TPL0102 Two 256-Taps Digital Potentiometers With Non-Volatile Memory

1 Features

- Two Potentiometers with 256-Position Resolution
- Non-volatile Memory Stores Wiper Settings
- $100 \mathrm{k} \Omega$ End-to-End Resistance (TPL0102-100)
- Fast Power-up Response Time to Wiper Setting: $<100 \mu \mathrm{~s}$
- ± 0.5 LSB INL, ± 0.25 LSB DNL (Voltage-Divider Mode)
- $4 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ Ratiometric Temperature Coefficient
- $\mathrm{I}^{2} \mathrm{C}$-compatible Serial Interface
- 2.7 V to 5.5 V Single-Supply Operation
- $\pm 2.25 \mathrm{~V}$ to $\pm 2.75 \mathrm{~V}$ Dual-Supply Operation
- Operating Temperature Range from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
- Shutdown Mode
- ESD Performance Tested Per JESD 22
- 2000-V Human Body Model (A114-B, Class II)
- 1000-V Charged-Device Model (C101)

2 Applications

- Adjustable Gain Amplifiers and Offset Trimming
- Adjustable Power Supplies
- Precision Calibration of Set Point Thresholds
- Sensor Trimming and Calibration
- Mechanical Potentiometer Replacement

3 Description

The TPL0102 has two linear-taper digital potentiometers (DPOTs) with 256 wiper positions. Each potentiometer can be used as a three-terminal potentiometer or as a two-terminal rheostat. The TPL0102-100 has an end-to-end resistance of 100 $\mathrm{k} \Omega$.
The TPL0102 has non-volatile memory (EEPROM) which can be used to store the wiper position. This is beneficial because the wiper position is stored even during power-off and is automatically reinstated after power-on. The internal registers of the TPL0102 can be accessed using the $\mathrm{I}^{2} \mathrm{C}$ interface.
The TPL0102 is available in a 14 -pin MicroQFN and 14-pin TSSOP package with a specified temperature range of $40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

Device Information ${ }^{(1)}$

PART NUMBER	PACKAGE	BODY SIZE (NOM)
TPL0102	X2QFN (14)	$2.00 \mathrm{~mm} \times 2.00 \mathrm{~mm}$
	TSSOP (14)	$5.00 \mathrm{~mm} \times 4.40 \mathrm{~mm}$

(1) For all available packages, see the orderable addendum at the end of the data sheet.

An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectual property matters and other important disclaimers. PRODUCTION DATA.

Table of Contents

1 Features 1
2 Applications 1
3 Description 1
4 Revision History 2
5 Pin Configuration and Functions 3
6 Specifications 4
6.1 Absolute Maximum Ratings 4
6.2 ESD Ratings 4
6.3 Recommended Operating Conditions 4
6.4 Thermal Information 4
6.5 Electrical Characteristics. 5
6.6 Operating Characteristics 6
6.7 Timing Requirements 7
6.8 Typical Characteristics 8
7 Detailed Description 11
7.1 Overview 11
7.2 Functional Block Diagram 12
7.3 Feature Description 12
7.4 Device Functional Modes 13
7.5 Programming with $\mathrm{I}^{2} \mathrm{C}$ 20
7.6 Register Maps 25
8 Application and Implementation 28
8.1 Application Information. 28
8.2 Typical Applications 28
9 Power Supply Recommendations 34
9.1 Power Sequence 34
9.2 Wiper Position Upon Power Up 34
9.3 Dual-Supply vs Single-Supply 34
10 Layout. 35
10.1 Layout Guidelines 35
10.2 Layout Example 35
11 Device and Documentation Support 36
11.1 Community Resources. 36
11.2 Trademarks 36
11.3 Electrostatic Discharge Caution 36
11.4 Glossary 36
12 Mechanical, Packaging, and Orderable Information 36

4 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.
Changes from Revision B (August 2011) to Revision C Page

- Added ESD Ratings table, Feature Description section, Device Functional Modes, Application and Implementation section, Power Supply Recommendations section, Layout section, Device and Documentation Support section, and Mechanical, Packaging, and Orderable Information section 1
Changes from Revision A (March 2011) to Revision B Page
- Added Recommended Operating Conditions table. 4

5 Pin Configuration and Functions

Pin Functions

PIN		1/0	DESCRIPTION
NAME	NO.		
HA	1	I/O	High terminal of potentiometer A
LA	2	I/O	Low terminal of potentiometer A
WA	3	I/O	Wiper terminal of potentiometer A
HB	4	I/O	High terminal of potentiometer B
LB	5	I/O	Low terminal of potentiometer B
WB	6	1/0	Wiper terminal of potentiometer B
A2	7	1	$1^{2} \mathrm{C}$ address bit 2
VSS	8	-	Negative power supply pin (Dual-Supply Operation) or tied to GND (Single-Supply Operation)
SDA	9	1/0	$1^{2} \mathrm{C}$ data I/O
SCL	10	1	$1^{2} \mathrm{C}$ clock Input
GND	11	-	Ground
A1	12	1	$1^{2} \mathrm{C}$ address bit 1
A0	13	1	$1^{2} \mathrm{C}$ address bit 0
VDD	14	-	Positive power supply pin

6 Specifications

6.1 Absolute Maximum Ratings ${ }^{(1)(2)(3)}$

		MIN	MAX	UNIT
V_{DD} to GND		-0.3	7	V
$\mathrm{V}_{S S}$ to GND	Supply voltage	-7	0.3	V
V_{DD} to $\mathrm{V}_{\text {SS }}$			7	V
$\mathrm{V}_{\mathrm{H}}, \mathrm{V}_{\mathrm{L}}, \mathrm{V}_{\mathrm{W}}$	Voltage at resistor terminals	$\mathrm{V}_{\text {SS }}-0.3$	$V_{D D}+0.3$	V
V_{1}	Digital input voltage	-0.3	$V_{D D}+0.3$	V
	Pulse current		± 20	mA
$\mathrm{I}_{\mathrm{H}}, \mathrm{L}_{\mathrm{L}}, \mathrm{I}_{\mathrm{W}}$	Continuous current		± 2	mA
$\mathrm{T}_{\text {stg }}$	Storage temperature	-65	150	${ }^{\circ} \mathrm{C}$

(1) Stresses above these ratings may cause permanent damage. Exposure to absolute maximum conditions for extended periods may degrade device reliability. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those specified is not implied.
(2) The algebraic convention, whereby the most negative value is a minimum and the most positive value is a maximum.
(3) All voltages are with respect to ground, unless otherwise specified.

6.2 ESD Ratings

		VALUE	UNIT
Electrostatic discharge	Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 ${ }^{(1)}$	± 2000	V
	Charged-device model (CDM), per JEDEC specification JESD22C101 ${ }^{\text {(2) }}$	± 1000	

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. Manufacturing with less than $500-\mathrm{V}$ HBM is possible with the necessary precautions.
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. Manufacturing with less than 250-V CDM is possible with the necessary precautions.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

		MIN	MAX	UNIT
V	Single supply operation ($\mathrm{V}_{\text {SS }}=0 \mathrm{~V}$)	2.7	5.5	V
VD	Dual supply operation ($\left.\mathrm{V}_{S S}=-\mathrm{V}_{\mathrm{DD}}\right)$	2.25	2.75	V
$\mathrm{V}_{\mathrm{H}}, \mathrm{V}_{\mathrm{L}}$	Terminal voltage range	$\mathrm{V}_{\text {SS }}$	$V_{\text {DD }}$	V
V_{IH}	Digital input voltage high (SCL, SDA, A0, A1, A2)	$0.7 \times \mathrm{V}_{\mathrm{DD}}$	5.5	V
$\mathrm{V}_{\text {IL }}$	Digital input voltage low (SCL, SDA, A0, A1, A2)	0	$0.3 \times \mathrm{V}_{\mathrm{DD}}$	V
IW	Wiper current		± 2	mA
$\mathrm{T}_{\text {A }}$	Ambient temperature	-40	85	${ }^{\circ} \mathrm{C}$

6.4 Thermal Information

THERMAL METRIC ${ }^{(1)}$		TPL0102		UNIT
		PW (TSSOP)	RUC (X2QFN)	
		14 PINS	14 PINS	
$\mathrm{R}_{\text {өJA }}$	Junction-to-ambient thermal resistance	112.9	119.4	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{\text {өJC(top) }}$	Junction-to-case (top) thermal resistance	39.9	51.3	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{\text {өJB }}$	Junction-to-board thermal resistance	55.9	59.0	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\Psi_{\text {JT }}$	Junction-to-top characterization parameter	3.5	1.2	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\Psi_{\text {JB }}$	Junction-to-board characterization parameter	55.2	59.0	${ }^{\circ} \mathrm{C} / \mathrm{W}$

(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.

6.5 Electrical Characteristics

$\mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{H}}=\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{L}}=\mathrm{GND}, \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (unless otherwise noted). Typical values are at $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (unless otherwise noted).

PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
$\mathrm{R}_{\text {TOT }}$	End-to-End resistance (Between H and L Terminals)		80	100	120	$k \Omega$
$\mathrm{R}_{\mathrm{H}}, \mathrm{R}_{\mathrm{L}}$	Terminal resistance			60	200	Ω
R_{W}	Wiper resistance			25	100	Ω
$\mathrm{C}_{\mathrm{H}}, \mathrm{C}_{\mathrm{L}}{ }^{(1)}{ }^{(2)}$	Terminal capacitance			22		pF
$\mathrm{C}_{\mathrm{W}}{ }^{(1)(2)}$	Wiper capacitance			16		pF
ILKG	Terminal leakage current	$\begin{aligned} & V_{H}=V_{S S} \text { to } V_{D D}, V_{L}=\text { Floating } \\ & O R \\ & V_{L}=V_{S S} \text { to } V_{D D}, V_{H}=\text { Floating } \end{aligned}$		0.1	1	$\mu \mathrm{A}$
TC ${ }_{R}$	Resistance temperature coefficient	Input Code $=0 \times 80 \mathrm{~h}$		92		ppm/ ${ }^{\circ} \mathrm{C}$
$\mathrm{R}_{\text {TOT,MATCH }}$	Channel-to-channel resistance match			0.1		\%

Voltage Divider Mode

INL ${ }^{(3)(4)}$	Integral non-linearity		-0.5		0.5	LSB
DNL ${ }^{(3)(5)}$	Differential non-linearity		-0.25		0.25	LSB
$\mathrm{ZS}_{\text {ERROR }}{ }^{(6)(7)}$	Zero-scale error		0	0.1	2	LSB
$\mathrm{FS}_{\text {ERROR }}{ }^{(6)(8)}$	Full-scale error		-2	-0.1	0	LSB
MATCH VDM $^{(6)(9)}$	Channel-to-Channel matching	Wiper at the same tap position, same voltage at all H and same voltage at all L terminals	-2		2	LSB
TC VDM	Ratiometric temperature coefficient	Wiper set at mid-scale		4		ppm $/{ }^{\circ} \mathrm{C}$
BW	Bandwidth	Wiper set at mid-scale $C_{\text {LOAD }}=10 \mathrm{pF}$		229		kHz
tsw	Wiper setting time			3.6		$\mu \mathrm{s}$
THD	Total harmonic distortion	$\begin{aligned} & \mathrm{V}_{\mathrm{H}}=1 \mathrm{~V}_{\mathrm{RMS}} \text { at } 1 \mathrm{kHz}, \\ & \mathrm{~V}_{\mathrm{L}}=\left(\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS}}\right) / 2, \end{aligned}$ Measurement at pin W		0.03		\%
$\mathrm{X}_{\text {TALK }}$	Cross talk	$\begin{aligned} & \mathrm{f}_{\mathrm{H}}=1 \mathrm{kHz}, \\ & \mathrm{~V}_{\mathrm{L}}=\mathrm{GND}, \end{aligned}$ Measurement at pin W		-82		dB

(1) Terminal and Wiper Capacitance extracted from self admittance of three port network measurement
$Y_{i i}=\left.\frac{I_{i}}{V_{i}}\right|_{v_{k}=0 \text { for } k \neq i}$
(2) Digital Potentiometer Macromodel

(3) $\mathrm{LSB}=\left(\mathrm{V}_{\text {MEAS[code 255] }}-\mathrm{V}_{\text {MEAS[code 0) }}\right) / 255$
(4) $\mathrm{INL}=\left(\left(\mathrm{V}_{\text {MEAS }[\text { code } \mathrm{x}]}-\mathrm{V}_{\text {MEAS[code 0] }}\right) /\right.$ LSB $)$ - [code x$]$
(5) $\mathrm{DNL}=\left(\left(\mathrm{V}_{\text {MEAS }}\right.\right.$ code x$\left.\left.]-\mathrm{V}_{\text {MEAS[code }} \mathrm{x}-1\right]\right) /$ LSB $)-1$
(6) IDEAL_LSB $=\left(\mathrm{V}_{\mathrm{H}}-\mathrm{V}_{\mathrm{L}}\right) / 256$
(7) $\mathrm{ZS}_{\text {ERROR }}=\mathrm{V}_{\text {MEAS[code 0] }} /$ IDEAL_LSB
(8) $\mathrm{FS}_{\text {ERROR }}=\left[\left(\mathrm{V}_{\text {MEAS[code 255] }}-\left(\mathrm{V}_{\mathrm{H}}^{-}-\mathrm{V}_{\mathrm{L}}\right)\right) /\right.$ IDEAL_LSB $]+1$
(9) MATCH $_{\text {VDM }}=\left(\mathrm{V}_{\text {MEAS_A }}\right.$ [code x$]-\mathrm{V}_{\text {MEAS_B }}$ [code x] $) /$ IDEAL_LSB

Electrical Characteristics (continued)

$\mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{H}}=\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{L}}=\mathrm{GND}, \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (unless otherwise noted). Typical values are at
$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (unless otherwise noted).

PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
RHEOSTAT MODE (Measurements between W and L with H not connected, or between W and H with L not connected)						
RINL ${ }^{(10)(11)}$	Integral non-linearity		-1		1	LSB
RDNL ${ }^{(10)(12)}$	Differential non-linearity		-0.5		0.5	LSB
OFFSET $_{\text {RM }}{ }^{(13)(14)}$	Offset		0	0.2	2	LSB
MATCH ${ }_{\text {RM }}{ }^{(13)(15)}$	Channel-to-Channel matching		-2		2	LSB
BW	Bandwidth	Code $=0 \times 00 \mathrm{~h}$, L Floating, Input applied to W, Measure at $\mathrm{H}, \mathrm{C}_{\text {LOAD }}=10 \mathrm{pF}$		54		kHz

(10) $\mathrm{RLSB}=\left(\mathrm{R}_{\text {MEAS }[\text { code } 255]}-\mathrm{R}_{\text {MEAS }[\text { code } 0)}\right) / 255$
(11) RINL $=\left(\left(\right.\right.$ R MEAS $[$ code $\left.x]-\mathrm{R}_{\text {MEAS[code o] }}\right) /$ RLSB $)-$ [code $\left.x\right]$
(12) $\operatorname{RDNL}=\left(\left(R_{\text {MEAS }[\text { code }} \mathrm{x}\right]-\mathrm{R}_{\text {MEAS }}[\right.$ code $\left.\mathrm{x}-1]\right) /$ RLSB $)-1$
(13) IDEAL_RLSB $=R_{\text {TOT }} / 256$
(14) OFFSET RM $=\mathrm{R}_{\text {MEAS[code 0] }} /$ IDEAL_RLSB
(15) MATCH $_{\text {RM }}=\left(\right.$ R $_{\text {MEAS_A }}$ [code x] $\left.]-R_{\text {MEAS_B }[\text { code } x]}\right) /$ IDEAL_RLSB

6.6 Operating Characteristics

$\mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{H}}=\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{L}}=\mathrm{GND}, \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (unless otherwise noted). Typical values are at $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (unless otherwise noted).

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
$\mathrm{I}_{\text {DD(STBY) }}$	$V_{\text {DD }}$ standby current	$\mathrm{V}_{\mathrm{DD}}=2.75 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-2.75,$ $1^{2} \mathrm{C}$ interface in standby mode		0.2	1	$\mu \mathrm{A}$
$\mathrm{I}_{\text {SS(STBY) }}$	$\mathrm{V}_{\text {SS }}$ standby current	$\mathrm{V}_{\mathrm{DD}}=2.75 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-2.75,$ $1^{2} \mathrm{C}$ interface in standby mode	-1	-0.2		$\mu \mathrm{A}$
IDD(SHUTDOWN)	$V_{\text {DD }}$ shutdown current	$V_{D D}=2.75 \mathrm{~V}, \mathrm{~V}_{S S}=-2.75,$ $1^{2} \mathrm{C}$ interface in standby mode		0.2	1	$\mu \mathrm{A}$
ISS(SHUTDOWN)	$\mathrm{V}_{\text {SS }}$ shutdown current	$\mathrm{V}_{\mathrm{DD}}=2.75 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-2.75$, $1^{2} \mathrm{C}$ interface in standby mode	-1	-0.2		$\mu \mathrm{A}$
I_{DD}	$V_{D D}$ current during non-volatile write	$\mathrm{V}_{\mathrm{DD}}=2.75 \mathrm{~V}, \mathrm{~V}_{\text {SS }}=-2.75$		200		$\mu \mathrm{A}$
Iss	$\mathrm{V}_{\text {SS }}$ current during non-volatile write	$\mathrm{V}_{\mathrm{DD}}=2.75 \mathrm{~V}, \mathrm{~V}_{\text {SS }}=-2.75$	-200			$\mu \mathrm{A}$
ILKG(DIG)	Digital pins leakage current (A0, A1, A2, SDA, and SCL)		-1		1	$\mu \mathrm{A}$
$V_{\text {POR }}$	Power-on recall voltage	Minimum V_{DD} at which memory recall occurs		23		V
EEPROM Specification						
	EEPROM endurance			100000		Cycles
	EEPROM retention	$\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$		100		Years
twc	Non-volatile write cycle time			20		ms
Wiper Timing Characteristics						
$\mathrm{t}_{\text {(WRT }}$)	Wiper response time	SCL falling edge of last bit of wiper data byte to wiper new position		600		ns
$\mathrm{t}_{(\mathrm{SR})}$	Wiper position recall time from shut-down mode	SCL falling edge of last bit of ACR data byte to wiper stored position and H connection		800		ns
$\mathrm{t}_{\text {(}{ }^{\text {(}} \text {) }}$	Power-up delay	$V_{D D}$ above $V_{P O R}$, to wiper initial value register recall completed, and $I^{2} C$ interface in standby mode		35	100	$\mu \mathrm{s}$
$\mathrm{C}_{\text {(PIN) }}$	Pin capacitance	A0, A1, A2, SDA, SCL pins		7		pF

TPL0102
www.ti.com

Operating Characteristics (continued)

$\mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{H}}=\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{L}}=\mathrm{GND}, \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (unless otherwise noted). Typical values are at $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (unless otherwise noted).

6.7 Timing Requirements

$\mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{H}}=\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{L}}=\mathrm{GND}, \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (unless otherwise noted). Typical values are at V_{DD} $=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (unless otherwise noted).

	STANDARD MODE I^{2} C BUS		FAST MODE I ${ }^{2}$ C BUS		UNIT
	MIN	MAX	MIN	MAX	
$1^{2} \mathrm{C}$ Interface Timing Requirements					
$\mathrm{f}_{\mathrm{SCL}} \quad \mathrm{I}^{2} \mathrm{C}$ clock frequency	0	100	0	400	kHz
$\mathrm{t}_{\mathrm{SCH}} \quad \mathrm{I}^{2} \mathrm{C}$ clock high time	4		0.6		$\mu \mathrm{s}$
$\mathrm{t}_{\text {SCL }} \quad \mathrm{I}^{2} \mathrm{C}$ clock low time	4.7		1.3		$\mu \mathrm{s}$
tsp $1^{2} \mathrm{C}$ spike time	0	50	0	50	ns
tsds $\quad 1^{2} \mathrm{C}$ serial data setup time	250		100		ns
$\mathrm{t}_{\text {SDH }} \quad \mathrm{I}^{2} \mathrm{C}$ serial data hold time	0		0		ns
$\mathrm{t}_{\mathrm{CCR}} \quad \mathrm{I}^{2} \mathrm{C}$ input rise time		1000	$20+0.1 \mathrm{C}_{\mathrm{b}}{ }^{(1)}$	300	ns
$\mathrm{t}_{\text {ICF }} \quad \mathrm{I}^{2} \mathrm{C}$ input fall time		300	$20+0.1 \mathrm{C}_{\mathrm{b}}{ }^{(1)}$	300	ns
$\mathrm{t}_{\text {ICF }} \quad \mathrm{I}^{2} \mathrm{C}$ output fall time, 10 pF to 400 pF bus		300	$20+0.1 \mathrm{C}_{\mathrm{b}}{ }^{(1)}$	300	ns
$\mathrm{t}_{\text {BUF }} \quad \mathrm{I}^{2} \mathrm{C}$ bus free time between stop and start	4.7		1.3		$\mu \mathrm{s}$
$\mathrm{t}_{\text {STS }} \quad \mathrm{I}^{2} \mathrm{C}$ start or repeater start condition setup time	4.7		1.3		$\mu \mathrm{s}$
$\mathrm{t}_{\text {STH }} \quad \mathrm{I}^{2} \mathrm{C}$ start or repeater start condition hold time	4		0.6		$\mu \mathrm{s}$
$\mathrm{t}_{\text {SPS }} \quad \mathrm{I}^{2} \mathrm{C}$ stop condition setup time	4		0.6		$\mu \mathrm{s}$
$\mathrm{t}_{\mathrm{VD}(\text { (DATA) }} \quad$ Valid data time, SCL low to SDA output valid		1		1	$\mu \mathrm{s}$
3 $\mathrm{tVD}_{\mathrm{V}(\mathrm{ACK})} \quad$ Valid data time of ACK condition, ACK signal from SCL low to SDA (out) low		1		1	$\mu \mathrm{s}$

(1) $\mathrm{C}_{\mathrm{b}}=$ total capacitance of one bus line in pF

6.8 Typical Characteristics

Figure 1. Voltage Divider Mode INL vs Digital Code (VDD $=5$ V)

Figure 3. Voltage Divider Mode INL vs Digital Code ($25^{\circ} \mathrm{C}$)

Figure 5. Rheostat Mode RINL vs Digital Code (VD = 5 V)

Figure 2. Voltage Divider Mode DNL vs Digital Code (VD $=5$ V)

Figure 4. Voltage Divider Mode DNL vs Digital Code $\left(25^{\circ} \mathrm{C}\right)$

Figure 6. Rheostat Mode RDNL vs Digital Code (VD $=5 \mathrm{~V}$)

Typical Characteristics (continued)

Figure 7. Rheostat Mode RINL vs Digital Code $\left(25^{\circ} \mathrm{C}\right)$

Figure 9. Rheostat Mode TC $_{\text {R }}$ vs Digital Code

Figure 11. Voltage Divider Mode FS Error vs Temperature

Figure 8. Rheostat Mode RDNL vs Digital Code ($25^{\circ} \mathrm{C}$)

Figure 10. Rheostat Mode Gain vs Frequency

Figure 12. Voltage Divider Mode ZS Error vs Temperature

Typical Characteristics (continued)

Figure 13. Rheostat Mode Offset Error vs Temperature

Figure 15. Wiper to Low Terminal Resistance ($\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$)

Figure 14. Midscale Wiper Glitch (0×7 Fh to $0 \times 80 h$)

Figure 16. Wiper to Low Terminal Resistance ($\mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}$)

Figure 17. Supply Current vs Digital Input Voltage

7 Detailed Description

7.1 Overview

The TPL0102 has two linear-taper digital potentiometers with 256 wiper positions and an end-to-end resistance of $100 \mathrm{k} \Omega$. Each potentiometer can be used as a three-terminal potentiometer or as a two-terminal rheostat. The two potentiometers can both be used in Voltage Divider Mode, Rheostat Mode, or Shutdown Mode at the same time, or any combination of those modes. For example, potentiometer A can be used in Voltage Divider Mode and potentiometer B can be used in Voltage Divider Mode, or potentiometer A can be used in Voltage Divider Mode and potentiometer B can be used in Rheostat Mode. The two potentiometers are functionally independent of one another.

The High (H) and Low (L) terminals of the TPL0102 are equivalent to the fixed terminals of a mechanical potentiometer. The H and L terminals do not have any polarity restrictions (H can be at a higher voltage than L, or L can be at a higher voltage than H). The position of the wiper (W) terminal is controlled by the value in the Wiper Resistance (WR) 8-bit register. When the WR register contains all zeroes (zero-scale), the wiper terminal is closest to its L terminal. As the value of the WR register increases from all zeroes to all ones (full-scale), the wiper moves monotonically from the position closest to L terminal to the position closest to the H terminal. At the same time, the resistance between W and L increases monotonically, whereas the resistance between W and H decreases monotonically.
The TPL0102 has non-volatile memory (EEPROM) which can be used to store the wiper position. When the device is powered down, the last value stored in the Initial Value Register (IVR) will be maintained in the nonvolatile memory. When power is restored, the contents of the IVR are automatically recalled and loaded into the corresponding WR register to set the wipers. The internal registers of the TPL0102 can be accessed using the $1^{2} \mathrm{C}$ interface. The factory-programmed default value for the IVR upon power up is $0 \times 80 \mathrm{~h}$ (10000000). The WR register can be written to directly without first writing to the IVR, depending upon the setting of the volatile memory (VOL) in the ACR (Access Control Register). If the WR register is written to directly without writing to the IVR as well, this results in the wiper position changing to a desired position, but the position will not be stored in memory and will not be reloaded upon powering up the device.

With one TPL0102, a variable resistor with 512 settings can be used since there are two potentiometers in one TPL0102. In order to achieve this, the two potentiometers should be in Rheostat Mode and wired so that terminal L of potentiometer B is tied to terminal W of potentiometer A. This will provide 512 settings between terminal L of potentiometer A and terminal W of potentiometer B.

7.2 Functional Block Diagram

7.3 Feature Description

The TPL0102 has two linear-taper digital potentiometers (DPOTs) with 256 wiper positions. Each potentiometer can be used as a three-terminal potentiometer or a two-terminal rheostat. The TPL0102-100 has an end-to-end resistance of $100 \mathrm{k} \Omega$ with a 20% end-to-end resistance tolerance. Non-volatile memory (EEPROM) can be used to store the wiper position allowing the wiper position to be stored even during power-off and automatically reinstated after power-on. The internal registers of the TPL0102 can be accessed using the $I^{2} \mathrm{C}$ digital interface. The TPL0102 is available in a 14-pin MicroQFN ($2.00 \mathrm{~mm} \times 2.00 \mathrm{~mm}$) and 14-pin TSSOP package.

7.4 Device Functional Modes

7.4.1 Shutdown Mode

The TPL0102 can be put in Shutdown Mode by executing the proper command in the ACR (Access Control Register). Please see the TPL0102 Register Map for more details. When active, this feature causes terminal H to become high impedance.

Figure 18. Equivalent Circuit for Shutdown Mode

7.4.2 Voltage Divider Mode

The digital potentiometer generates a voltage divider when all three terminals are used. The voltage divider at wiper-to- H and wiper-to-L is proportional to the input voltage at H to L .

Figure 19. Equivalent Circuit for Voltage Divider Mode
For example, connecting terminal H to 5 V and terminal L to ground, the output voltage at terminal W can range from 0 V to 5 V . The general equation defining the output voltage at terminal W for any valid input voltage applied to terminal H and terminal L is

$$
\begin{equation*}
V_{W}=V_{W L}=\left(V_{H}-V_{L}\right) \times \frac{D}{256} \tag{1}
\end{equation*}
$$

The voltage difference between terminal H and terminal W can also be calculated

$$
\mathrm{V}_{\mathrm{Hw}}=\left(\mathrm{V}_{\mathrm{H}}-\mathrm{V}_{\mathrm{L}}\right) \times\left(1-\left(\frac{\mathrm{D}}{256}\right)\right)
$$

where

- $\quad \mathrm{D}$ is the decimal value of the wiper code.

Device Functional Modes (continued)

7.4.3 Rheostat Mode

The TPL0102 operates in rheostat mode when only two terminals are used as a variable resistor. The variable resistance can either be between terminal H and terminal W or between terminal L and terminal W . The unused terminal can be left floating or it can be tied to terminal W . The nominal resistance between terminal H and terminal L is $100 \mathrm{k} \Omega$ and has 256 tap points accessed by the wiper terminal. The 8 -bit volatile register value is used to determine one of the 256 possible wiper positions.
In rheostat mode, to set the resistance between terminal H and terminal W , the potentiometer can be configured in two possible ways.

L (Floating)

L (Connected)

Figure 20. Equivalent Circuit for Rheostat Mode with Terminal H to Terminal W Resistance
The general equation for determining the digitally programmed output resistance between Terminal H and Terminal W is:

$$
\mathrm{R}_{\mathrm{HW}}=\mathrm{R}_{\mathrm{TOT}} \times\left(1-\left(\frac{\mathrm{D}}{256}\right)\right)
$$

where

- $\mathrm{R}_{\text {TOT }}$ is the end-to-end resistance between terminal H and terminal L .
- D is the decimal value of the wiper code.

Similarly, to set the resistance between terminal L and terminal W , the potentiometer can be configured in two possible ways.

Figure 21. Equivalent Circuit for Rheostat Mode with Terminal L to Terminal W Resistance
The general equation for determining the digitally programmed output resistance between terminal L and terminal W is

$$
\mathrm{R}_{\mathrm{WL}}=\mathrm{R}_{\text {TOT }} \times \frac{\mathrm{D}}{256}
$$

where

- $R_{\text {Tот }}$ is the end-to-end resistance between terminal H and terminal L .
- D is the decimal value of the wiper code.

Device Functional Modes (continued)

The following table shows the ideal values for DPOT with End-to End resistance of $100 \mathrm{k} \Omega$. The absolute values of resistance can vary significantly but the Ratio ($\mathrm{R}_{\mathrm{WL}} / R_{\mathrm{HW}}$) is extremely accurate.
The linearity values are "relative" linearity values (i.e. linearity after zero-scale and full-scale offset errors are removed). Please take this into account when expecting a certain absolute accuracy since some error will be introduced once you get close in magnitude to the offset errors.

Step	Hex	Binary	$\mathrm{R}_{\mathrm{WL}}(\mathrm{k} \Omega$)	$\mathbf{R}_{\mathrm{HW}}(\mathrm{k} \Omega$)	$\mathbf{R}_{\mathrm{WL}} / \mathbf{R}_{\mathrm{HW}}$
0 (zero-scale)	0x00h	00000000	0.00	100.00	0.00
1	0x01h	00000001	0.39	99.61	0.00
2	0x02h	00000010	0.78	99.22	0.01
3	0x03h	00000011	1.17	98.83	0.01
4	0x04h	00000100	1.56	98.44	0.02
5	0x05h	00000101	1.95	98.05	0.02
6	0x06h	00000110	2.34	97.66	0.02
7	0x07h	00000111	2.73	97.27	0.03
8	0x08h	00001000	3.13	96.88	0.03
9	$0 \times 09 \mathrm{~h}$	00001001	3.52	96.48	0.04
10	0x0Ah	00001010	3.91	96.09	0.04
11	OxOBh	00001011	4.30	95.70	0.04
12	0x0Ch	00001100	4.69	95.31	0.05
13	0x0Dh	00001101	5.08	94.92	0.05
14	0x0Eh	00001110	5.47	94.53	0.06
15	0x0Fh	00001111	5.86	94.14	0.06
16	$0 \times 10 \mathrm{~h}$	00010000	6.25	93.75	0.07
17	$0 \times 11 \mathrm{~h}$	00010001	6.64	93.36	0.07
18	$0 \times 12 \mathrm{~h}$	00010010	7.03	92.97	0.08
19	0x13h	00010011	7.42	92.58	0.08
20	0x14h	00010100	7.81	92.19	0.08
21	$0 \times 15 \mathrm{~h}$	00010101	8.20	91.80	0.09
22	$0 \times 16 \mathrm{~h}$	00010110	8.59	91.41	0.09
23	$0 \times 17 \mathrm{~h}$	00010111	8.98	91.02	0.10
24	$0 \times 18 \mathrm{~h}$	00011000	9.38	90.63	0.10
25	$0 \times 19 \mathrm{~h}$	00011001	9.77	90.23	0.11
26	0x1Ah	00011010	10.16	89.84	0.11
27	$0 \times 1 \mathrm{Bh}$	00011011	10.55	89.45	0.12
28	$0 \times 1 \mathrm{Ch}$	00011100	10.94	89.06	0.12
29	0x1Dh	00011101	11.33	88.67	0.13
30	0×1 Eh	00011110	11.72	88.28	0.13
31	0x1Fh	00011111	12.11	87.89	0.14
32	0x20h	00100000	12.50	87.50	0.14
33	$0 \times 21 \mathrm{~h}$	00100001	12.89	87.11	0.15
34	0x22h	00100010	13.28	86.72	0.15
35	0x23h	00100011	13.67	86.33	0.16
36	$0 \times 24 \mathrm{~h}$	00100100	14.06	85.94	0.16
37	$0 \times 25 \mathrm{~h}$	00100101	14.45	85.55	0.17
38	0x26h	00100110	14.84	85.16	0.17
39	$0 \times 27 \mathrm{~h}$	00100111	15.23	84.77	0.18
40	$0 \times 28 \mathrm{~h}$	00101000	15.63	84.38	0.19
41	0x29h	00101001	16.02	83.98	0.19

Step	Hex	Binary	R_{WL} (k) ${ }_{\text {) }}$	$\mathrm{R}_{\mathrm{HW}}(\mathrm{k} \Omega$)	$\mathbf{R}_{\mathbf{W L}} / \mathbf{R}_{\text {HW }}$
42	0x2Ah	00101010	16.41	83.59	0.20
43	$0 \times 2 \mathrm{Bh}$	00101011	16.80	83.20	0.20
44	$0 \times 2 \mathrm{Ch}$	00101100	17.19	82.81	0.21
45	$0 \times 2 \mathrm{Dh}$	00101101	17.58	82.42	0.21
46	0×2 Eh	00101110	17.97	82.03	0.22
47	0x2Fh	00101111	18.36	81.64	0.22
48	0x30h	00110000	18.75	81.25	0.23
49	$0 \times 31 \mathrm{~h}$	00110001	19.14	80.86	0.24
50	$0 \times 32 \mathrm{~h}$	00110010	19.53	80.47	0.24
51	0x33h	00110011	19.92	80.08	0.25
52	$0 \times 34 \mathrm{~h}$	00110100	20.31	79.69	0.25
53	$0 \times 35 \mathrm{~h}$	00110101	20.70	79.30	0.26
54	$0 \times 36 \mathrm{~h}$	00110110	21.09	78.91	0.27
55	$0 \times 37 \mathrm{~h}$	00110111	21.48	78.52	0.27
56	0x38h	00111000	21.88	78.13	0.28
57	0x39h	00111001	22.27	77.73	0.29
58	$0 \times 3 \mathrm{Ah}$	00111010	22.66	77.34	0.29
59	$0 \times 3 \mathrm{Bh}$	00111011	23.05	76.95	0.30
60	$0 \times 3 \mathrm{Ch}$	00111100	23.44	76.56	0.31
61	$0 \times 3 \mathrm{Dh}$	00111101	23.83	76.17	0.31
62	$0 \times 3 \mathrm{Eh}$	00111110	24.22	75.78	0.32
63	0x3Fh	00111111	24.61	75.39	0.33
64	0x40h	01000000	25.00	75.00	0.33
65	$0 \times 41 \mathrm{~h}$	01000001	25.39	74.61	0.34
66	0x42h	01000010	25.78	74.22	0.35
67	0x43h	01000011	26.17	73.83	0.35
68	0x44h	01000100	26.56	73.44	0.36
69	$0 \times 45 \mathrm{~h}$	01000101	26.95	73.05	0.37
70	0x46h	01000110	27.34	72.66	0.38
71	0x47h	01000111	27.73	72.27	0.38
72	0x48h	01001000	28.13	71.88	0.39
73	0x49h	01001001	28.52	71.48	0.40
74	0x4Ah	01001010	28.91	71.09	0.41
75	$0 \times 4 \mathrm{Bh}$	01001011	29.30	70.70	0.41
76	$0 \times 4 \mathrm{Ch}$	01001100	29.69	70.31	0.42
77	0x4Dh	01001101	30.08	69.92	0.43
78	$0 \times 4 \mathrm{Eh}$	01001110	30.47	69.53	0.44
79	0x4Fh	01001111	30.86	69.14	0.45
80	0x50h	01010000	31.25	68.75	0.45
81	$0 \times 51 \mathrm{~h}$	01010001	31.64	68.36	0.46
82	$0 \times 52 \mathrm{~h}$	01010010	32.03	67.97	0.47
83	0x53h	01010011	32.42	67.58	0.48
84	0x54h	01010100	32.81	67.19	0.49
85	0x55h	01010101	33.20	66.80	0.50
86	$0 \times 56 \mathrm{~h}$	01010110	33.59	66.41	0.51
87	$0 \times 57 \mathrm{~h}$	01010111	33.98	66.02	0.51
88	0x58h	01011000	34.38	65.63	0.52
89	0x59h	01011001	34.77	65.23	0.53
90	0x5Ah	01011010	35.16	64.84	0.54

www.ti.com SLIS134C -MARCH 2011-REVISED SEPTEMBER 2015

Step	Hex	Binary	$\mathrm{R}_{\text {WL }}(\mathrm{k} \Omega$)	$\mathrm{R}_{\mathrm{HW}}(\mathrm{k} \Omega$)	$\mathbf{R}_{\text {WL }} / \mathbf{R}_{\text {HW }}$
91	0x5Bh	01011011	35.55	64.45	0.55
92	0x5Ch	01011100	35.94	64.06	0.56
93	0x5Dh	01011101	36.33	63.67	0.57
94	0x5Eh	01011110	36.72	63.28	0.58
95	0x5Fh	01011111	37.11	62.89	0.59
96	0x60h	01100000	37.50	62.50	0.60
97	0x61h	01100001	37.89	62.11	0.61
98	0x62h	01100010	38.28	61.72	0.62
99	0x63h	01100011	38.67	61.33	0.63
100	0x64h	01100100	39.06	60.94	0.64
101	0x65h	01100101	39.45	60.55	0.65
102	0x66h	01100110	39.84	60.16	0.66
103	0x67h	01100111	40.23	59.77	0.67
104	0x68h	01101000	40.63	59.38	0.68
105	0x69h	01101001	41.02	58.98	0.70
106	0x6Ah	01101010	41.41	58.59	0.71
107	0x6Bh	01101011	41.80	58.20	0.72
108	0x6Ch	01101100	42.19	57.81	0.73
109	0x6Dh	01101101	42.58	57.42	0.74
110	0x6Eh	01101110	42.97	57.03	0.75
111	0x6Fh	01101111	43.36	56.64	0.77
112	0x70h	01110000	43.75	56.25	0.78
113	0x71h	01110001	44.14	55.86	0.79
114	0x72h	01110010	44.53	55.47	0.80
115	0x73h	01110011	44.92	55.08	0.82
116	0x74h	01110100	45.31	54.69	0.83
117	0x75h	01110101	45.70	54.30	0.84
118	0x76h	01110110	46.09	53.91	0.86
119	0x77h	01110111	46.48	53.52	0.87
120	0x78h	01111000	46.88	53.13	0.88
121	0x79h	01111001	47.27	52.73	0.90
122	0x7Ah	01111010	47.66	52.34	0.91
123	0x7Bh	01111011	48.05	51.95	0.92
124	0x7Ch	01111100	48.44	51.56	0.94
125	0x7Dh	01111101	48.83	51.17	0.95
126	0x7Eh	01111110	49.22	50.78	0.97
127	0x7Fh	01111111	49.61	50.39	0.98
128	0x80h	10000000	50.00	50.00	1.00
129	0x81h	10000001	50.39	49.61	1.02
130	0x82h	10000010	50.78	49.22	1.03
131	0x83h	10000011	51.17	48.83	1.05
132	0x84h	10000100	51.56	48.44	1.06
133	0x85h	10000101	51.95	48.05	1.08
134	0x86h	10000110	52.34	47.66	1.10
135	0x87h	10000111	52.73	47.27	1.12
136	0x88h	10001000	53.13	46.88	1.13
137	0x89h	10001001	53.52	46.48	1.15
138	0x8Ah	10001010	53.91	46.09	1.17
139	0x8Bh	10001011	54.30	45.70	1.19

Step	Hex	Binary	R_{WL} (k)	$\mathrm{R}_{\mathrm{HW}}(\mathrm{k} \Omega)$	$\mathbf{R W L}^{\text {/ } / \mathbf{R}_{\mathrm{HW}}}$
140	0x8Ch	10001100	54.69	45.31	1.21
141	$0 \times 8 \mathrm{Dh}$	10001101	55.08	44.92	1.23
142	$0 \times 8 \mathrm{Eh}$	10001110	55.47	44.53	1.25
143	$0 \times 8 \mathrm{Fh}$	10001111	55.86	44.14	1.27
144	0x90h	10010000	56.25	43.75	1.29
145	0x91h	10010001	56.64	43.36	1.31
146	0x92h	10010010	57.03	42.97	1.33
147	0x93h	10010011	57.42	42.58	1.35
148	0x94h	10010100	57.81	42.19	1.37
149	0x95h	10010101	58.20	41.80	1.39
150	0x96h	10010110	58.59	41.41	1.42
151	0x97h	10010111	58.98	41.02	1.44
152	0x98h	10011000	59.38	40.63	1.46
153	0x99h	10011001	59.77	40.23	1.49
154	0x9Ah	10011010	60.16	39.84	1.51
155	$0 \times 9 \mathrm{Bh}$	10011011	60.55	39.45	1.53
156	$0 \times 9 \mathrm{Ch}$	10011100	60.94	39.06	1.56
157	$0 \times 9 \mathrm{Dh}$	10011101	61.33	38.67	1.59
158	$0 \times 9 \mathrm{Eh}$	10011110	61.72	38.28	1.61
159	0x9Fh	10011111	62.11	37.89	1.64
160	0xAOh	10100000	62.50	37.50	1.67
161	0xA1h	10100001	62.89	37.11	1.69
162	0xA2h	10100010	63.28	36.72	1.72
163	$0 \times \mathrm{A} 3 \mathrm{~h}$	10100011	63.67	36.33	1.75
164	0xA4h	10100100	64.06	35.94	1.78
165	0xA5h	10100101	64.45	35.55	1.81
166	$0 \times A 6 h$	10100110	64.84	35.16	1.84
167	0xA7h	10100111	65.23	34.77	1.88
168	$0 \times 48 \mathrm{~h}$	10101000	65.63	34.38	1.91
169	0xA9h	10101001	66.02	33.98	1.94
170	OxAAh	10101010	66.41	33.59	1.98
171	$0 \times A B h$	10101011	66.80	33.20	2.01
172	0xACh	10101100	67.19	32.81	2.05
173	OxADh	10101101	67.58	32.42	2.08
174	0xAEh	10101110	67.97	32.03	2.12
175	OxAFh	10101111	68.36	31.64	2.16
176	$0 \times B 0 \mathrm{~h}$	10110000	68.75	31.25	2.20
177	0xB1h	10110001	69.14	30.86	2.24
178	0xB2h	10110010	69.53	30.47	2.28
179	$0 \times B 3 \mathrm{~h}$	10110011	69.92	30.08	2.32
180	0xB4h	10110100	70.31	29.69	2.37
181	0xB5h	10110101	70.70	29.30	2.41
182	0xB6h	10110110	71.09	28.91	2.46
183	0xB7h	10110111	71.48	28.52	2.51
184	$0 \times B 8 \mathrm{~h}$	10111000	71.88	28.13	2.56
185	0xB9h	10111001	72.27	27.73	2.61
186	0xBAh	10111010	72.66	27.34	2.66
187	$0 \times B B h$	10111011	73.05	26.95	2.71
188	$0 \times B C h$	10111100	73.44	26.56	2.76

www.ti.com SLIS134C -MARCH 2011-REVISED SEPTEMBER 2015

Step	Hex	Binary	$\mathrm{R}_{\mathrm{WL}}(\mathrm{k} \Omega)$	$\mathrm{R}_{\mathrm{HW}}(\mathrm{k} \boldsymbol{\Omega})$	$\mathbf{R W L}^{\text {/ }} \mathbf{R}_{\mathrm{HW}}$
189	0xBDh	10111101	73.83	26.17	2.82
190	0xBEh	10111110	74.22	25.78	2.88
191	0xBFh	10111111	74.61	25.39	2.94
192	$0 \times \mathrm{COh}$	11000000	75.00	25.00	3.00
193	0xC1h	11000001	75.39	24.61	3.06
194	0xC2h	11000010	75.78	24.22	3.13
195	0xC3h	11000011	76.17	23.83	3.20
196	0xC4h	11000100	76.56	23.44	3.27
197	0xC5h	11000101	76.95	23.05	3.34
198	0xC6h	11000110	77.34	22.66	3.41
199	0xC7h	11000111	77.73	22.27	3.49
200	0xC8h	11001000	78.13	21.88	3.57
201	0xC9h	11001001	78.52	21.48	3.65
202	0xCAh	11001010	78.91	21.09	3.74
203	$0 x C B h$	11001011	79.30	20.70	3.83
204	0xCCh	11001100	79.69	20.31	3.92
205	$0 x C D h$	11001101	80.08	19.92	4.02
206	0xCEh	11001110	80.47	19.53	4.12
207	0xCFh	11001111	80.86	19.14	4.22
208	0xDOh	11010000	81.25	18.75	4.33
209	0xD1h	11010001	81.64	18.36	4.45
210	0xD2h	11010010	82.03	17.97	4.57
211	0xD3h	11010011	82.42	17.58	4.69
212	0xD4h	11010100	82.81	17.19	4.82
213	0xD5h	11010101	83.20	16.80	4.95
214	0xD6h	11010110	83.59	16.41	5.10
215	0xD7h	11010111	83.98	16.02	5.24
216	0xD8h	11011000	84.38	15.63	5.40
217	0xD9h	11011001	84.77	15.23	5.56
218	0xDAh	11011010	85.16	14.84	5.74
219	0xDBh	11011011	85.55	14.45	5.92
220	0xDCh	11011100	85.94	14.06	6.11
221	$0 \times$ DDh	11011101	86.33	13.67	6.31
222	0xDEh	11011110	86.72	13.28	6.53
223	0xDFh	11011111	87.11	12.89	6.76
224	0xEOh	11100000	87.50	12.50	7.00
225	0xE1h	11100001	87.89	12.11	7.26
226	0xE2h	11100010	88.28	11.72	7.53
227	0xE3h	11100011	88.67	11.33	7.83
228	0xE4h	11100100	89.06	10.94	8.14
229	0xE5h	11100101	89.45	10.55	8.48
230	0xE6h	11100110	89.84	10.16	8.85
231	0xE7h	11100111	90.23	9.77	9.24
232	0xE8h	11101000	90.63	9.38	9.67
233	0xE9h	11101001	91.02	8.98	10.13
234	0xEAh	11101010	91.41	8.59	10.64
235	0xEBh	11101011	91.80	8.20	11.19
236	0xECh	11101100	92.19	7.81	11.80
237	0xEDh	11101101	92.58	7.42	12.47

Step	Hex	Binary	$\mathrm{R}_{\text {WL }}(\mathrm{k} \Omega$)	$\mathbf{R}_{\mathrm{HW}}(\mathrm{k} \Omega)$	$\mathbf{R}_{\text {WL }} / \mathbf{R}_{\text {HW }}$
238	0xEEh	11101110	92.97	7.03	13.22
239	0xEFh	11101111	93.36	6.64	14.06
240	0xF0h	11110000	93.75	6.25	15.00
241	0xF1h	11110001	94.14	5.86	16.07
242	0xF2h	11110010	94.53	5.47	17.29
243	0xF3h	11110011	94.92	5.08	18.69
244	0xF4h	11110100	95.31	4.69	20.33
245	0xF5h	11110101	95.70	4.30	22.27
246	0xF6h	11110110	96.09	3.91	24.60
247	0xF7h	11110111	96.48	3.52	27.44
248	0xF8h	11111000	96.88	3.13	31.00
249	0xF9h	11111001	97.27	2.73	35.57
250	0xFAh	11111010	97.66	2.34	41.67
251	0xFBh	11111011	98.05	1.95	50.20
252	0xFCh	11111100	98.44	1.56	63.00
253	0xFDh	11111101	98.83	1.17	84.33
254	0xFEh	11111110	99.22	0.78	127.00
255 (full-scale)	0xFFh	11111111	99.61	0.3	255.00

7.5 Programming with $\mathrm{I}^{2} \mathrm{C}$

7.5.1 $\quad I^{2} \mathrm{C}$ General Operation

7.5.1.1 RC Interface

The TPL0102 has a standard bidirectional $I^{2} \mathrm{C}$ interface that is controlled by a microcontroller in order to configure the device and read the status of the device. Each device on the $I^{2} C$ bus, including this device, has a specific device address to differentiate between other devices that may be on the $\mathrm{I}^{2} \mathrm{C}$ bus. Configuration of the device is performed when the microcontroller addresses the device, then accesses the device's internal Register Maps, which have unique register addresses. The TPL0102 has multiple registers where data is stored, written, or read. Please refer to the Register Map for more details.
The physical $I^{2} \mathrm{C}$ interface consists of the serial clock (SCL) and serial data (SDA) lines. Both SDA and SCL lines must be connected to VDD through a pull-up resistor. The size of the pull-up resistor is determined by the amount of capacitance on the $I^{2} C$ lines (for further details, please refer to the $R^{2} C$ Bus Pullup Resistor Calculation Application Report). Data transfer may be initiated only when the bus is not busy. For more detailed information on $I^{2} \mathrm{C}$, please refer to the Understanding the $\mathrm{I}^{2} \mathrm{C}$ Bus Application Report.

1. Suppose a master wants to send information to the TPL0102:

- Master addresses TPL0102 (slave)
- Master-transmitter sends data to TPL0102 (slave-receiver)
- Master terminates the transfer.

2. If a master wants to receive information from TPL0102:

- Master addresses TPL0102 (slave)
- Master-receiver receives data from TPL0102 (slave-transmitter)
- Master terminates the transfer.

The master generates the timing for the SCL.

7.5.1.2 START and STOP Conditions

$1^{2} \mathrm{C}$ communication with this device is initiated by the master sending a START condition and terminated by the master sending a STOP condition. A high-to-low transition on the SDA line while the SCL is high defines a START condition. A low-to-high transition on the SDA line while the SCL is high defines a STOP condition.

Programming with $\mathrm{I}^{2} \mathrm{C}$ (continued)

Figure 22. Definition of START and STOP Conditions

7.5.1.3 Data Validity and Byte Formation

One data bit is transferred during each clock pulse of the SCL. One byte is comprised of eight bits on the SDA line. A byte may either be a device address, register address, or data written to or read from a slave.
Data is transferred Most Significant Bit (MSB) first. Any number of data bytes can be transferred from the master to slave between the START and STOP conditions. Data on the SDA line must remain stable during the high phase of the clock period, as changes in the data line when the SCL is high are interpreted as control commands (START or STOP).

Figure 23. Definition of Byte Formation

7.5.1.4 Acknowledge (ACK) and Not Acknowledge (NACK)

Each byte is followed by one ACK bit from the receiver. The ACK bit allows the receiver to communicate to the transmitter that the byte was successfully received and another byte may be sent.
The transmitter must release the SDA line before the receiver can send the ACK bit. To send an ACK bit, the receiver shall pull down the SDA line during the low phase of the ACK/NACK-related clock period (period 9), so that the SDA line is stable low during the high phase of the ACK/NACK-related clock period. Setup and hold times must be taken into account.

Programming with $\mathrm{I}^{2} \mathrm{C}$ (continued)

Figure 24. Example use of ACK
When the SDA line remains high during the ACK/NACK-related clock period, this is a NACK signal. There are several conditions that lead to the generation of a NACK:

- The receiver is unable to receive or transmit because it is performing some real-time function and is not ready to start communication with the master.
- During the transfer, the receiver gets data or commands that it does not understand.
- During the transfer, the receiver cannot receive any more data bytes.
- A master-receiver is done reading data and indicates this to the slave through a NACK.

Figure 25. Example use of NACK

7.5.2 $\mathrm{I}^{2} \mathrm{C}$ Write and Read Operation

7.5.2.1 Auto Increment Function

Auto increment allows multiple bytes to be written to or read from consecutive registers without requiring the master to repeatedly send the device address and register address for each data byte. This is beneficial because auto increment substantially reduces the number of bytes transferred between the master and slave.
For the TPL0102, the registers will auto increment as long as the user continues to enter data. Auto increment will stop once the user is finished entering data bytes.

Programming with $\mathrm{I}^{2} \mathrm{C}$ (continued)

If there are more bytes to write or read after the last register address is written to or read from in the register map, auto increment will loop around to the register address at the beginning of the register map. For example, after the ACR (register address $0 \times 10 \mathrm{~h}$) has been written to, if there are more bytes to be written, the register address will loop to the IVRA (register address $0 \times 00 \mathrm{~h}$) at the beginning of the register map.

7.5.2.2 Write Operation

Master controls SDA lineSlave controls SDA line

Write to one register in a device

Write to multiple registers in a device

Figure 26. Write Operation to One or Multiple Registers

7.5.2.3 Repeated Start

A repeated START condition may be used in place of a complete STOP condition follow by another START condition when performing a read function. The advantage of this is that the $I^{2} \mathrm{C}$ bus does not become available after the stop and therefore prevents other devices from grabbing the bus between transfers.

Programming with $\mathrm{I}^{2} \mathrm{C}$ (continued)

7.5.2.4 Read Operation

Master controls SDA lineSlave controls SDA line

Read from one register in a device

Read from one register in a device (Repeated Start)

Figure 27. Read Operation from One Register
Read from multiple registers in a device

$\underline{\text { Read from multiple registers in a device (Repeated Start) }}$

Figure 28. Read Operation from Multiple Registers

7.6 Register Maps

7.6.1 Slave Address

The device (slave) address can be configured by the user with 3 bits (A2, A1, and A0), allowing for 8 different possibilities for the device address. Please see the Figure 30 for an example.

Figure 29. Device Address in Context with START and ACK

Bit 7 (MSB)	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0 (LSB)
1	0	1	0	A2	A1	A0	R/W

Figure 30 shows an example of how to configure $\mathrm{A} 2, \mathrm{~A} 1$ and A 0 to give unique device addresses on the same $1^{2} \mathrm{C}$ bus. When a bit is wired to Vcc, this gives that bit a value of 1 . When a bit is wired to GND, this gives that bit a value of 0 .

For example, Device 1 could be the TPL0102 on the $I^{2} \mathrm{C}$ bus, which would have a 7 bit device address of 1010 110. There are some interfaces that will require the device address to be inputted in hex. In order to make the device address 8 bits for hex notation, a leading 0 is added to the left of the 7 bit device address. For Device 1, the 8 bit device address is 01010110 ($0 \times 56 \mathrm{~h}$). Device 2 would have a 7 bit device address of 1010 100, which with a leading 0 results in an 8 bit device address of 01010100 ($0 \times 54 \mathrm{~h}$). Device 3 would have a 7 bit device address of 1010011 , and with a leading 0 results in an 8 bit device address of 01010011 (0x53h).

Bit 7 through bit 4: 1010
Figure 30. Examples of Device Address Configuration on $\mathrm{I}^{2} \mathrm{C}$ Bus

7.6.2 TPL0102 Register Map

- When writing the entire register map using auto increment, general purpose registers in the register address map need to be written with dummy bytes. The general purpose registers do not effect the outputs of the potentiometers.
- As stated in the Overview, the VOL bit from the ACR (Access Control Register) provides two options for register accessibility. Either only volatile registers (WR) are accessible to change the wiper setting without storing the value in non-volatile memory or volatile registers (WR) and non-volatile registers (IVR) are accessible to change the wiper setting, which allows the value to be stored in non-volatile memory.
- The respective non-volatile and volatile registers have the same register address, thus to write to both the volatile and non-volatile locations, only one register address needs to be entered and the VOL bit needs to be configured properly.

REGISTER ADDRESS (HEX)	REGISTER ADDRESS (BINARY)	NON-vOLATILE	vOLATILE
$0 \times 00 \mathrm{~h}$	00000000	IVRA	WRA
$0 \times 01 \mathrm{~h}$	00000001	IVRB	WRB
$0 \times 02 \mathrm{~h}$	00000010	General purpose	N / A
$0 \times 03 \mathrm{~h}$	00000011	General purpose	N / A
$0 \times 04 \mathrm{~h}$	00000100	General purpose	N / A
$0 \times 05 \mathrm{~h}$	00000101	General purpose	N / A
$0 \times 06 \mathrm{~h}$	00000110	General purpose	N / A
$0 \times 07 \mathrm{~h}$	00000111	General purpose	N / A
$0 \times 08 \mathrm{~h}$	00001000	General purpose	N / A
$0 \times 09 \mathrm{~h}$	00001001	General purpose	N / A
$0 \times 0 \mathrm{Ah}$	00001010	General purpose	N / A
$0 \times 0 \mathrm{Bh}$	00001011	General purpose	N / A
$0 \times 0 \mathrm{Ch}$	00001100	General purpose	N / A
$0 \times 0 \mathrm{Dh}$	00001101	General purpose	N / A
$0 \times 0 \mathrm{Eh}$	00001110	General purpose	N / A
$0 \times 0 \mathrm{Fh}$	00001111		Reserved
$0 \times 10 \mathrm{~h}$	00010000		$\mathrm{~N} / \mathrm{A}$

7.6.3 IVRA (Initial Value Register for Potentiometer A)

- Non-volatile register to store wiper position for potentiometer A
- Register will hold value even when device is powered down

NAME	TYPE	SIZE (BITS)	REGISTER ADDRESS	FACTORY PROGRAMMED VALUE
IVRA	Non-volatile Write/Read	8	$0 \times 00 \mathrm{~h}$	$0 \times 80 \mathrm{~h}$

7.6.4 WRA (Wiper Resistance Register for Potentiometer A)

- Volatile register to change wiper position for potentiometer A
- IVRA loads value to WRA to determine wiper position

NAME	TYPE	SIZE (BITS)	REGISTER ADDRESS	VALUE UPON RESET
WRA	Volatile Write/Read	8	$0 \times 00 \mathrm{~h}$	IVRA value

TPL0102
www.ti.com

7.6.5 IVRB (Initial Value Register for Potentiometer B)

- Non-volatile register to store wiper position for potentiometer B
- Register will hold value even when device is powered down

NAME	TYPE	SIZE (BITS)	REGISTER ADDRESS	FACTORY PROGRAMMED VALUE
IVRB	Non-volatile Write/Read	8	$0 \times 01 \mathrm{~h}$	$0 \times 80 \mathrm{~h}$

7.6.6 WRB (Wiper Resistance Register for Potentiometer B)

- Volatile register to change wiper position for potentiometer B
- IVRB loads value to WRB to determine wiper position

NAME	TYPE	SIZE (BITS)	REGISTER ADDRESS	VALUE UPON RESET
WRB	Volatile Write/Read	8	$0 \times 01 \mathrm{~h}$	IVRB value

7.6.7 ACR (Access Control Register)

- Volatile register to control register access, determine shut-down mode, and read non-volatile write operations

NAME	TYPE	SIZE (BITS)	REGISTER ADDRESS	VALUE UPON RESET
ACR	Volatile Write/Read	8	$0 \times 10 \mathrm{~h}$	$0 \times 40 \mathrm{~h}$

NAME	BIT ASSIGNMENT								
ACR	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
	VOL	$\overline{\text { SHDN }}$	WIP	0	0	0	0	0	
Reset (Default) Value	0	1	0	0	0	0	0	0	

NAME	TYPE	SIZE (BITS)	BIT VALUE	DESCRIPTION
VOL	Volatile Write/Read	1	0	Non-volatile registers (IVRA, IVRB) are accessible. Value written to IVR register is also written to the corresponding WR. If read operation is performed, only non-volatile register (IVRA, IVRB) values will be reported.
			1	Only Volatile Registers (WR) are accessible. If read operation is performed, only volatile (WRA, WRB) values will be reported.
$\overline{\text { SHDN }}$	Volatile Write/Read	1	0	Shutdown mode is enabled. Both potentiometers are in shutdown mode. (see Shutdown Mode)
			1	Shutdown mode is disabled
WIP	Volatile Read	1	0	Non-volatile write operation is not in progress
			1	Non-volatile write operation is in progress (it is not possible to write to the WR or ACR while WIP = 1)

8 Application and Implementation

NOTE

Information in the following applications sections is not part of the Tl component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

8.1 Application Information

There are many applications in which variable resistance or voltage division is needed through the use of a digital potentiometer such as the TPL0102; these are just a few examples. In conjunction with various amplifiers, the TPL0102 can effectively be used in rheostat mode to modify the gain of an amplifier, in voltage divider mode to create a Digital to Analog Converter, or one of the potentiometers can be used in voltage divider mode while the other is in rheostat mode to create a variable current sink.

8.2 Typical Applications

8.2.1 Adjustable Gain Non-Inverting Amplifier

Figure 31. Gain Control Compensation Schematic

8.2.1.1 Design Requirements

DESIGN PARAMETER	EXAMPLE VALUE
Gain range	6 to 60 dB

8.2.1.2 Detailed Design Procedure

The TPL0102 can be used in rheostat mode with an OPA316 to create an adjustable gain non-inverting amplifier. The capacitor and resistor values were chosen based upon the Non-Inverting Amplifier Gain equation:

$$
\begin{equation*}
\text { Gain }=1+\frac{Z_{f}}{Z_{\text {in }}} \tag{5}
\end{equation*}
$$

Where $Z_{i n}$ is the impedance between the inverting input and $G N D$ and Z_{f} is the impedance of the feedback network.

In this application, the following equations are used:

$$
\begin{equation*}
Z_{\text {in }}=\text { TPL0102 resistance }+100 \Omega \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
Z_{f}=R_{f} \| C_{f} \tag{7}
\end{equation*}
$$

Where R_{f} and C_{f} are the feedback resistor and capacitor, respectively.
A 100Ω resistor is added in series with the TPL0102 resistance in order to stop the op amp from producing infinite gain. When the TPL0102 is at zero-scale, the resistance between terminal L and terminal W is $\sim 0 \Omega$. This would normally cause infinite gain, but with the 100Ω resistor is series, the lowest $Z_{\text {in }}$ can be is 100Ω, which at DC will create a gain of roughly 60 dB .

$$
\begin{equation*}
\text { Gain }=1+\frac{100 \mathrm{k} \Omega}{\sim 0 \Omega+100 \Omega}=1+\frac{100 \mathrm{k} \Omega}{100 \Omega}=1+1000=1001 \frac{\mathrm{~V}}{\mathrm{~V}} \cong 60 \mathrm{~dB} \tag{8}
\end{equation*}
$$

R_{f} and C_{f} were chosen based upon characteristics of the potentiometer and op amp, respectively. The value of R_{f} affects the level of gain, primarily at low frequencies. Since the TPL0102 has a full-scale resistance of $100 \mathrm{k} \Omega$ between terminal W and terminal L, the Rf was chosen to match this full-scale resistance, which produces the minimum gain of 6 dB :

$$
\begin{equation*}
\text { Gain }=1+\frac{100 \mathrm{k} \Omega}{100 \mathrm{k} \Omega+100 \Omega} \cong 1+\frac{100 \mathrm{k} \Omega}{100 \mathrm{k} \Omega}=1+1=2 \frac{\mathrm{~V}}{\mathrm{~V}} \cong 6 \mathrm{~dB} \tag{9}
\end{equation*}
$$

As frequency increases, C_{f} begins to have an impact on gain. A frequency roll-off will occur due to the open-loop gain of the op amp, but in this application, the desired effect is to have C_{f} impact the roll off before the open loop gain of the op amp. At a gain of 40 dB , the op amp open loop gain will force the roll off to occur at 100 kHz . Therefore, in order for C_{f} to impact the roll off before the open loop gain, roll off due to the capacitor must occur at less than 100 kHz . In this application, 50 kHz is the desired roll off frequency, resulting in a C_{f} value of 33 pF .

$$
\begin{equation*}
C_{f}=\frac{1}{2 \times \pi \times R_{f} \times f(-3 \mathrm{~dB})}=\frac{1}{2 \times \pi \times 100 \mathrm{k} \Omega \times 50 \mathrm{kHz}}=33 \mathrm{pF} \tag{10}
\end{equation*}
$$

Measurements were taken with a $10 \mathrm{k} \Omega$ load. A 50Ω resistor is included at the input for termination of measurement equipment.

8.2.1.3 Application Curves

As the TPL0102 moves from full-scale to zero-scale, $Z_{\text {in }}$ decreases, which causes the gain of the op amp to increase from 6 dB to 56 dB . The amplifier does not reach the full 60 dB of calculated gain because the resistance in the TPL0102 did not reach 0Ω. At zero-scale, the TPL0102 had a remaining resistance of approximately 58Ω.

$$
\begin{equation*}
\text { Gain }=1+\frac{100 \mathrm{k} \Omega}{58 \Omega+100 \Omega}=1+\frac{100 \mathrm{k} \Omega}{158 \Omega}=1+633=634 \frac{\mathrm{~V}}{\mathrm{~V}} \cong 56 \mathrm{~dB} \tag{11}
\end{equation*}
$$

The application curve clearly shows the effect of the low pass filter created by the R_{f} and C_{f} combination. Roll off begins as frequencies approach 50 kHz because of the pole created by the 33 pF capacitor. As the frequency increases beyond 50 kHz , the gain decreases by $-20 \mathrm{~dB} / \mathrm{dec}$ until the gain levels off at $1 \mathrm{~V} / \mathrm{V}$ or 0 dB . The gain levels off due to the nature of non-inverting op amp transfer functions. The feedback impedance, Z_{f}, is approximately zero at high frequency because C_{f} acts as a short. As shown below, this results in a gain of 0 dB :

$$
\begin{equation*}
\text { Gain }=1+\frac{Z_{f}}{Z_{\text {in }}}=1+\frac{\sim 0}{Z_{\text {in }}}=1 \frac{\mathrm{~V}}{\mathrm{~V}}=0 \mathrm{~dB} \tag{12}
\end{equation*}
$$

At approximately 3 MHz , the gain is again reduced by $-20 \mathrm{~dB} / \mathrm{dec}$ due to the pole created by open-loop gain of the OPA316.

Figure 32. Gain vs Frequency

8.2.2 Digital to Analog Converter (DAC)

Figure 33. Digital to Analog Converter Schematic

8.2.2.1 Design Requirements

DESIGN PARAMETER	EXAMPLE VALUE
Input Voltage Range	0 to 5 V
Output Voltage Range	0 to 5 V

8.2.2.2 Detailed Design Procedure

The TPL0102 can be used in voltage divider mode with a unity-gain op amp buffer to create an 8-bit Digital to Analog Converter (DAC). The analog output voltage of the circuit is determined by the wiper setting programmed through the $I^{2} \mathrm{C}$ bus.
The op amp is required to buffer the high-impedance output of the TPL0102 or else loading placed on the output of the voltage divider will affect the output voltage.

8.2.2.3 Application Curves

The voltage at terminal H determines the maximum analog voltage at the output. As the TPL0102 moves from zero-scale to full-scale, the voltage divider adjusts with relation to the voltage divider formula (Equation 1), resulting in the desired voltage at terminal W . The voltage at terminal W will range linearly from 0 V to the terminal H voltage. In this example, Vin at terminal H is 5 V and 2.7 V .

8.2.3 Variable Current Sink

Figure 35. Variable Current Sink Schematic

8.2.3.1 Design Requirements

DESIGN PARAMETER	EXAMPLE VALUE
Load Current Range	$0 \mu \mathrm{~A}$ to 1.33 mA

8.2.3.2 Detailed Design Procedure

Both potentiometers within the TPL0102 can be used with an OPA317 op amp and N-Channel MOSFET to produce a variable current sink. The first potentiometer, configured in voltage divider mode, is used to set the input voltage to the OPA317. The second potentiometer, configured in rheostat mode, is used to set the span of the current (load running through $\mathrm{R}_{\text {LOAD }}$. The load current for the circuit is shown below:

$$
\begin{equation*}
\mathrm{I}_{\text {LOAD }}=\frac{V_{\text {set }}}{R_{\text {set }}} \tag{13}
\end{equation*}
$$

Based upon the voltage divider formula between the setting of the TPL0102 and the $150 \mathrm{k} \Omega$ resistor, the voltage at the positive input of the OPA317, $\mathrm{V}_{\text {set }}$, can range from 0 to 2 V . This leaves a maximum of 3 V of voltage drop from the positive side to the negative side of the external load with a 5 V supply. A $1.2 \mathrm{k} \Omega$ resistor is placed in series with the TPL0102 span setting potentiometer ($\mathrm{R}_{\text {set }}$). At full scale of the span setting potentiometer and the maximum voltage at $\mathrm{V}_{\text {set }}(2 \mathrm{~V})$, the maximum value for $\mathrm{I}_{\text {LOAD }}$ is:

$$
\begin{equation*}
\mathrm{L}_{\text {LOAD_MAX }}=\frac{V_{\text {set }}}{R_{\text {set }}}=\frac{V_{\text {set }}}{T P L 0102_{\text {HW(FResstancee }}}+1.2 \mathrm{k} \Omega=\frac{2 \mathrm{~V}}{300 \Omega+1.2 \mathrm{k} \Omega}=1.33 \mathrm{~mA} \tag{14}
\end{equation*}
$$

When the span setting potentiometer is at zero scale with the maximum voltage at $\mathrm{V}_{\text {set }}$, the maximum value for lload is:

$$
\begin{equation*}
\mathrm{I}_{\text {LOAD }}=\frac{\mathrm{V}_{\text {set }}}{\mathrm{R}_{\text {set }}}=\frac{\mathrm{V}_{\text {set }}}{\mathrm{TPLO102} \mathrm{HW}_{\text {Hesistance })}+1.2 \mathrm{k} \Omega}=\frac{2 \mathrm{~V}}{100 \mathrm{k} \Omega+1.2 \mathrm{k} \Omega}=19.76 \mu \mathrm{~A} \tag{15}
\end{equation*}
$$

The same calculations can be made when the potentiometer in voltage divider mode is a zero scale. At zero scale, $\mathrm{V}_{\text {set }}$ will be almost negligible, resulting in 0 A of current no matter the value of the span setting potentiometer.

8.2.3.2.1 Compensation Components

This design requires a few compensation components to stabilize the feedback network. These include the 1 nF capacitor and the 200Ω and $10 \mathrm{k} \Omega$ resistors, which were selected based upon the TIPD102 reference design.

8.2.3.3 Application Curves

As the TPL0102 in rheostat mode (span setting potentiometer) moves from zero-scale to full-scale, a new step (line) is created with a larger achievable maximum current. The rheostat mode potentiometer directly corresponds to $\mathrm{R}_{\text {set }}$ in Equation 13. The TPL0102 in voltage divider mode produces the granular current values between the minimum and maximum range. The voltage divider potentiometer directly corresponds to $\mathrm{V}_{\text {set }}$ in Equation 13. For example, when the potentiometer in rheostat mode is at code 256 , the potentiometer in voltage divider mode produces a theoretical maximum current of 1.33 mA at code 256 and a minimum current of $0 \mu \mathrm{~A}$ at code 0 .
The current sink does not reach the full 1.33 mA because of the error in resistance of the span setting potentiometer. At full-scale, the resistor had an actual resistance of 480Ω.

$$
\begin{equation*}
\mathrm{I}_{\text {LOAD_MAX }}=\frac{\mathrm{V}_{\text {set }}}{\mathrm{R}_{\text {set }}}=\frac{\mathrm{V}_{\text {set }}}{\mathrm{TPLO102}} \mathrm{HW}(\text { Resistance })+1.2 \mathrm{k} \Omega \mathrm{~V}=\frac{2 \mathrm{~V}}{480 \Omega+1.2 \mathrm{k} \Omega}=1.19 \mathrm{~mA} \tag{16}
\end{equation*}
$$

9 Power Supply Recommendations

9.1 Power Sequence

Protection diodes limit the voltage compliance at terminal H , terminal L , and terminal W , making it important to power up V_{DD} first before applying any voltage to terminal H , terminal L , and terminal W . The diodes are forwardbiasing, meaning $V_{D D}$ can be powered unintentionally if $V_{D D}$ is not powered first. The ideal power-up sequence is $\mathrm{V}_{\mathrm{SS}}, \mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\text {LOGIC }}$, digital inputs, and $\mathrm{V}_{\mathrm{H}}, \mathrm{V}_{\mathrm{L}}$, and V_{W}. The order of powering digital inputs, $\mathrm{V}_{\mathrm{H}}, \mathrm{V}_{\mathrm{L}}$, and V_{W} does not matter as long as they are powered after $\mathrm{V}_{\mathrm{SS}}, \mathrm{V}_{\mathrm{DD}}$, and $\mathrm{V}_{\text {LOGIC }}$.

9.2 Wiper Position Upon Power Up

It is prudent to know that when the DPOT is powered off, the impedance of the device is not known. Upon power up, the device will go to $0 \times 80 \mathrm{~h}$ code for a very short period of time while it loads the stored wiper position in the EEPROM and then will go to the stored position. This happens in less than 100 uS .

9.3 Dual-Supply vs Single-Supply

Dual-supply operation allows the TPL0102 to handle voltage that may swing negative. This is especially useful for any application that involves negative voltages, such as the input to an Op Amp or audio signals. It is recommended that $\mathrm{V}_{S S}$ (negative supply) is mirrored with V_{DD} (positive supply) and both are centered around GND. For example, if dual-supply is desired and $\mathrm{V}_{\mathrm{DD}}=2.50 \mathrm{~V}$, then V_{SS} should be equal to -2.50 V , which will result in GND centered between $V_{D D}$ and $V_{S S}$.

Single-supply operation allows the TPL0102 to handle positive voltages only. In single-supply, it is recommended that V_{SS} is tied to GND.

10 Layout

10.1 Layout Guidelines

To ensure reliability of the device, please follow common printed-circuit board layout guidelines.

- Leads to the input should be as direct as possible with a minimum conductor length.
- The ground path should have low resistance and low inductance.
- Short trace-lengths should be used to avoid excessive loading.
- It is common to have a dedicated ground plane on an inner layer of the board.
- Terminals that are connected to ground should have a low-impedance path to the ground plane in the form of wide polygon pours and multiple vias.
- Bypass capacitors should be used on power supplies and should be placed as close as possible to the VDD and VSS pins.
- Apply low equivalent series resistance $0.1 \mu \mathrm{~F}$ to $10 \mu \mathrm{~F}$ tantalum or electrolytic capacitors at the supplies to minimize transient disturbances and to filter low frequency ripple.
- To reduce the total $I^{2} C$ bus capacitance added by PCB parasitics, data lines (SCL and SDA) should be a short as possible and the widths of the traces should also be minimized (e.g. 5-10 mils depending on copper weight).

10.2 Layout Example

O Via to GND Plane

Figure 37. TPL0102 Layout Example

11 Device and Documentation Support

11.1 Community Resources

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

TI E2ETM Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and contact information for technical support.

11.2 Trademarks

E2E is a trademark of Texas Instruments.
All other trademarks are the property of their respective owners.

11.3 Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

11.4 Glossary

SLYZ022 - TI Glossary.
This glossary lists and explains terms, acronyms, and definitions.

12 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead finish/ Ball material (6)	MSL Peak Temp (3)	Op Temp (${ }^{\circ} \mathrm{C}$)	Device Marking (4/5)	Samples
TPL0102-100PWR	ACTIVE	TSSOP	PW	14	2000	RoHS \& Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	EL-100	Samples
TPL0102-100RUCR	ACTIVE	QFN	RUC	14	3000	RoHS \& Green	NIPDAUAG	Level-1-260C-UNLIM	-40 to 85	6NH	Samples

${ }^{(1)}$ The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
${ }^{(2)}$ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as " Pb -Free".
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the $<=1000 \mathrm{ppm}$ threshold requirement.
${ }^{(3)}$ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
${ }^{(4)}$ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
${ }^{(5)}$ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a " \sim " will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
${ }^{(6)}$ Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer:The information provided on this page represents Tl's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall Tl's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF TPL0102-100 :

- Enhanced Product: TPL0102-EP

NOTE: Qualified Version Definitions:

- Enhanced Product - Supports Defense, Aerospace and Medical Applications

TAPE AND REEL INFORMATION

TAPE DIMENSIONS

A0	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	$\begin{gathered} \mathrm{AO} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \text { B0 } \\ (\mathrm{mm}) \end{gathered}$	$\begin{gathered} \mathrm{KO} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \text { P1 } \\ (\mathrm{mm}) \end{gathered}$	$\begin{gathered} \mathrm{W} \\ (\mathrm{~mm}) \end{gathered}$	Pin1 Quadrant
TPL0102-100PWR	TSSOP	PW	14	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1
TPL0102-100RUCR	QFN	RUC	14	3000	180.0	8.4	2.3	2.3	0.55	4.0	8.0	Q2

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TPL0102-100PWR	TSSOP	PW	14	2000	356.0	356.0	35.0
TPL0102-100RUCR	QFN	RUC	14	3000	202.0	201.0	28.0

NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.
B. This drawing is subject to change without notice.

Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0,15 each side.
(D) Body width does not include interlead flash. Interlead flash shall not exceed 0,25 each side.
E. Falls within JEDEC MO-153

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Publication IPC-7351 is recommended for alternate designs.
D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

NOTES:

1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.

INSTRUMENTS
www.ti.com

SOLDER MASK DETAILS

NOTES: (continued)
3. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).

NOTES: (continued)
4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other Tl intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

Tl's products are provided subject to Tl's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. Tl's provision of these resources does not expand or otherwise alter Tl's applicable warranties or warranty disclaimers for TI products.
TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2022, Texas Instruments Incorporated

