------|----------------------------------------------|----------|--------------|------|
|                       | THERMAL METRIC <sup>(1)</sup>                | D (SOIC) | DGN (HVSSOP) | UNIT |
|                       |                                              | 8 PINS   | 8 PINS       |      |
| R <sub>0JA</sub>      | Junction-to-ambient thermal resistance       | 124.5    | 58.4         | °C/W |
| R <sub>0JC(top)</sub> | Junction-to-case (top) thermal resistance    | 65.0     | 4.7          | °C/W |
| R <sub>θJB</sub>      | Junction-to-board thermal resistance         | 72.2     | N/A          | °C/W |
| $\Psi_{JT}$           | Junction-to-top characterization parameter   | 13.6     | N/A          | °C/W |
| $\Psi_{JB}$           | Junction-to-board characterization parameter | 71.4     | N/A          | °C/W |
| R <sub>0JC(bot)</sub> | Junction-to-case (bottom) thermal resistance | N/A      | N/A          | °C/W |

(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

#### 5.5 Thermal Information - THS4022

|                       |                                              | THS4022      |      |
|-----------------------|----------------------------------------------|--------------|------|
|                       | THERMAL METRIC <sup>(1)</sup>                | DGN (HVSSOP) | UNIT |
|                       |                                              | 8 PINS       |      |
| R <sub>θJA</sub>      | Junction-to-ambient thermal resistance       | 52           | °C/W |
| R <sub>0JC(top)</sub> | Junction-to-case (top) thermal resistance    | 75.2         | °C/W |
| $R_{\theta JB}$       | Junction-to-board thermal resistance         | 24.5         | °C/W |
| $\Psi_{JT}$           | Junction-to-top characterization parameter   | 4            | °C/W |
| $\Psi_{JB}$           | Junction-to-board characterization parameter | 24.5         | °C/W |
| R <sub>0JC(bot)</sub> | Junction-to-case (bottom) thermal resistance | 9.1          | °C/W |

(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.



### 5.6 Electrical Characteristics - THS4021D and THS4022DGN

at T<sub>A</sub> = 25°C, V<sub>CC</sub> =  $\pm$ 15 V, and R<sub>L</sub> = 150  $\Omega$  (unless otherwise noted)

|                 | PARAMETER                                      | TEST COI                                                       | NDITIONS                           | MIN | TYP  | MAX | UNIT    |
|-----------------|------------------------------------------------|----------------------------------------------------------------|------------------------------------|-----|------|-----|---------|
| DYNA            | MIC PERFORMANCE                                |                                                                |                                    |     |      |     |         |
|                 |                                                | Gain = 10                                                      | V <sub>CC</sub> = ±15 V            |     | 290  |     |         |
|                 | Small-signal bandwidth                         | Gain - 10                                                      | V <sub>CC</sub> = ±5 V             |     | 250  |     |         |
|                 | (–3 dB)                                        | Coin = 20                                                      | V <sub>CC</sub> = ±15 V            |     | 110  |     | 1       |
|                 |                                                | Gain = 20                                                      | V <sub>CC</sub> = ±5 V             |     | 100  |     | N 41 1- |
| BW              |                                                |                                                                | V <sub>CC</sub> = ±15 V            |     | 17   |     | MHz     |
|                 | Bandwidth for 0.1-dB flatness                  | Gain = 10                                                      | V <sub>CC</sub> = ±5 V             |     | 17   |     |         |
|                 | <b>F</b>                                       | V <sub>O(pp)</sub> = 20 V, V <sub>CC</sub> = ±15 V             |                                    |     | 7.5  |     |         |
|                 | Full-power bandwidth <sup>(1)</sup>            | V <sub>O(pp)</sub> = 5 V, V <sub>CC</sub> = ±5 V               |                                    |     | 23.6 |     |         |
| 0.0             | QL                                             | 0                                                              | V <sub>CC</sub> = ±15 V, 20-V step |     | 470  |     |         |
| SR              | Slew rate <sup>(2)</sup>                       | Gain = 10                                                      | V <sub>CC</sub> = ±5 V, 5-V step   |     | 370  |     | V/µs    |
|                 |                                                |                                                                | V <sub>CC</sub> = ±15 V, 5-V step  |     | 30   |     |         |
|                 | Settling time to 0.1%                          | Gain = –10                                                     | V <sub>CC</sub> = ±5 V, 2-V step   |     | 30   |     |         |
| t <sub>s</sub>  |                                                |                                                                | V <sub>CC</sub> = ±15 V, 5-V step  |     | 160  |     | ns      |
|                 | Settling time to 0.01%                         | Gain = -10                                                     | V <sub>CC</sub> = ±5 V, 2-V step   |     | 160  |     |         |
| NOISE           | AND DISTORTION PERFORMA                        | NCE                                                            | 11                                 |     |      |     |         |
|                 | Total harmonic distortion                      | V <sub>O(pp)</sub> = 2 V, f = 1 MHz,                           |                                    |     | -68  |     | - dBc   |
|                 |                                                | gain = 10, V <sub>CC</sub> = ±15 V                             | R <sub>L</sub> = 1 kΩ              |     | -77  |     |         |
| THD             |                                                | $V_{O(pp)} = 2 V, f = 1 MHz,$<br>gain = 10, $V_{CC} = \pm 5 V$ |                                    |     | -69  |     |         |
|                 |                                                |                                                                | R <sub>L</sub> = 1 kΩ              |     | -78  |     |         |
| Vn              | Input voltage noise                            | V <sub>CC</sub> = ±5 V or ±15 V, f > 10                        | кНz                                |     | 1.2  |     | nV/√Hz  |
| l <sub>n</sub>  | Input current noise                            | V <sub>CC</sub> = ±5 V or ±15 V, f > 10                        | (Hz                                |     | 2.3  |     | pA/√Hz  |
|                 | Differential sain amon                         | Gain = 10, NTSC, 40 IRE                                        | V <sub>CC</sub> = ±15              |     | 0.02 |     | 0/      |
|                 | Differential gain error                        | modulation, ±100 IRE ramp                                      | $V_{CC} = \pm 5 V$                 |     | 0.02 |     | %       |
|                 | Differential share error                       | Gain = 10, NTSC, 40 IRE                                        | V <sub>CC</sub> = ±15              |     | 0.08 |     | 0       |
|                 | Differential phase error                       | modulation, ±100 IRE ramp                                      | $V_{CC} = \pm 5 V$                 |     | 0.06 |     |         |
| X <sub>T</sub>  | Channel-to-channel crosstalk<br>(THS4022 only) | V <sub>CC</sub> = ±5 V or ±15 V, f = 1 M                       | Hz                                 |     | -54  |     | dBc     |
| DC PE           | RFORMANCE                                      | I                                                              |                                    |     |      |     |         |
|                 |                                                | V <sub>CC</sub> = ±15 V, V <sub>O</sub> = ±10 V,               | T <sub>A</sub> = 25°C              | 92  | 100  |     |         |
|                 |                                                | $R_L = 1 k\Omega$                                              | T <sub>A</sub> = full range        | 91  |      |     | 10      |
|                 | Open-loop gain                                 | $V_{CC} = \pm 5 \text{ V}, V_{O} = \pm 2.5 \text{ V},$         | T <sub>A</sub> = 25°C              | 86  | 98   |     | dB      |
|                 |                                                | $R_L = 1 k\Omega$                                              | T <sub>A</sub> = full range        | 84  |      |     |         |
|                 |                                                |                                                                | T <sub>A</sub> = 25°C              |     | 0.3  | 2   | .,      |
| V <sub>OS</sub> | Input offset voltage                           | $V_{CC} = \pm 5 V \text{ or } \pm 15 V$                        | T <sub>A</sub> = full range        |     |      | 3   | mV      |
|                 | Offset voltage drift                           | V <sub>CC</sub> = ±5 V or ±15 V, T <sub>A</sub> = fu           | ll range                           |     | 2    |     | μV/°C   |
| 1               | Input biog ourset                              |                                                                | T <sub>A</sub> = 25°C              |     | 9    | 20  | μA      |
| I <sub>IB</sub> | Input bias current                             | $V_{CC} = \pm 5 V \text{ or } \pm 15 V$                        | T <sub>A</sub> = full range        |     |      | 33  | μA      |
|                 | land offerst summer t                          |                                                                | T <sub>A</sub> = 25°C              |     | 30   | 250 | nA      |
| l <sub>os</sub> | Input offset current                           | $V_{CC} = \pm 5 V \text{ or } \pm 15 V$                        | T <sub>A</sub> = full range        |     |      | 400 | nA      |
|                 | Input offset current drift                     | V <sub>CC</sub> = ±5 V or ±15 V, T <sub>A</sub> = fu           | ll range                           |     | 0.2  |     | nA/°C   |



#### 5.6 Electrical Characteristics - THS4021D and THS4022DGN (continued)

at T<sub>A</sub> = 25°C, V<sub>CC</sub> = ±15 V, and R<sub>L</sub> = 150  $\Omega$  (unless otherwise noted)

| PARAMETER        |                                          | TEST CONDITIONS                                                |                             | MIN   | TYP   | MAX   | UNIT |
|------------------|------------------------------------------|----------------------------------------------------------------|-----------------------------|-------|-------|-------|------|
| INPUT C          | CHARACTERISTICS                          | 1                                                              |                             | I     |       |       |      |
| V                |                                          | V <sub>CC</sub> = ±15 V                                        |                             | ±13.8 | ±14.3 |       | V    |
| V <sub>ICR</sub> | Common-mode input voltage                | $V_{CC} = \pm 5 V$                                             |                             | ±3.8  | ±4.3  |       | V    |
|                  |                                          | V <sub>CC</sub> = ±15 V, V <sub>ICR</sub> = ±12 V              | T <sub>A</sub> = 25 °C      |       | 95    |       |      |
| CMRR             | Common mode rejection ratio              | $v_{CC} = \pm 15 v, v_{ICR} = \pm 12 v$                        | T <sub>A</sub> = full range | 74    |       |       | dB   |
| CIVIRR           | CMRR Common-mode rejection ratio         | $V_{CC} = \pm 5 \text{ V}, V_{ICR} = \pm 2.5 \text{ V}$        | T <sub>A</sub> = 25 °C      |       | 100   |       | uБ   |
|                  |                                          | $V_{CC} = \pm 5 V, V_{ICR} = \pm 2.5 V$                        | T <sub>A</sub> = full range | 85    |       |       |      |
| r <sub>i</sub>   | Input resistance                         |                                                                |                             |       | 1     |       | MΩ   |
| Ci               | Input capacitance                        |                                                                |                             |       | 1.5   |       | pF   |
| OUTPU            | T CHARACTERISTICS                        |                                                                |                             | •     |       |       |      |
|                  | $V_{CC}$ = ±15 V, R <sub>L</sub> = 250 Ω |                                                                | ±12                         | ±12.9 |       |       |      |
|                  | Output voltage swing                     | $V_{CC}$ = ±5 V, R <sub>L</sub> = 150 $\Omega$                 |                             | ±3    | ±3.5  |       | V    |
| Vo               |                                          | $V_{CC} = \pm 15 \text{ V}, \text{ R}_{L} = 1 \text{ k}\Omega$ |                             | ±13   | ±13.6 |       |      |
|                  |                                          | $V_{CC}$ = ±5 V, R <sub>L</sub> = 1 k $\Omega$                 |                             | ±3.4  | ±3.8  |       |      |
| 1                | Output current                           | $V_{CC}$ = ±15 V, R <sub>L</sub> = 10 $\Omega$                 |                             | 80    | 200   |       | mA   |
| I <sub>O</sub>   |                                          | $V_{CC}$ = ±5 V, R <sub>L</sub> = 10 $\Omega$                  |                             | 50    | 160   |       | ША   |
| R <sub>0</sub>   | Output resistance <sup>(3)</sup>         | Open-loop                                                      |                             |       | 5     |       | Ω    |
| POWER            | SUPPLY                                   |                                                                |                             | •     |       | ·     |      |
| V                | Supply voltage                           | Dual supply                                                    |                             | ±4.5  |       | ±16.5 | V    |
| V <sub>CC</sub>  | Supply voltage                           | Single supply                                                  |                             | 9     |       | 33    | v    |
|                  |                                          |                                                                | T <sub>A</sub> = 25°C       |       | 7.5   | 10    |      |
|                  |                                          | $V_{CC} = \pm 15 V$                                            | T <sub>A</sub> = full range |       |       | 11    |      |
| I <sub>CC</sub>  | Supply current (per amplifier)           |                                                                | T <sub>A</sub> = 25°C       |       | 6.5   | 9     | mA   |
|                  |                                          | $V_{CC} = \pm 5 V$                                             | T <sub>A</sub> = full range |       |       | 10.5  |      |
| DODD             | Bower ourply rejection ratio             | $\gamma = \pm 5 \gamma + 5 \gamma$                             | T <sub>A</sub> = 25 °C      |       | 95    |       |      |
| PSRR             | Power-supply rejection ratio             | $V_{CC} = \pm 5 V \text{ or } \pm 15 V$                        | T <sub>A</sub> = full range | 80    |       |       | dB   |

(3) Keep junction temperature less than the absolute maximum rating when the output is heavily loaded or shorted; see also Section 5.1.



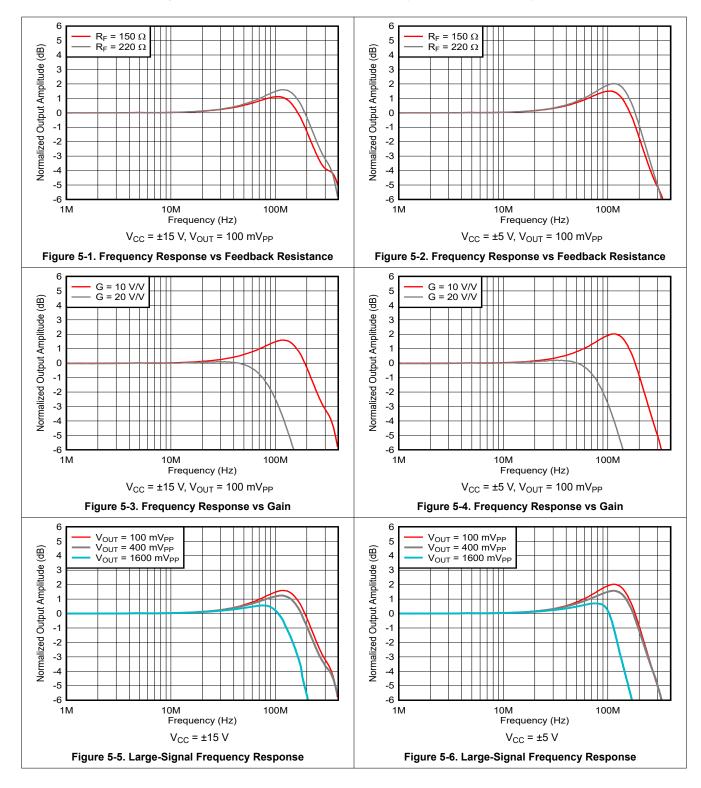
### 5.7 Electrical Characteristics - THS4021DGN

at  $T_A = 25^{\circ}$ C,  $V_{CC} = \pm 15$  V,  $R_L = 150 \Omega$  (unless otherwise noted)

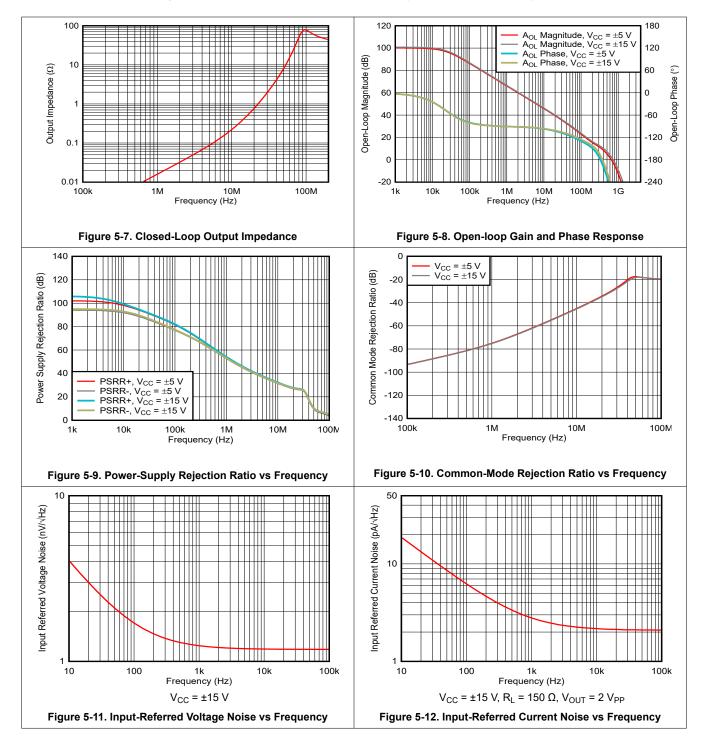
| PARAMETER       |                                     | TEST CONE                                          | MIN                                   | TYP  | MAX  | UNIT |        |  |
|-----------------|-------------------------------------|----------------------------------------------------|---------------------------------------|------|------|------|--------|--|
| DYNA            | MIC PERFORMANCE                     |                                                    |                                       |      |      |      |        |  |
|                 |                                     | Gain = 10                                          | V <sub>CC</sub> = ±15 V               |      | 350  |      |        |  |
|                 | Small-signal bandwidth              | Galli – 10                                         | $V_{CC} = \pm 5 V$                    |      | 280  |      | _      |  |
|                 | (–3 dB)                             | Gain = 20                                          | V <sub>CC</sub> = ±15 V               |      | 80   |      |        |  |
|                 |                                     | Galli – 20                                         | $V_{CC} = \pm 5 V$                    |      | 70   |      | N 41 I |  |
| BW              | Bandwidth for 0.1-dB flatness       | Coin = 10                                          | V <sub>CC</sub> = ±15 V               |      | 17   |      | MHz    |  |
|                 | Danuwidth for 0.1-db flathess       | Gain = 10                                          | $V_{CC} = \pm 5 V$                    |      | 17   |      |        |  |
|                 | Full menuen hen duriette (1)        | V <sub>O(pp)</sub> = 20 V, V <sub>CC</sub> = ±15 V |                                       |      | 3.7  |      |        |  |
|                 | Full-power bandwidth <sup>(1)</sup> | V <sub>O(pp)</sub> = 5 V, V <sub>CC</sub> = ±5 V   |                                       |      | 11.8 |      |        |  |
| SR              | Slew rate <sup>(2)</sup>            | Gain = 10                                          | V <sub>CC</sub> = ±15 V, 10-V<br>step |      | 470  |      | V/µs   |  |
|                 |                                     |                                                    | V <sub>CC</sub> = ±5 V, 5-V step      |      | 370  |      |        |  |
|                 | Sottling time to 0.1%               | Gain = –10                                         | V <sub>CC</sub> = ±15 V, 5-V step     |      | 40   |      |        |  |
| ÷               | Settling time to 0.1%               |                                                    | V <sub>CC</sub> = ±5 V, 2-V step      |      | 50   |      |        |  |
| t <sub>s</sub>  | 0.441/2010 4/2010 0.040/            | 0.1. 10                                            | V <sub>CC</sub> = ±15 V, 5-V step     |      | 145  |      | ns     |  |
|                 | Settling time to 0.01%              | Gain = –10                                         | V <sub>CC</sub> = ±5 V, 2-V step      |      | 150  |      |        |  |
| NOISE           | DISTORTION PERFORMANCE              |                                                    |                                       |      |      |      |        |  |
|                 |                                     | V <sub>O(pp)</sub> = 2 V, f = 1 MHz,               |                                       |      | -68  |      |        |  |
| THD             | Total harmonic distortion           | gain = 2, $V_{CC}$ = ±15 V                         | R <sub>L</sub> = 1 kΩ                 |      | -77  |      |        |  |
|                 |                                     | V <sub>O(pp)</sub> = 2 V, f = 1 MHz,               |                                       |      | -69  |      | dBc    |  |
|                 |                                     | gain = 2, $V_{CC}$ = ±5 V                          | R <sub>L</sub> = 1 kΩ                 |      | -78  |      | 1      |  |
| Vn              | Input voltage noise                 | V <sub>CC</sub> = ±5 V or ±15 V, f > 10 kł         | Hz                                    |      | 1.5  |      | nV/√H  |  |
| In              | Input current noise                 | V <sub>CC</sub> = ±5 V or ±15 V, f > 10 kH         | Hz                                    |      | 2    |      | pA/√H  |  |
|                 |                                     | Gain = 2, NTSC, 40 IRE                             | V <sub>CC</sub> = ±15                 |      | 0.02 |      |        |  |
|                 | Differential gain error             | modulation, ±100 IRE ramp                          | V <sub>CC</sub> = ±5 V                |      | 0.02 |      | - %    |  |
|                 |                                     | Gain = 2, NTSC, 40 IRE                             | V <sub>CC</sub> = ±15                 |      | 0.08 |      |        |  |
|                 | Differential phase error            | modulation, ±100 IRE ramp                          | V <sub>CC</sub> = ±5 V                | 0.06 |      |      | ٥      |  |
| DC PE           | RFORMANCE                           |                                                    |                                       |      |      |      |        |  |
|                 |                                     | V <sub>CC</sub> = ±15 V, V <sub>O</sub> = ±10 V,   | T <sub>A</sub> = 25°C                 | 40   | 60   |      |        |  |
|                 |                                     | $R_L = 1 k\Omega$                                  | T <sub>A</sub> = full range           | 35   |      |      |        |  |
|                 | Open-loop gain                      | $V_{CC} = \pm 5 V, V_{O} = \pm 2.5 V,$             | T <sub>A</sub> = 25°C                 | 20   | 35   |      | V/m∖   |  |
|                 |                                     | $R_{L} = 250 \Omega$                               | T <sub>A</sub> = full range           | 15   |      |      |        |  |
|                 |                                     |                                                    | T <sub>A</sub> = 25°C                 |      | 0.5  | 2    |        |  |
| V <sub>OS</sub> | Input offset voltage                | $V_{CC} = \pm 5 V \text{ or } \pm 15 V$            | T <sub>A</sub> = full range           |      |      | 3    | – mV   |  |
|                 | Offset voltage drift                | V <sub>CC</sub> = ±5 V or ±15 V                    | T <sub>A</sub> = full range           |      | 15   |      | μV/°C  |  |
|                 |                                     |                                                    | T <sub>A</sub> = 25°C                 |      | 3    | 6    | -      |  |
| I <sub>IB</sub> | Input bias current                  | $V_{CC} = \pm 5 V \text{ or } \pm 15 V$            | T <sub>A</sub> = full range           |      |      | 6    | – uA   |  |
|                 |                                     |                                                    | T <sub>A</sub> = 25°C                 |      | 30   | 250  |        |  |
| l <sub>os</sub> | Input offset current                | $V_{CC}$ = ±5 V or ±15 V                           | $T_A = full range$                    |      |      | 400  | — nA   |  |
|                 | Input offset current drift          | T <sub>A</sub> = full range                        |                                       |      | 0.3  |      | nA/°C  |  |



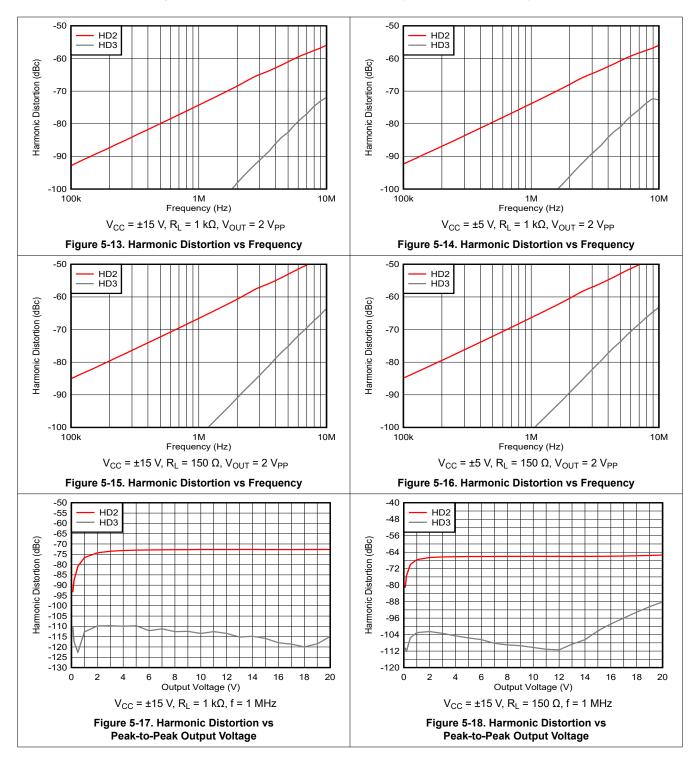
#### 5.7 Electrical Characteristics - THS4021DGN (continued)


at T<sub>A</sub> = 25°C, V<sub>CC</sub> =  $\pm$ 15 V, R<sub>L</sub> = 150  $\Omega$  (unless otherwise noted)

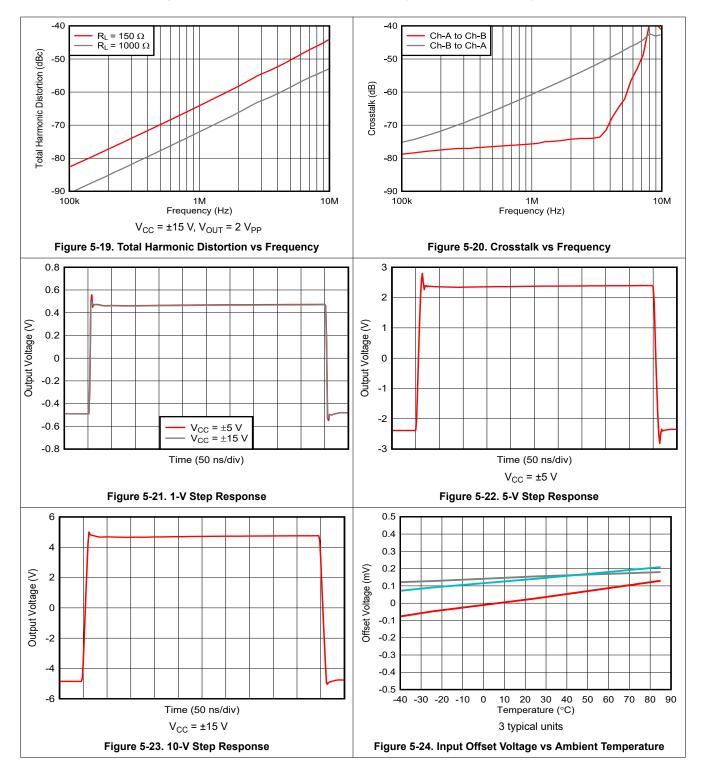
|                  | PARAMETER                            | TEST                                            | MIN                              | TYP   | MAX   | UNIT |            |  |
|------------------|--------------------------------------|-------------------------------------------------|----------------------------------|-------|-------|------|------------|--|
|                  | HARACTERISTICS                       | 1                                               |                                  |       |       |      |            |  |
| V                |                                      | V <sub>CC</sub> = ±15 V                         |                                  | ±13.8 | ±14.3 |      | V          |  |
| V <sub>ICR</sub> | Common-mode input voltage            | V <sub>CC</sub> = ±5 V                          |                                  | ±3.8  | ±4.3  |      | V          |  |
| CMRR             | Common-mode rejection ratio          | V <sub>CC</sub> = ±15 V, V <sub>ICR</sub> = ±12 | 2 V, T <sub>A</sub> = full range | 74    | 95    |      | dB         |  |
| r <sub>i</sub>   | Input resistance                     |                                                 |                                  |       | 1     |      | MΩ         |  |
| Ci               | Input capacitance                    |                                                 |                                  |       | 1.5   |      | pF         |  |
| OUTPU            | CHARACTERISTICS                      |                                                 |                                  |       |       |      |            |  |
| Vo               |                                      | V <sub>CC</sub> = ±15 V, R <sub>L</sub> = 250 G | C                                | ±12   | ±12.5 |      |            |  |
|                  | Output voltage swing                 | $V_{CC}$ = ±5 V, R <sub>L</sub> = 150 $\Omega$  | ±3                               | ±3.3  |       | V    |            |  |
|                  |                                      | V <sub>CC</sub> = ±15 V, R <sub>L</sub> = 150 G | ±13                              | ±13.5 |       |      |            |  |
|                  |                                      | $V_{CC}$ = ±5 V, R <sub>L</sub> = 150 $\Omega$  | ±3.4                             | ±3.8  |       |      |            |  |
|                  | Output ourrant                       | D = 20 O                                        | $V_{CC} = \pm 15 V$              | 80    | 100   |      |            |  |
| lo               | Output current                       | R <sub>L</sub> = 20 Ω                           | 50                               | 75    |       | mA   |            |  |
| I <sub>SC</sub>  | Short-circuit current <sup>(3)</sup> | V <sub>CC</sub> = ±15 V                         |                                  |       | 150   |      | mA         |  |
| R <sub>0</sub>   | Output resistance <sup>(3)</sup>     | Open loop                                       |                                  |       | 13    |      | Ω          |  |
| POWER            | SUPPLY                               |                                                 |                                  |       |       |      |            |  |
| V                | Supply voltage                       | Dual supply                                     | ±4.5                             |       | ±16.5 | V    |            |  |
| V <sub>CC</sub>  | Supply voltage                       | Single supply                                   | 9                                |       | 33    | v    |            |  |
|                  |                                      |                                                 | T <sub>A</sub> = 25°C            |       | 7.8   | 10   |            |  |
|                  | Cumply surrent (per emailiar)        | $V_{CC} = \pm 15 V$                             | T <sub>A</sub> = full range      |       |       | 11   | 11<br>9 mA |  |
| I <sub>CC</sub>  | Supply current (per amplifier)       |                                                 | T <sub>A</sub> = 25°C            |       | 6.7   | 9    |            |  |
|                  |                                      | $V_{CC} = \pm 5 V$ $T_A = full range$           |                                  |       |       | 10.5 |            |  |
| PSRR             | Power-supply rejection ratio         | $V_{CC}$ = ±5 V or ±15 V, T <sub>A</sub>        | = full range                     | 80    | 95    |      | dB         |  |
|                  | 1                                    |                                                 |                                  |       |       |      |            |  |


(3) Keep junction temperature less than the absolute maximum rating when the output is heavily loaded or shorted; see also Section 5.1.

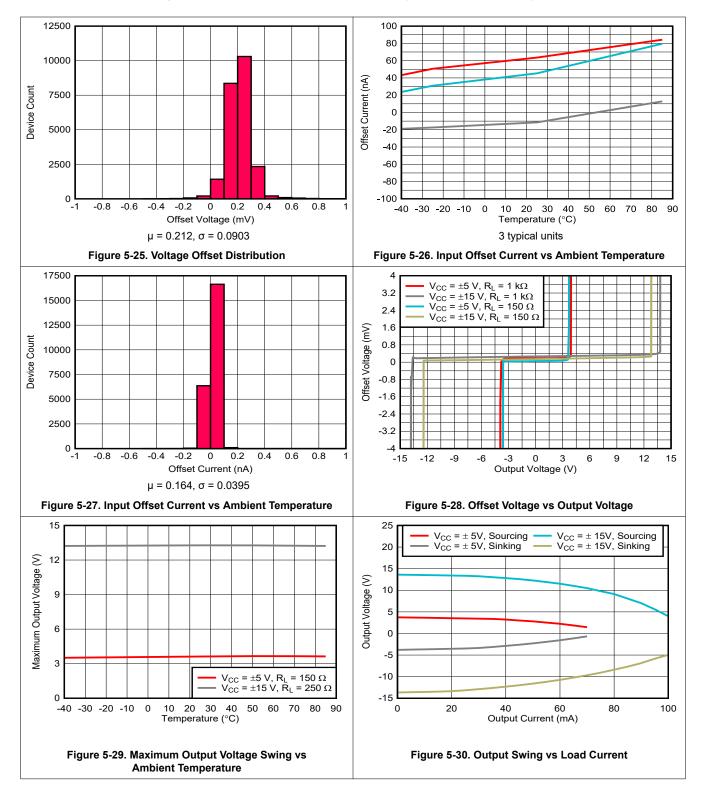



### 5.8 Typical Characteristics: THS4021D and THS4022DGN

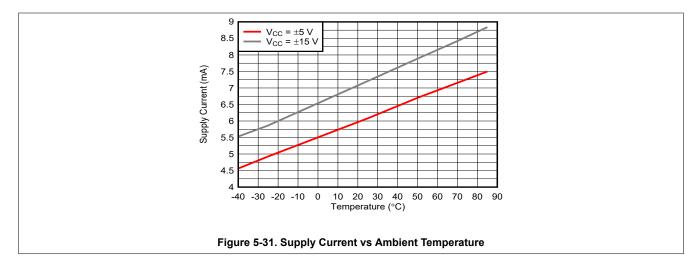






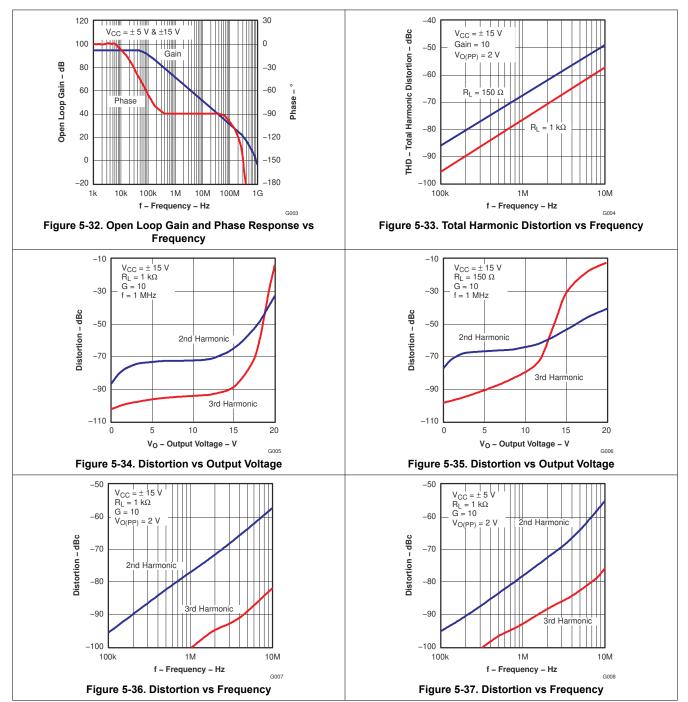





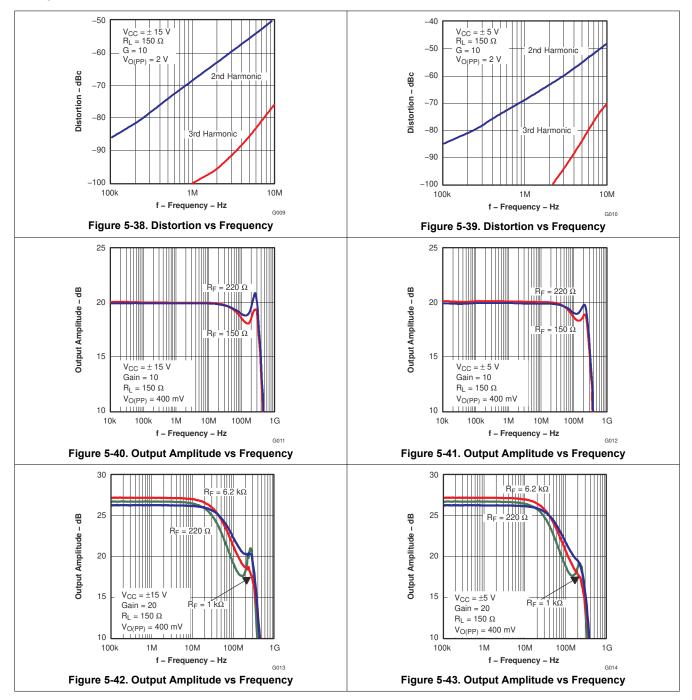





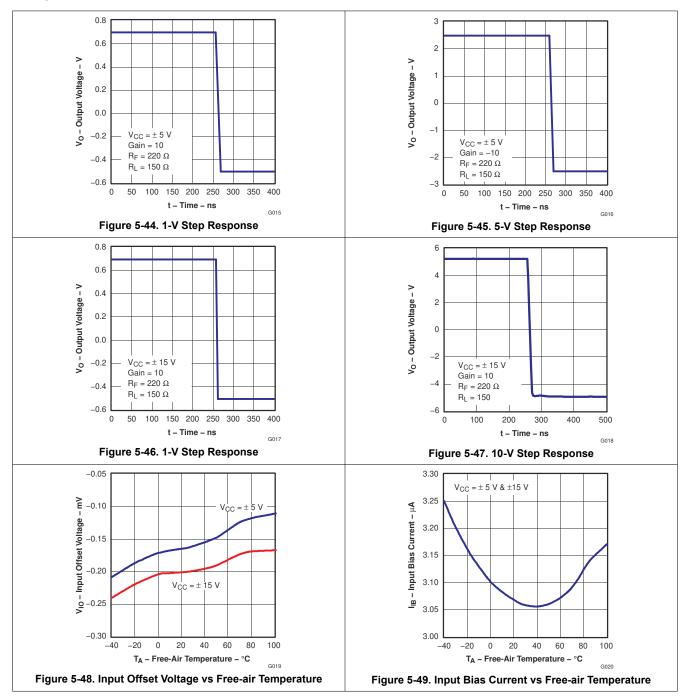


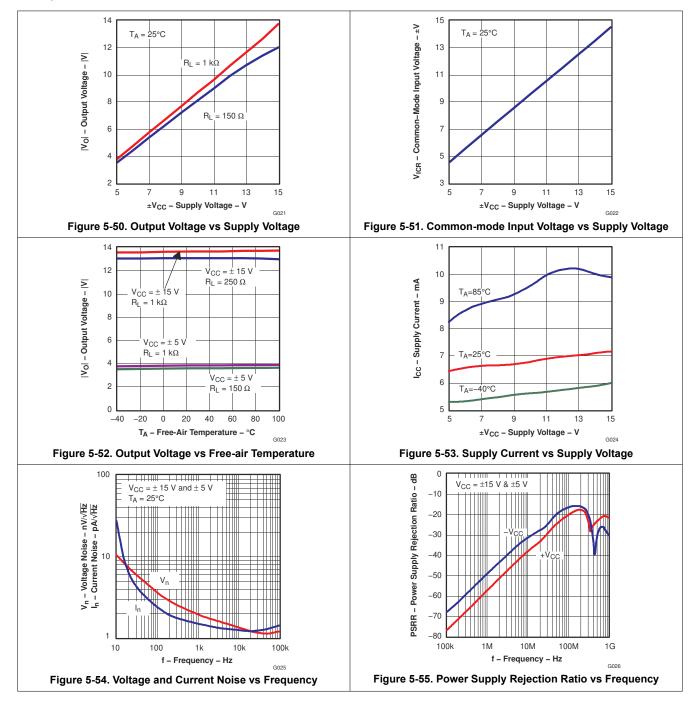


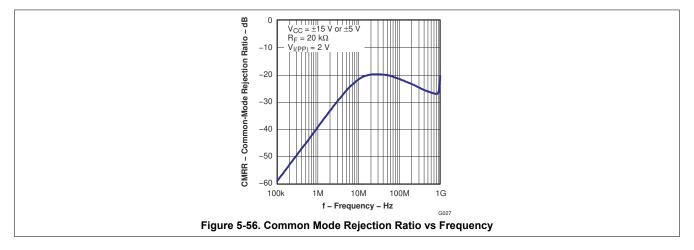




#### 5.9 Typical Characteristics: THS4021DGN







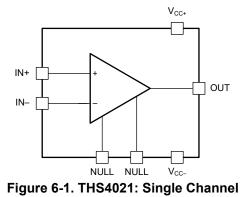











### 6 Detailed Description

#### 6.1 Overview

The THS402x are high-speed operational amplifiers configured in a decompensated voltage-feedback architecture. The THS402x are stable with gain configurations of 10 V/V or greater. These amplifiers is built using a greater than 30-V, complementary, bipolar process with NPN and PNP transistors possessing an  $f_T$  of several GHz. This configuration results in exceptionally high-performance amplifiers with wide bandwidth, high slew rate, fast settling time, and low distortion.

#### 6.2 Functional Block Diagram



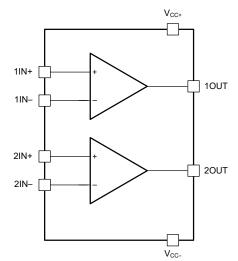



Figure 6-2. THS4022: Dual Channel

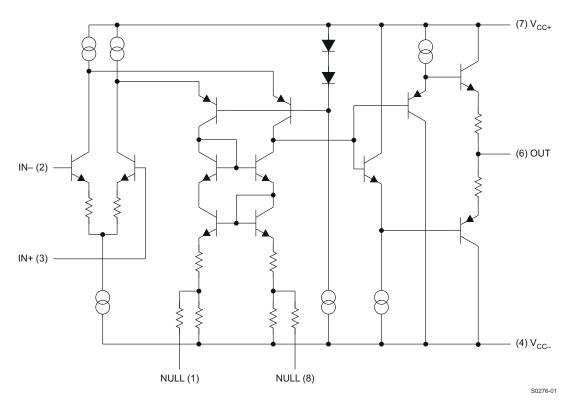



Figure 6-3. THS4021 Simplified Schematic



#### **6.3 Feature Description**

#### 6.3.1 Offset Nulling

The THS402x have a very low input offset voltage for high-speed amplifiers. However, if additional correction is required, an offset nulling function has been provided on the THS4021. To adjust the input offset voltage, place a potentiometer between pin 1 and pin 8 of the device, and tie the wiper to the negative supply. Figure 6-4 shows this feature.

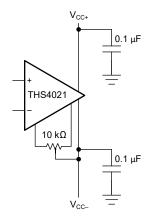



Figure 6-4. Offset Nulling Schematic

#### **6.4 Device Functional Modes**

The THS402x family has a single functional mode and can be used with both single-supply or split power-supply configurations. The power-supply voltage must be greater than  $9 \text{ V} (\pm 4.5 \text{ V})$  and less than  $33 \text{ V} (\pm 16.5 \text{ V})$ .



### 7 Application and Implementation

#### Note

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes, as well as validating and testing their design implementation to confirm system functionality.

#### 7.1 Application Information

#### 7.1.1 Driving a Capacitive Load

The THS402x are internally compensated to maximize bandwidth and slew-rate performance. To maintain stability, take additional precautions when driving capacitive loads with a high-performance amplifier. As a result of the internal compensation, significant capacitive loading directly on the output node decreases the device phase margin, and potentially lead to high-frequency ringing or oscillations. Therefore, for capacitive loads greater than 10 pF, place an isolation resistor in series with the output of the amplifier. Figure 7-1 shows this configuration. For most applications, a minimum resistance of 20  $\Omega$  is recommended. In 75- $\Omega$  transmission systems, setting the series resistor value to 75  $\Omega$  is a beneficial choice because this value isolates any capacitance loading and provides source impedance matching.

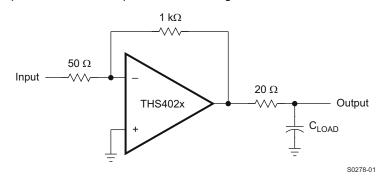



Figure 7-1. Driving a Capacitive Load

#### 7.1.2 General Configuration

When receiving low-level signals, limiting the bandwidth of the incoming signals into the system is often required. Figure 7-2 shows how the simplest way to accomplish this limiting is to place an RC filter at the noninverting pin of the amplifier.

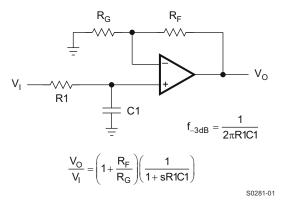



Figure 7-2. Single-Pole Low-Pass Filter



#### 7.2 Power Supply Recommendations

The THS402x devices are designed to operate on power supplies ranging from ±4.5 V to ±16 V (single-ended supplies of 9 V to 32 V). Use a power-supply accuracy of 5% or better. When operated on a board with high-speed digital signals, make sure to provide isolation between digital signal noise and the analog input pins. The THS4021 and THS4022 are connected to the positive power supply ( $V_{CC+}$ ) through pin 7 and pin 8, respectively. Both devices use pin 4 for the negative power supply ( $V_{CC-}$ ). Decouple each supply pin to GND as close to the device as possible.

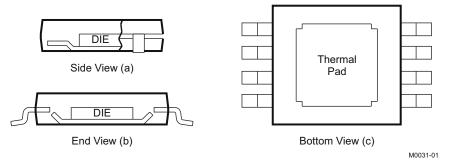
#### 7.3 Layout

#### 7.3.1 Layout Guidelines

To achieve the levels of high-frequency performance of the THS402x, follow proper printed-circuit board (PCB), high-frequency design techniques. The following is a general set of guidelines. In addition, a THS402x evaluation board is available to use as a guide for layout or for evaluating the device performance.

- **Ground planes**—make sure that the ground plane used on the board provides all components with a low-inductive ground connection. However, in the areas of the amplifier inputs and output, the ground plane can be removed to minimize stray capacitance.
- Proper power-supply decoupling—use a 6.8-µF tantalum capacitor in parallel with a 0.1-µF ceramic capacitor on each supply pin. Sharing the tantalum capacitor among several amplifiers is possible depending on the application, but always use a 0.1-µF ceramic capacitor on the supply pin of every amplifier. In addition, place the 0.1-µF capacitor as close as possible to the supply pin. As this distance increases, the inductance in the connecting trace makes the capacitor less effective. Strive for distances of less than 0.1 inch (2.54 mm) between the device power pins and the ceramic capacitors.
- Short trace runs or compact part placements—optimum high-frequency performance is achieved when stray series inductance has been minimized. To realize this, make the circuit layout as compact as possible, thereby minimizing the length of all trace runs. Pay particular attention to the inputs of the amplifier, keeping the trace lengths as short as possible. This layout helps to minimize stray capacitance at the input of the amplifier.




#### 7.3.1.1 General PowerPAD™ Integrated Circuit Package Design Considerations

The THS402x is available in a thermally-enhanced DGN package, which is a member of the PowerPAD<sup>M</sup> integrated circuit package family. Figure 7-3 **a** and Figure 7-3 **b** show that this package is constructed using a downset leadframe upon which the die is mounted. Figure 7-3 **c** that this arrangement results in the leadframe being exposed as a thermal pad on the underside of the package. Because this thermal pad has direct thermal contact with the die, excellent thermal performance can be achieved by providing a good thermal path away from the thermal pad.

The PowerPAD integrated circuit package allows for both assembly and thermal management in one manufacturing operation. During the surface-mount solder operation (when the leads are being soldered), the thermal pad can also be soldered to a copper area underneath the package. Through the use of thermal paths within this copper area, heat can be conducted away from the package into either a ground plane or other heat dissipating device.

The PowerPAD integrated circuit package represents a breakthrough in combining the small area and ease of assembly of the surface mount with the previously awkward mechanical methods of heat sinking.

More complete details of the PowerPAD installation process and thermal management techniques are found in *PowerPAD Thermally-Enhanced Package*. This document is found on the TI website (www.ti.com) by searching on the keyword PowerPAD. The document can also be ordered through your local TI sales office; refer to SLMA002 when ordering.



NOTE: The thermal pad (PowerPAD integrated circuit package) is electrically isolated from all other pins and can be connected to any potential from  $V_{CC-}$  to  $V_{CC+}$ . Typically, the thermal pad is connected to the ground plane because this plane tends to physically be the largest and is able to dissipate the most amount of heat.

#### Figure 7-3. Views of Thermally-enhanced DGN Package



#### 7.3.2 Layout Example

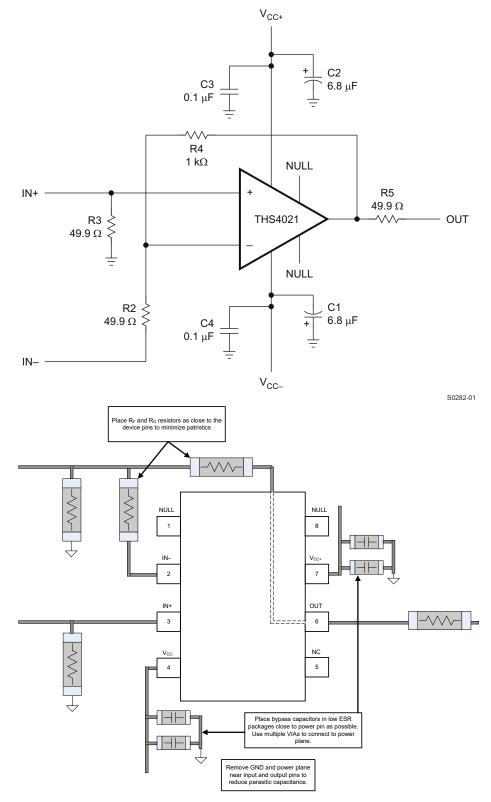



Figure 7-4. Layout Recommendations



### 8 Device and Documentation Support

TI offers an extensive line of development tools. Tools and software to evaluate the performance of the device, generate code, and develop solutions are listed below.

#### 8.1 Documentation Support

#### 8.1.1 Related Documentation

For related documentation, see the following:

- Texas Instruments, Noise Analysis in Operational Amplifier Circuits application report
- Texas Instruments, PowerPAD Thermally Enhanced Package application report
- Texas Instruments, THS4021 High-Speed Operational Amplifier Evaluation Module user's guide
- Texas Instruments, THS4022 Dual High-Speed Operational Amplifier Evaluation Module user's guide

#### 8.2 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on *Notifications* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

#### 8.3 Support Resources

TI E2E<sup>™</sup> support forums are an engineer's go-to source for fast, verified answers and design help — straight from the experts. Search existing answers or ask your own question to get the quick design help you need.

Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

#### 8.4 Trademarks

PowerPAD<sup>M</sup> and TI E2E<sup>M</sup> are trademarks of Texas Instruments. All trademarks are the property of their respective owners.

#### 8.5 Electrostatic Discharge Caution



This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

#### 8.6 Glossary

TI Glossary This glossary lists and explains terms, acronyms, and definitions.

#### **9 Revision History**

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

| Changes from Revision E (March 2024) to Revision F (July 2024) |                                                                                                                |                |  |  |  |  |
|----------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|----------------|--|--|--|--|
| •                                                              | Deleted Total harmonic distortion + noise and Intermodulation distortion specifications from <i>Electrical</i> |                |  |  |  |  |
|                                                                | Characteristics: THS4021D and THS4022DGN                                                                       | <mark>6</mark> |  |  |  |  |

| С | Changes from Revision D (May 2023) to Revision E (March 2024)   |                |  |  |  |  |  |
|---|-----------------------------------------------------------------|----------------|--|--|--|--|--|
| • | Deleted THS4022 D package from the document                     | 1              |  |  |  |  |  |
| • | Updated Simplified Application figure to show correct pin names | 1              |  |  |  |  |  |
| • | Updated closed-loop bandwidth and supply current in Description | 1              |  |  |  |  |  |
| • | Updated Thermal Information: THS4022                            | <mark>5</mark> |  |  |  |  |  |

#### THS4021, THS4022 SLOS265F - AUGUST 1999 - REVISED JULY 2024



| 4021D<br>6                |
|---------------------------|
| 1D and<br><mark>6</mark>  |
| ckages)<br><mark>8</mark> |
| D and<br>10               |
| 10                        |
| 021D and<br>10            |
| ages) to<br>16            |
| 022DGN<br>16              |
|                           |

# 10 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.



### PACKAGING INFORMATION

| Orderable Device | Status<br>(1) | Package Type | Package<br>Drawing | Pins | Package<br>Qty | Eco Plan<br>(2) | Lead finish/<br>Ball material | MSL Peak Temp       | Op Temp (°C) | Device Marking<br>(4/5) | Samples |
|------------------|---------------|--------------|--------------------|------|----------------|-----------------|-------------------------------|---------------------|--------------|-------------------------|---------|
|                  |               |              |                    |      |                |                 | (6)                           |                     |              |                         |         |
| THS4021CD        | OBSOLETE      | SOIC         | D                  | 8    |                | TBD             | Call TI                       | Call TI             | 0 to 70      | 4021C                   |         |
| THS4021CDGN      | ACTIVE        | HVSSOP       | DGN                | 8    | 80             | RoHS & Green    | NIPDAU                        | Level-1-260C-UNLIM  | 0 to 70      | ACK                     | Samples |
| THS4021CDGNR     | ACTIVE        | HVSSOP       | DGN                | 8    | 2500           | RoHS & Green    | NIPDAU                        | Level-1-260C-UNLIM  | 0 to 70      | ACK                     | Samples |
| THS4021ID        | OBSOLETE      | SOIC         | D                  | 8    |                | TBD             | Call TI                       | Call TI             | -40 to 85    | 40211                   |         |
| THS4021IDGN      | ACTIVE        | HVSSOP       | DGN                | 8    | 80             | RoHS & Green    | NIPDAU                        | Level-1-260C-UNLIM  | -40 to 85    | ACL                     | Samples |
| THS4021IDGNR     | ACTIVE        | HVSSOP       | DGN                | 8    | 2500           | RoHS & Green    | NIPDAU                        | Level-1-260C-UNLIM  | -40 to 85    | ACL                     | Samples |
| THS4021IDR       | ACTIVE        | SOIC         | D                  | 8    | 2500           | RoHS & Green    | NIPDAU                        | Level-1-260C-UNLIM  | -40 to 85    | 40211                   | Samples |
| THS4022CD        | ACTIVE        | SOIC         | D                  | 8    | 75             | RoHS & Green    | NIPDAU                        | Level-1-260C-UNLIM  | 0 to 70      | 4022C                   | Samples |
| THS4022ID        | ACTIVE        | SOIC         | D                  | 8    | 75             | RoHS & Green    | NIPDAU                        | Level-1-260C-UNLIM  | -40 to 85    | 40221                   | Samples |
| THS4022IDGNR     | ACTIVE        | HVSSOP       | DGN                | 8    | 2500           | RoHS & Green    | NIPDAU                        | Level-2-260C-1 YEAR | -40 to 85    | ACB                     | Samples |

<sup>(1)</sup> The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

**PREVIEW**: Device has been announced but is not in production. Samples may or may not be available.

**OBSOLETE:** TI has discontinued the production of the device.

<sup>(2)</sup> RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

<sup>(3)</sup> MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

<sup>(4)</sup> There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.



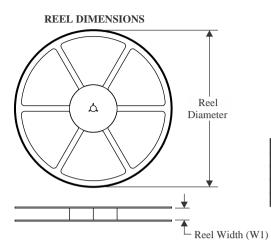
#### www.ti.com

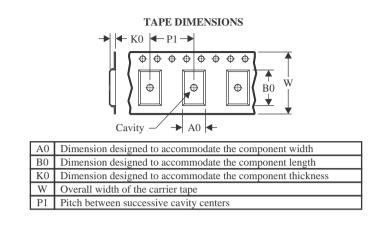
# PACKAGE OPTION ADDENDUM

<sup>(5)</sup> Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

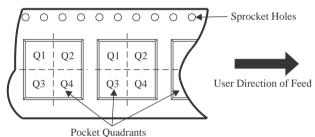
<sup>(6)</sup> Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

**Important Information and Disclaimer:** The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.


www.ti.com

Texas


STRUMENTS

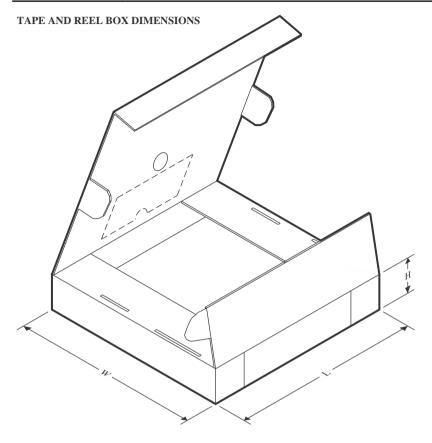
### TAPE AND REEL INFORMATION





#### QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE




| *All dimensions are nominal |                 |                    |   |      |                          |                          |            |            |            |            |           |                  |
|-----------------------------|-----------------|--------------------|---|------|--------------------------|--------------------------|------------|------------|------------|------------|-----------|------------------|
| Device                      | Package<br>Type | Package<br>Drawing |   | SPQ  | Reel<br>Diameter<br>(mm) | Reel<br>Width<br>W1 (mm) | A0<br>(mm) | B0<br>(mm) | K0<br>(mm) | P1<br>(mm) | W<br>(mm) | Pin1<br>Quadrant |
| THS4021CDGNR                | HVSSOP          | DGN                | 8 | 2500 | 330.0                    | 12.4                     | 5.3        | 3.4        | 1.4        | 8.0        | 12.0      | Q1               |
| THS4021IDGNR                | HVSSOP          | DGN                | 8 | 2500 | 330.0                    | 12.4                     | 5.3        | 3.4        | 1.4        | 8.0        | 12.0      | Q1               |
| THS4021IDR                  | SOIC            | D                  | 8 | 2500 | 330.0                    | 12.4                     | 6.4        | 5.2        | 2.1        | 8.0        | 12.0      | Q1               |
| THS4021IDR                  | SOIC            | D                  | 8 | 2500 | 330.0                    | 12.4                     | 6.4        | 5.2        | 2.1        | 8.0        | 12.0      | Q1               |
| THS4022IDGNR                | HVSSOP          | DGN                | 8 | 2500 | 330.0                    | 12.4                     | 5.3        | 3.4        | 1.4        | 8.0        | 12.0      | Q1               |
| THS4022IDGNR                | HVSSOP          | DGN                | 8 | 2500 | 330.0                    | 12.4                     | 5.3        | 3.4        | 1.4        | 8.0        | 12.0      | Q1               |



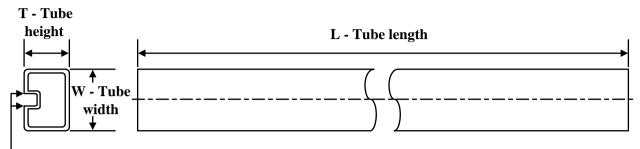
www.ti.com

# PACKAGE MATERIALS INFORMATION

7-Dec-2024



| *All | dimensions are | nominal |
|------|----------------|---------|
|------|----------------|---------|


| Device       | Package Type | Package Drawing | Pins | SPQ  | Length (mm) | Width (mm) | Height (mm) |
|--------------|--------------|-----------------|------|------|-------------|------------|-------------|
| THS4021CDGNR | HVSSOP       | DGN             | 8    | 2500 | 358.0       | 335.0      | 35.0        |
| THS4021IDGNR | HVSSOP       | DGN             | 8    | 2500 | 358.0       | 335.0      | 35.0        |
| THS4021IDR   | SOIC         | D               | 8    | 2500 | 350.0       | 350.0      | 43.0        |
| THS4021IDR   | SOIC         | D               | 8    | 2500 | 356.0       | 356.0      | 35.0        |
| THS4022IDGNR | HVSSOP       | DGN             | 8    | 2500 | 350.0       | 350.0      | 43.0        |
| THS4022IDGNR | HVSSOP       | DGN             | 8    | 2500 | 353.0       | 353.0      | 32.0        |

## TEXAS INSTRUMENTS

www.ti.com

7-Dec-2024

## TUBE

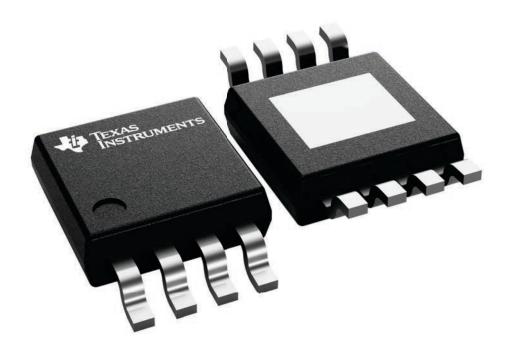


## - B - Alignment groove width

\*All dimensions are nominal

| Device    | Package Name | Package Type | Pins | SPQ | L (mm) | W (mm) | T (µm) | B (mm) |
|-----------|--------------|--------------|------|-----|--------|--------|--------|--------|
| THS4022CD | D            | SOIC         | 8    | 75  | 505.46 | 6.76   | 3810   | 4      |
| THS4022ID | D            | SOIC         | 8    | 75  | 505.46 | 6.76   | 3810   | 4      |

# DGN 8


3 x 3, 0.65 mm pitch

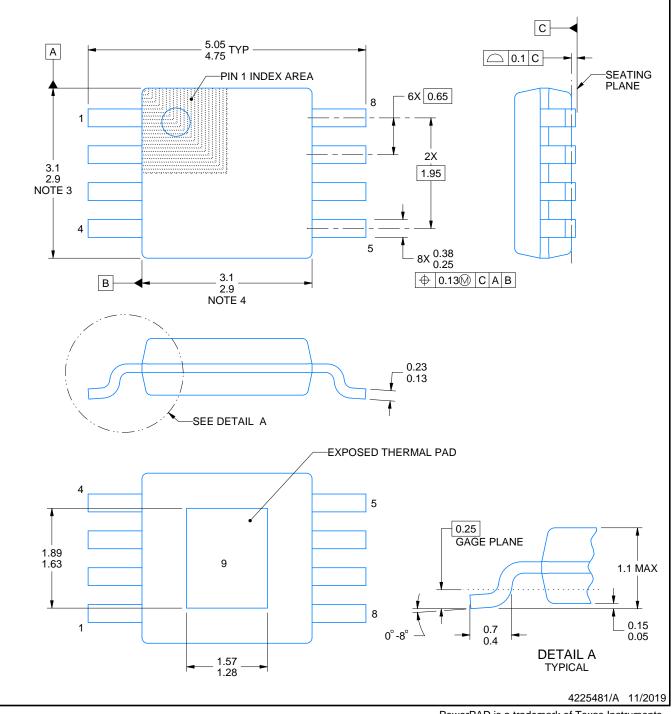
# **GENERIC PACKAGE VIEW**

# PowerPAD<sup>™</sup> HVSSOP - 1.1 mm max height

SMALL OUTLINE PACKAGE

This image is a representation of the package family, actual package may vary. Refer to the product data sheet for package details.






# **DGN0008D**

# **PACKAGE OUTLINE**

# PowerPAD<sup>™</sup> VSSOP - 1.1 mm max height

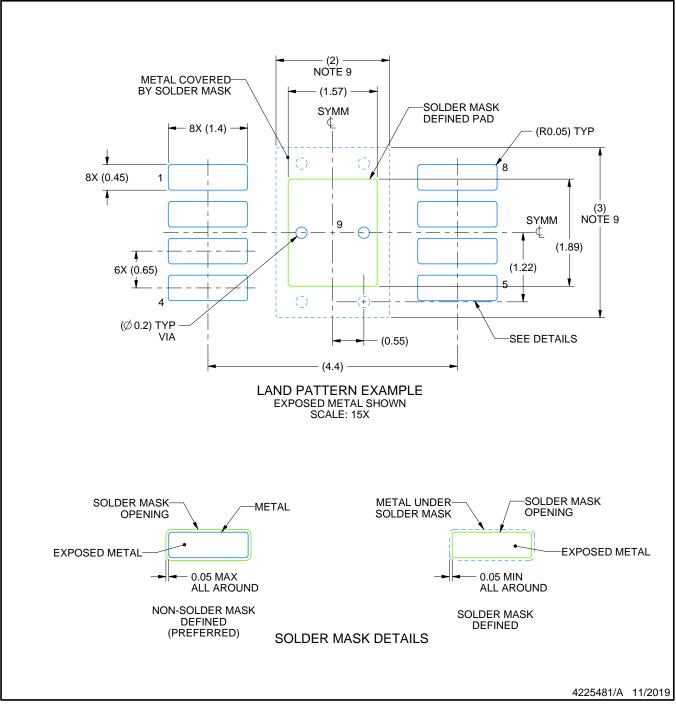
SMALL OUTLINE PACKAGE



NOTES:

PowerPAD is a trademark of Texas Instruments.

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MO-187.




# **DGN0008D**

# **EXAMPLE BOARD LAYOUT**

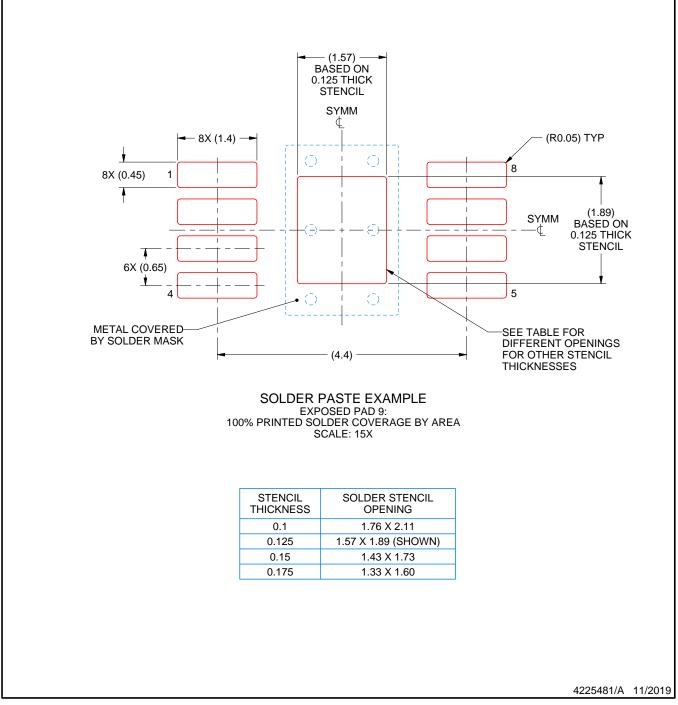
# PowerPAD<sup>™</sup> VSSOP - 1.1 mm max height

SMALL OUTLINE PACKAGE



NOTES: (continued)

- 6. Publication IPC-7351 may have alternate designs.
- 7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.
- 8. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown
- on this view. It is recommended that vias under paste be filled, plugged or tented.
- 9. Size of metal pad may vary due to creepage requirement.




# DGN0008D

# **EXAMPLE STENCIL DESIGN**

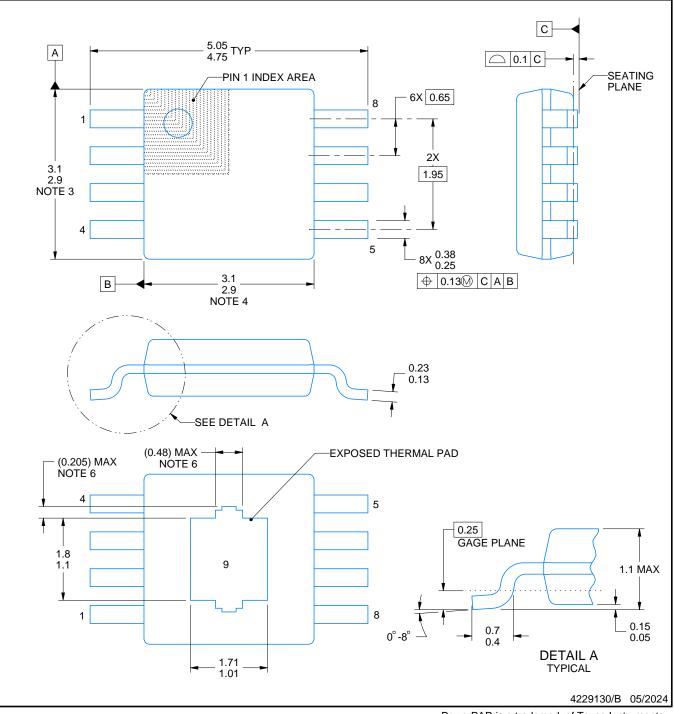
# PowerPAD<sup>™</sup> VSSOP - 1.1 mm max height

SMALL OUTLINE PACKAGE



NOTES: (continued)

- 10. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 11. Board assembly site may have different recommendations for stencil design.




# **PACKAGE OUTLINE**

# **DGN0008H**

# PowerPAD<sup>™</sup> VSSOP - 1.1 mm max height

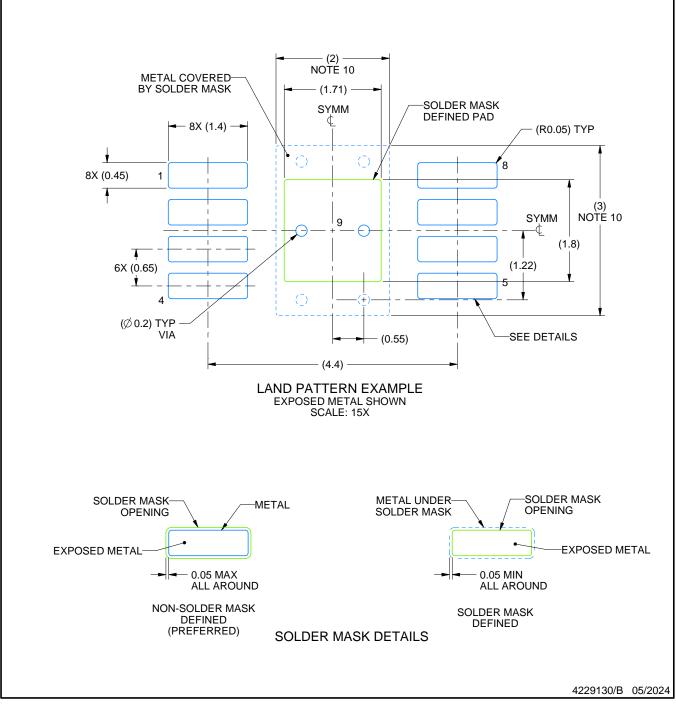
SMALL OUTLINE PACKAGE



NOTES:

PowerPAD is a trademark of Texas Instruments.

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MO-187.
- 6. Features may differ or may not be present.




# **DGN0008H**

# **EXAMPLE BOARD LAYOUT**

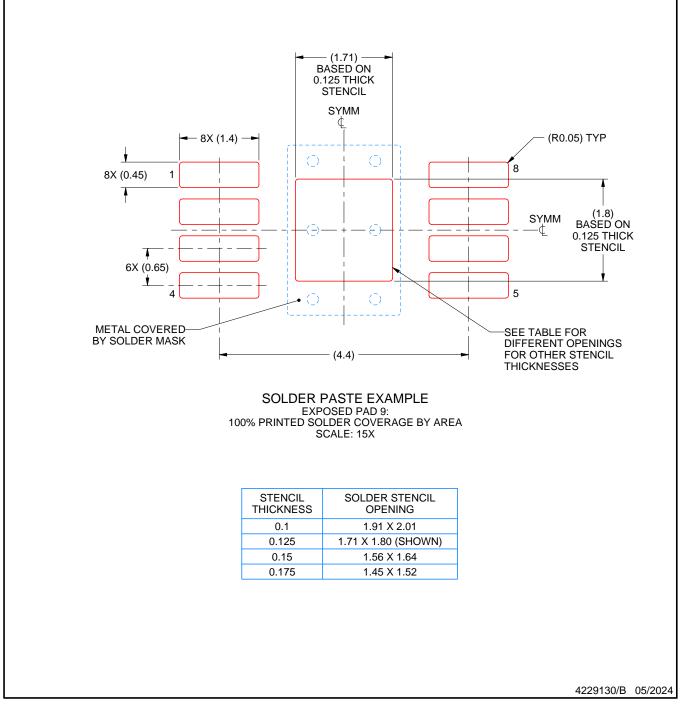
# PowerPAD<sup>™</sup> VSSOP - 1.1 mm max height

SMALL OUTLINE PACKAGE



NOTES: (continued)

- 7. Publication IPC-7351 may have alternate designs.
- 8. Solder mask tolerances between and around signal pads can vary based on board fabrication site.
- 9. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown
- on this view. It is recommended that vias under paste be filled, plugged or tented.
- 10. Size of metal pad may vary due to creepage requirement.




# **DGN0008H**

# **EXAMPLE STENCIL DESIGN**

# PowerPAD<sup>™</sup> VSSOP - 1.1 mm max height

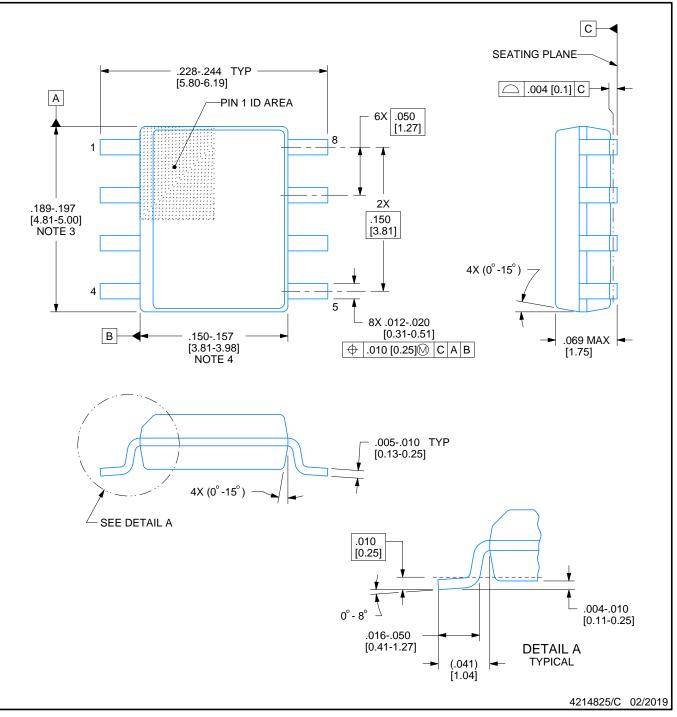
SMALL OUTLINE PACKAGE



NOTES: (continued)

- 11. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 12. Board assembly site may have different recommendations for stencil design.




# D0008A



# **PACKAGE OUTLINE**

## SOIC - 1.75 mm max height

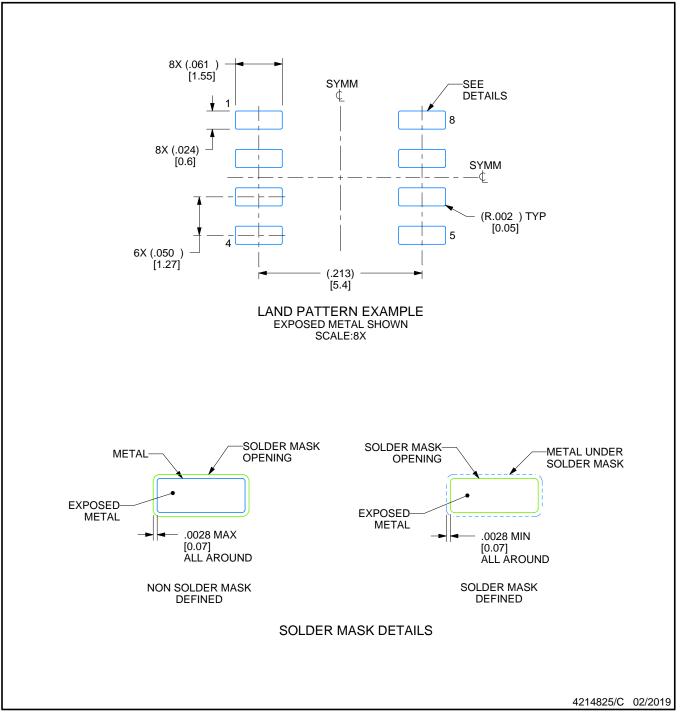
SMALL OUTLINE INTEGRATED CIRCUIT



#### NOTES:

1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches. Dimensioning and tolerancing per ASME Y14.5M.

- 2. This drawing is subject to change without notice.
- 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed .006 [0.15] per side.
- 4. This dimension does not include interlead flash.
- 5. Reference JEDEC registration MS-012, variation AA.




# D0008A

# **EXAMPLE BOARD LAYOUT**

## SOIC - 1.75 mm max height

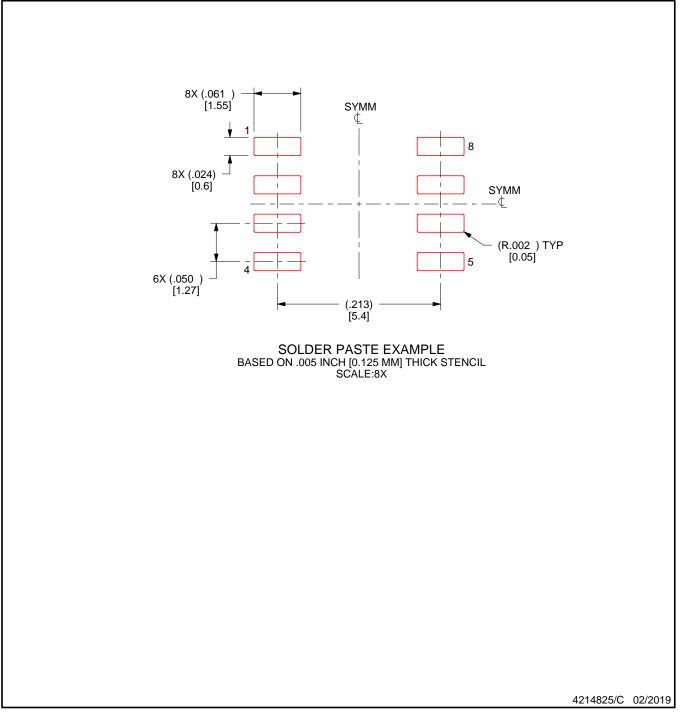
SMALL OUTLINE INTEGRATED CIRCUIT



NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.




# D0008A

# **EXAMPLE STENCIL DESIGN**

# SOIC - 1.75 mm max height

SMALL OUTLINE INTEGRATED CIRCUIT



NOTES: (continued)

8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

9. Board assembly site may have different recommendations for stencil design.



### IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2024, Texas Instruments Incorporated