
1SLAU391F–August 2012–Revised March 2018
Submit Documentation Feedback

Copyright © 2012–2018, Texas Instruments Incorporated

CPUX

Chapter Excerpt from SLAU208

Chapter 1
SLAU391F–August 2012–Revised March 2018

CPUX

NOTE: This chapter is an excerpt from the MSP430x5xx and MSP430x6xx Family User's Guide.
The most recent version of the full user's guide is available at
http://www.ti.com/lit/pdf/slau208.

This chapter describes the extended MSP430X 16-bit RISC CPU (CPUX) with 1MB memory access, its
addressing modes, and instruction set.

NOTE: The MSP430X CPUX implemented on this device family, formally called CPUXV2, has in
some cases, slightly different cycle counts from the MSP430X CPUX implemented on the
2xx and 4xx families.

Topic ... Page

1.1 MSP430X CPU (CPUX) Introduction.. 2
1.2 Interrupts .. 4
1.3 CPU Registers ... 5
1.4 Addressing Modes ... 11
1.5 MSP430 and MSP430X Instructions .. 28
1.6 Instruction Set Description.. 44

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU391F
http://www.ti.com/lit/pdf/slau208

MSP430X CPU (CPUX) Introduction www.ti.com

2 SLAU391F–August 2012–Revised March 2018
Submit Documentation Feedback

Copyright © 2012–2018, Texas Instruments Incorporated

CPUX

Chapter Excerpt from SLAU208

1.1 MSP430X CPU (CPUX) Introduction
The MSP430X CPU incorporates features specifically designed for modern programming techniques, such
as calculated branching, table processing, and the use of high-level languages such as C. The MSP430X
CPU can address a 1MB address range without paging. The MSP430X CPU is completely backward
compatible with the MSP430 CPU.

The MSP430X CPU features include:
• RISC architecture
• Orthogonal architecture
• Full register access including program counter (PC), status register (SR), and stack pointer (SP)
• Single-cycle register operations
• Large register file reduces fetches to memory.
• 20-bit address bus allows direct access and branching throughout the entire memory range without

paging.
• 16-bit data bus allows direct manipulation of word-wide arguments.
• Constant generator provides the six most often used immediate values and reduces code size.
• Direct memory-to-memory transfers without intermediate register holding
• Byte, word, and 20-bit address-word addressing

The block diagram of the MSP430X CPU is shown in Figure 1-1.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU391F

R6

R5

R4

R3/CG2 Constant Generator

R7

R8

R9

R10

R11

R12

R13

R14

R15

0

0

R0/PC Program Counter

19

R1/SP Pointer Stack

General Purpose

General Purpose

General Purpose

General Purpose

General Purpose

General Purpose

General Purpose

General Purpose

General Purpose

General Purpose

General Purpose

General Purpose

Memory Address Bus − MABMDB − Memory Data Bus

16
20

16/20-bit ALU

srcdstZero, Z
Carry, C

Overflow,V

Negative,N

MCLK

016 15

R2/SR Status Register

www.ti.com MSP430X CPU (CPUX) Introduction

3SLAU391F–August 2012–Revised March 2018
Submit Documentation Feedback

Copyright © 2012–2018, Texas Instruments Incorporated

CPUX

Chapter Excerpt from SLAU208

Figure 1-1. MSP430X CPU Block Diagram

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU391F

Item n−1

PC.19:16

PC.15:0

SP
old

SP SR.11:0

Interrupts www.ti.com

4 SLAU391F–August 2012–Revised March 2018
Submit Documentation Feedback

Copyright © 2012–2018, Texas Instruments Incorporated

CPUX

Chapter Excerpt from SLAU208

1.2 Interrupts
The MSP430X has the following interrupt structure:
• Vectored interrupts with no polling necessary
• Interrupt vectors are located downward from address 0FFFEh.

The interrupt vectors contain 16-bit addresses that point into the lower 64KB memory. This means all
interrupt handlers must start in the lower 64KB memory.

During an interrupt, the program counter (PC) and the status register (SR) are pushed onto the stack as
shown in Figure 1-2. The MSP430X architecture stores the complete 20-bit PC value efficiently by
appending the PC bits 19:16 to the stored SR value automatically on the stack. When the RETI instruction
is executed, the full 20-bit PC is restored making return from interrupt to any address in the memory range
possible.

Figure 1-2. PC Storage on the Stack for Interrupts

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU391F

Item n

PC.19:16

PC.15:0

SP
old

SP

0Program Counter Bits 19 to 1

19 15 1 016

www.ti.com CPU Registers

5SLAU391F–August 2012–Revised March 2018
Submit Documentation Feedback

Copyright © 2012–2018, Texas Instruments Incorporated

CPUX

Chapter Excerpt from SLAU208

1.3 CPU Registers
The CPU incorporates 16 registers (R0 through R15). Registers R0, R1, R2, and R3 have dedicated
functions. Registers R4 through R15 are working registers for general use.

1.3.1 Program Counter (PC)
The 20-bit Program Counter (PC, also called R0) points to the next instruction to be executed. Each
instruction uses an even number of bytes (2, 4, 6, or 8 bytes), and the PC is incremented accordingly.
Instruction accesses are performed on word boundaries, and the PC is aligned to even addresses.
Figure 1-3 shows the PC.

Figure 1-3. Program Counter

The PC can be addressed with all instructions and addressing modes. A few examples:
MOV.W #LABEL,PC ; Branch to address LABEL (lower 64KB)

MOVA #LABEL,PC ; Branch to address LABEL (1MB memory)

MOV.W LABEL,PC ; Branch to address in word LABEL
; (lower 64KB)

MOV.W @R14,PC ; Branch indirect to address in
; R14 (lower 64KB)

ADDA #4,PC ; Skip two words (1MB memory)

The BR and CALL instructions reset the upper four PC bits to 0. Only addresses in the lower 64KB
address range can be reached with the BR or CALL instruction. When branching or calling, addresses
beyond the lower 64KB range can only be reached using the BRA or CALLA instructions. Also, any
instruction to directly modify the PC does so according to the used addressing mode. For example,
MOV.W #value,PC clears the upper four bits of the PC, because it is a .W instruction.

The PC is automatically stored on the stack with CALL (or CALLA) instructions and during an interrupt
service routine. Figure 1-4 shows the storage of the PC with the return address after a CALLA instruction.
A CALL instruction stores only bits 15:0 of the PC.

Figure 1-4. PC Storage on the Stack for CALLA

The RETA instruction restores bits 19:0 of the PC and adds 4 to the stack pointer (SP). The RET
instruction restores bits 15:0 to the PC and adds 2 to the SP.

1.3.2 Stack Pointer (SP)
The 20-bit Stack Pointer (SP, also called R1) is used by the CPU to store the return addresses of
subroutine calls and interrupts. It uses a predecrement, postincrement scheme. In addition, the SP can be
used by software with all instructions and addressing modes. Figure 1-5 shows the SP. The SP is
initialized into RAM by the user, and is always aligned to even addresses.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU391F

SPold

SPold

SP1

PUSH SP

The stack pointer is changed after
a PUSH SP instruction.

SP1SP2

POP SP

The stack pointer is not changed after a POP SP
instruction. The POP SP instruction places SP1 into the
stack pointer SP (SP2 = SP1)

Item n−1

Item.19:16

Item.15:0

SP
old

SP

I3

I1

I2

I3

0xxxh

0xxxh − 2

0xxxh − 4

0xxxh − 6

0xxxh − 8

I1

I2

SP

0123h SP

I1

I2

I3 SP

PUSH #0123h POP R8Address

0Stack Pointer Bits 19 to 1

19 1 0

MOV.W 2(SP),R6 ; Copy Item I2 to R6

MOV.W R7,0(SP) ; Overwrite TOS with R7

PUSH #0123h ; Put 0123h on stack

POP R8 ; R8 = 0123h

CPU Registers www.ti.com

6 SLAU391F–August 2012–Revised March 2018
Submit Documentation Feedback

Copyright © 2012–2018, Texas Instruments Incorporated

CPUX

Chapter Excerpt from SLAU208

Figure 1-6 shows the stack usage. Figure 1-7 shows the stack usage when 20-bit address words are
pushed.

Figure 1-5. Stack Pointer

Figure 1-6. Stack Usage

Figure 1-7. PUSHX.A Format on the Stack

The special cases of using the SP as an argument to the PUSH and POP instructions are described and
shown in Figure 1-8.

Figure 1-8. PUSH SP, POP SP Sequence

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU391F

SCG0 GIE Z C

rw-0

15 0

Reserved N
CPU

OFF

OSC

OFF
SCG1V

8 79

www.ti.com CPU Registers

7SLAU391F–August 2012–Revised March 2018
Submit Documentation Feedback

Copyright © 2012–2018, Texas Instruments Incorporated

CPUX

Chapter Excerpt from SLAU208

1.3.3 Status Register (SR)
The 16-bit Status Register (SR, also called R2), used as a source or destination register, can only be used
in register mode addressed with word instructions. The remaining combinations of addressing modes are
used to support the constant generator. Figure 1-9 shows the SR bits. Do not write 20-bit values to the
SR. Unpredictable operation can result.

Figure 1-9. SR Bits

Table 1-1 describes the SR bits.

Table 1-1. SR Bit Description

Bit Description
Reserved Reserved
V Overflow. This bit is set when the result of an arithmetic operation overflows the signed-variable range.

ADD(.B), ADDX(.B,.A),
ADDC(.B), ADDCX(.B.A),
ADDA

Set when:
positive + positive = negative
negative + negative = positive
otherwise reset

SUB(.B), SUBX(.B,.A),
SUBC(.B),SUBCX(.B,.A),
SUBA, CMP(.B),
CMPX(.B,.A), CMPA

Set when:
positive – negative = negative
negative – positive = positive
otherwise reset

SCG1 System clock generator 1. This bit may be used to enable or disable functions in the clock system depending on the
device family; for example, DCO bias enable or disable.

SCG0 System clock generator 0. This bit may be used to enable or disable functions in the clock system depending on the
device family; for example, FLL enable or disable.

OSCOFF Oscillator off. When this bit is set, it turns off the LFXT1 crystal oscillator when LFXT1CLK is not used for MCLK or
SMCLK.

CPUOFF CPU off. When this bit is set, it turns off the CPU.
GIE General interrupt enable. When this bit is set, it enables maskable interrupts. When it is reset, all maskable interrupts

are disabled.
N Negative. This bit is set when the result of an operation is negative and cleared when the result is positive.
Z Zero. This bit is set when the result of an operation is 0 and cleared when the result is not 0.
C Carry. This bit is set when the result of an operation produced a carry and cleared when no carry occurred.

NOTE: Bit manipulations of the SR should be done by the following instructions: MOV, BIS, and
BIC.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU391F

CPU Registers www.ti.com

8 SLAU391F–August 2012–Revised March 2018
Submit Documentation Feedback

Copyright © 2012–2018, Texas Instruments Incorporated

CPUX

Chapter Excerpt from SLAU208

1.3.4 Constant Generator Registers (CG1 and CG2)
Six commonly-used constants are generated with the constant generator registers R2 (CG1) and R3
(CG2), without requiring an additional 16-bit word of program code. The constants are selected with the
source register addressing modes (As), as described in Table 1-2.

Table 1-2. Values of Constant Generators CG1, CG2

Register As Constant Remarks
R2 00 – Register mode
R2 01 (0) Absolute address mode
R2 10 00004h +4, bit processing
R2 11 00008h +8, bit processing
R3 00 00000h 0, word processing
R3 01 00001h +1
R3 10 00002h +2, bit processing
R3 11 FFh, FFFFh, FFFFFh –1, word processing

The constant generator advantages are:
• No special instructions required
• No additional code word for the six constants
• No code memory access required to retrieve the constant

The assembler uses the constant generator automatically if one of the six constants is used as an
immediate source operand. Registers R2 and R3, used in the constant mode, cannot be addressed
explicitly; they act as source-only registers.

1.3.4.1 Constant Generator – Expanded Instruction Set
The RISC instruction set of the MSP430 has only 27 instructions. However, the constant generator allows
the MSP430 assembler to support 24 additional emulated instructions. For example, the single-operand
instruction:

CLR dst

is emulated by the double-operand instruction with the same length:
MOV R3,dst

where the #0 is replaced by the assembler, and R3 is used with As = 00.
INC dst

is replaced by:
ADD #1,dst

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU391F

High Byte Low Byte

Register-Word Operation

Register

Memory

Operation

Memory

Un-
used

19 16 15 08 7

Unused

High Byte Low Byte

Register-Byte Operation

High Byte Low Byte

Byte-Register Operation

Register

Memory Register

Memory

Operation

Memory

Operation

0 Register

Unused
Un-

used

0

19 16 15 0

19 16 15 0

8 7

8 7

Un-
used

www.ti.com CPU Registers

9SLAU391F–August 2012–Revised March 2018
Submit Documentation Feedback

Copyright © 2012–2018, Texas Instruments Incorporated

CPUX

Chapter Excerpt from SLAU208

1.3.5 General-Purpose Registers (R4 to R15)
The 12 CPU registers (R4 to R15) contain 8-bit, 16-bit, or 20-bit values. Any byte-write to a CPU register
clears bits 19:8. Any word-write to a register clears bits 19:16. The only exception is the SXT instruction.
The SXT instruction extends the sign through the complete 20-bit register.

Figure 1-10 through Figure 1-14 show the handling of byte, word, and address-word data. Note the reset
of the leading most significant bits (MSBs) if a register is the destination of a byte or word instruction.

Figure 1-10 shows byte handling (8-bit data, .B suffix). The handling is shown for a source register and a
destination memory byte and for a source memory byte and a destination register.

Figure 1-10. Register-Byte and Byte-Register Operation

Figure 1-11 and Figure 1-12 show 16-bit word handling (.W suffix). The handling is shown for a source
register and a destination memory word and for a source memory word and a destination register.

Figure 1-11. Register-Word Operation

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU391F

High Byte Low Byte

Register − Address-Word Operation

Register

Memory

Operation

Memory

Unused

0

Memory +2

Memory +2

19 16 15 08 7

High Byte Low Byte

Word Register Operation

Register

Memory

Operation

0 Register

Un-

used

19 16 15 08 7

CPU Registers www.ti.com

10 SLAU391F–August 2012–Revised March 2018
Submit Documentation Feedback

Copyright © 2012–2018, Texas Instruments Incorporated

CPUX

Chapter Excerpt from SLAU208

Figure 1-12. Word-Register Operation

Figure 1-13 and Figure 1-14 show 20-bit address-word handling (.A suffix). The handling is shown for a
source register and a destination memory address-word and for a source memory address-word and a
destination register.

Figure 1-13. Register – Address-Word Operation

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU391F

High Byte Low Byte

Address-Word − Register Operation

Register

Memory

Operation

Register

UnusedMemory +2

19 16 15 08 7

www.ti.com Addressing Modes

11SLAU391F–August 2012–Revised March 2018
Submit Documentation Feedback

Copyright © 2012–2018, Texas Instruments Incorporated

CPUX

Chapter Excerpt from SLAU208

Figure 1-14. Address-Word – Register Operation

1.4 Addressing Modes
Seven addressing modes for the source operand and four addressing modes for the destination operand
use 16-bit or 20-bit addresses (see Table 1-3). The MSP430 and MSP430X instructions are usable
throughout the entire 1MB memory range.

Table 1-3. Source and Destination Addressing

As, Ad Addressing Mode Syntax Description
00, 0 Register Rn Register contents are operand.
01, 1 Indexed X(Rn) (Rn + X) points to the operand. X is stored in the next word, or stored in combination of

the preceding extension word and the next word.
01, 1 Symbolic ADDR (PC + X) points to the operand. X is stored in the next word, or stored in combination of

the preceding extension word and the next word. Indexed mode X(PC) is used.
01, 1 Absolute &ADDR The word following the instruction contains the absolute address. X is stored in the next

word, or stored in combination of the preceding extension word and the next word.
Indexed mode X(SR) is used.

10, – Indirect Register @Rn Rn is used as a pointer to the operand.
11, – Indirect

Autoincrement
@Rn+ Rn is used as a pointer to the operand. Rn is incremented afterwards by 1 for .B

instructions, by 2 for .W instructions, and by 4 for .A instructions.
11, – Immediate #N N is stored in the next word, or stored in combination of the preceding extension word

and the next word. Indirect autoincrement mode @PC+ is used.

The seven addressing modes are explained in detail in the following sections. Most of the examples show
the same addressing mode for the source and destination, but any valid combination of source and
destination addressing modes is possible in an instruction.

NOTE: Use of Labels EDE, TONI, TOM, and LEO

Throughout MSP430 documentation, EDE, TONI, TOM, and LEO are used as generic labels.
They are only labels and have no special meaning.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU391F

xxxxh

Address

Space

D546h

PC

21036h

21034h

AA550h

11111h

R5

R6

Register
Before:

Address

Space

PC AA550h

BB551h

R5

R6

Register
After:

AA550h.or.11111h = BB551h

1800h21032h

xxxxh

D546h

21036h

21034h

1800h21032h

xxxxh

Address

Space

D506h PC

21036h

21034h

AA550h

11111h

R5

R6

Register
Before:

xxxxh

Address

Space

D506h

PC21036h

21034h

AA550h

0B551h

R5

R6

Register
After:

A550h.or.1111h = B551h

Addressing Modes www.ti.com

12 SLAU391F–August 2012–Revised March 2018
Submit Documentation Feedback

Copyright © 2012–2018, Texas Instruments Incorporated

CPUX

Chapter Excerpt from SLAU208

1.4.1 Register Mode

Operation: The operand is the 8-, 16-, or 20-bit content of the used CPU register.
Length: One, two, or three words
Comment: Valid for source and destination
Byte operation: Byte operation reads only the eight least significant bits (LSBs) of the source

register Rsrc and writes the result to the eight LSBs of the destination register Rdst.
The bits Rdst.19:8 are cleared. The register Rsrc is not modified.

Word operation: Word operation reads the 16 LSBs of the source register Rsrc and writes the result
to the 16 LSBs of the destination register Rdst. The bits Rdst.19:16 are cleared.
The register Rsrc is not modified.

Address-word
operation:

Address-word operation reads the 20 bits of the source register Rsrc and writes the
result to the 20 bits of the destination register Rdst. The register Rsrc is not
modified

SXT exception: The SXT instruction is the only exception for register operation. The sign of the low
byte in bit 7 is extended to the bits Rdst.19:8.

Example: BIS.W R5,R6 ;

This instruction logically ORs the 16-bit data contained in R5 with the 16-bit
contents of R6. R6.19:16 is cleared.

Example: BISX.A R5,R6 ;

This instruction logically ORs the 20-bit data contained in R5 with the 20-bit
contents of R6.
The extension word contains the A/L bit for 20-bit data. The instruction word uses
byte mode with bits A/L:B/W = 01. The result of the instruction is:

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU391F

16-bit signed index

CPU Register Rn

16-bit signed add

0 Memory address

FFFFF

00000

L
o
w

e
r

6
4
K

B

0FFFF

10000

Rn.19:0

Lower 64KB

Rn.19:16 = 0

16-bit byte index

0

19 16 15 0

S

www.ti.com Addressing Modes

13SLAU391F–August 2012–Revised March 2018
Submit Documentation Feedback

Copyright © 2012–2018, Texas Instruments Incorporated

CPUX

Chapter Excerpt from SLAU208

1.4.2 Indexed Mode
The Indexed mode calculates the address of the operand by adding the signed index to a CPU register.
The Indexed mode has four addressing possibilities:
• MSP430 instruction with Indexed mode in lower 64KB memory (see Section 1.4.2.1)
• MSP430 instruction with Indexed mode addressing memory above the lower 64KB memory (see

Section 1.4.2.2)
• MSP430X instruction with Indexed mode (see Section 1.4.2.3)
• MSP430X address instructions with Indexed mode (see Section 1.4.2.4)

1.4.2.1 MSP430 Instruction With Indexed Mode in Lower 64KB Memory
If the CPU register Rn points to an address in the lower 64KB of the memory range, the calculated
memory address bits 19:16 are cleared after the addition of the CPU register Rn and the signed 16-bit
index. This means the calculated memory address is always located in the lower 64KB and does not
overflow or underflow out of the lower 64KB memory space. The RAM and the peripheral registers can be
accessed this way and existing MSP430 software is usable without modifications as shown in Figure 1-15.

Figure 1-15. Indexed Mode in Lower 64KB

Length: Two or three words
Operation: The signed 16-bit index is located in the next word after the instruction and is added to

the CPU register Rn. The resulting bits 19:16 are cleared giving a truncated 16-bit
memory address, which points to an operand address in the range 00000h to 0FFFFh.
The operand is the content of the addressed memory location.

Comment: Valid for source and destination. The assembler calculates the register index and inserts
it.

Example: ADD.B 1000h(R5),0F000h(R6);

This instruction adds the 8-bit data contained in source byte 1000h(R5) and the
destination byte 0F000h(R6) and places the result into the destination byte. Source and
destination bytes are both located in the lower 64KB due to the cleared bits 19:16 of
registers R5 and R6.

Source: The byte pointed to by R5 + 1000h results in address 0479Ch + 1000h = 0579Ch after
truncation to a 16-bit address.

Destination: The byte pointed to by R6 + F000h results in address 01778h + F000h = 00778h after
truncation to a 16-bit address.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU391F

16-bit signed index
(sign extended to 20 bits)

CPU Register Rn

20-bit signed add

Memory address

FFFFF

00000

L
o
w

e
r

6
4
 K

B

0FFFF

10000

Upper Memory

Rn.19:16 > 0

16-bit byte index

1 ... 15

19 16 15 0

S

Rn ± 32KB

S

Rn.19:0

xxxxh

Address

Space

F000h

1000h

PC

1103Ah

11038h

11036h

0479Ch

01778h

R5

R6

01778h

+F000h

00778h

Register
Before:

Address

Space

Register
After:

55D6h11034h

xxxxh

F000h

1000h

PC1103Ah

11038h

11036h

0479Ch

01778h

R5

R6

55D6h11034h

xxxxh

xx45h

0077Ah

00778h

xxxxh

xx77h

0077Ah

00778h

32h

+45h

77h

src

dst

Sum

0479Ch

+1000h

0579Ch

xxxxh

xx32h

0579Eh

0579Ch

xxxxh

xx32h

0579Eh

0579Ch

Addressing Modes www.ti.com

14 SLAU391F–August 2012–Revised March 2018
Submit Documentation Feedback

Copyright © 2012–2018, Texas Instruments Incorporated

CPUX

Chapter Excerpt from SLAU208

1.4.2.2 MSP430 Instruction With Indexed Mode in Upper Memory
If the CPU register Rn points to an address above the lower 64KB memory, the Rn bits 19:16 are used for
the address calculation of the operand. The operand may be located in memory in the range Rn ±32KB,
because the index, X, is a signed 16-bit value. In this case, the address of the operand can overflow or
underflow into the lower 64KB memory space (see Figure 1-16 and Figure 1-17).

Figure 1-16. Indexed Mode in Upper Memory

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU391F

FFFFF

0000C

L
o
w

e
r

6
4
K

B

0FFFF

10000

Rn.19:0

Rn.19:0

Rn.19:0

±
3
2
K

B

Rn.19:0

±
3
2
K

B

www.ti.com Addressing Modes

15SLAU391F–August 2012–Revised March 2018
Submit Documentation Feedback

Copyright © 2012–2018, Texas Instruments Incorporated

CPUX

Chapter Excerpt from SLAU208

Figure 1-17. Overflow and Underflow for Indexed Mode

Length: Two or three words
Operation: The sign-extended 16-bit index in the next word after the instruction is added to the

20 bits of the CPU register Rn. This delivers a 20-bit address, which points to an
address in the range 0 to FFFFFh. The operand is the content of the addressed
memory location.

Comment: Valid for source and destination. The assembler calculates the register index and
inserts it.

Example: ADD.W 8346h(R5),2100h(R6) ;

This instruction adds the 16-bit data contained in the source and the destination
addresses and places the 16-bit result into the destination. Source and destination
operand can be located in the entire address range.

Source: The word pointed to by R5 + 8346h. The negative index 8346h is sign extended,
which results in address 23456h + F8346h = 1B79Ch.

Destination: The word pointed to by R6 + 2100h results in address 15678h + 2100h = 17778h.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU391F

xxxxh

Address

Space

2100h

8346h

PC

1103Ah

11038h

11036h

23456h

15678h

R5

R6

15678h

+02100h

17778h

Register
Before:

Address

Space

Register
After:

5596h11034h

xxxxh

2100h

8346h

PC1103Ah

11038h

11036h

23456h

15678h

R5

R6

5596h11034h

xxxxh

2345h

1777Ah

17778h

xxxxh

7777h

1777Ah

17778h

05432h

+02345h

07777h

src

dst

Sum

23456h

+F8346h

1B79Ch

xxxxh

5432h

1B79Eh

1B79Ch

xxxxh

5432h

1B79Eh

1B79Ch

Addressing Modes www.ti.com

16 SLAU391F–August 2012–Revised March 2018
Submit Documentation Feedback

Copyright © 2012–2018, Texas Instruments Incorporated

CPUX

Chapter Excerpt from SLAU208

Figure 1-18. Example for Indexed Mode

1.4.2.3 MSP430X Instruction With Indexed Mode
When using an MSP430X instruction with Indexed mode, the operand can be located anywhere in the
range of Rn + 19 bits.

Length: Three or four words
Operation: The operand address is the sum of the 20-bit CPU register content and the 20-bit

index. The 4 MSBs of the index are contained in the extension word; the 16 LSBs
are contained in the word following the instruction. The CPU register is not modified

Comment: Valid for source and destination. The assembler calculates the register index and
inserts it.

Example: ADDX.A 12346h(R5),32100h(R6) ;

This instruction adds the 20-bit data contained in the source and the destination
addresses and places the result into the destination.

Source: Two words pointed to by R5 + 12346h which results in address 23456h + 12346h =
3579Ch.

Destination: Two words pointed to by R6 + 32100h which results in address 45678h + 32100h =
77778h.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU391F

2100h

Address

Space

2346h

55D6h

PC

21038h

21036h

21034h

23456h

45678h

R5

R6

45678h

+32100h

77778h

Register
Before:

Address

Space

Register
After:

PC 23456h

45678h

R5

R6

0001h

2345h

7777Ah

77778h

0007h

7777h

7777Ah

77778h

65432h

+12345h

77777h

src

dst

Sum

0006h

5432h

3579Eh

3579Ch

0006h

5432h

3579Eh

3579Ch

1883h21032h

xxxxh2103Ah

2100h

2346h

55D6h

21038h

21036h

21034h

1883h21032h

xxxxh2103Ah

23456h

+12346h

3579Ch

www.ti.com Addressing Modes

17SLAU391F–August 2012–Revised March 2018
Submit Documentation Feedback

Copyright © 2012–2018, Texas Instruments Incorporated

CPUX

Chapter Excerpt from SLAU208

The extension word contains the MSBs of the source index and of the destination index and the A/L bit for
20-bit data. The instruction word uses byte mode due to the 20-bit data length with bits A/L:B/W = 01.

1.4.2.4 MSP430X Address Instructions With Indexed Mode
When using an MSP430X Address Instruction with Indexed mode, the operand is located in memory in the
range Rn ±32KB, because the index, X, is a signed 16-bit value.

Length: Two words
Operation: The sign-extended 16-bit index in the next word after the instruction is added to the 20

bits of the CPU register Rn. This delivers a 20-bit address, which points to an address in
the range 0 to FFFFFh. The operand is the content of the addressed memory location.

Comment: Valid for source and destination. The assembler calculates the register index and inserts
it.

Example: MOVA 8002h(R5),R6 ; // R5 = 0x100

This instruction loads the 20-bit data contained in the source address into destination
register.

Source: Two words pointed to by R5 + 8002h and R5 + 8002h + 2h which results in address
00100h + F8002h (+2h) = F8102h and F8104h.

Destination: Register R6

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU391F

16-bit signed

PC index

Program

counter PC

16-bit signed add

0 Memory address

FFFFF

00000

L
o
w

e
r

6
4
K

B

0FFFF

10000

PC.19:0

Lower 64KB

PC.19:16 = 0

16-bit byte index

0

19 16 15 0

S

Addressing Modes www.ti.com

18 SLAU391F–August 2012–Revised March 2018
Submit Documentation Feedback

Copyright © 2012–2018, Texas Instruments Incorporated

CPUX

Chapter Excerpt from SLAU208

1.4.3 Symbolic Mode
The Symbolic mode calculates the address of the operand by adding the signed index to the PC. The
Symbolic mode has three addressing possibilities:
• Symbolic mode in lower 64KB of memory
• MSP430 instruction with Symbolic mode addressing memory above the lower 64KB of memory.
• MSP430X instruction with Symbolic mode

1.4.3.1 Symbolic Mode in Lower 64KB
If the PC points to an address in the lower 64KB of the memory range, the calculated memory address
bits 19:16 are cleared after the addition of the PC and the signed 16-bit index. This means the calculated
memory address is always located in the lower 64KB and does not overflow or underflow out of the lower
64KB memory space. The RAM and the peripheral registers can be accessed this way and existing
MSP430 software is usable without modifications as shown in Figure 1-19.

Figure 1-19. Symbolic Mode Running in Lower 64KB

Operation: The signed 16-bit index in the next word after the instruction is added temporarily to
the PC. The resulting bits 19:16 are cleared giving a truncated 16-bit memory
address, which points to an operand address in the range 00000h to 0FFFFh. The
operand is the content of the addressed memory location.

Length: Two or three words
Comment: Valid for source and destination. The assembler calculates the PC index and

inserts it.
Example: ADD.B EDE,TONI ;

This instruction adds the 8-bit data contained in source byte EDE and destination
byte TONI and places the result into the destination byte TONI. Bytes EDE and
TONI and the program are located in the lower 64KB.

Source: Byte EDE located at address 0579Ch, pointed to by PC + 4766h, where the PC
index 4766h is the result of 0579Ch – 01036h = 04766h. Address 01036h is the
location of the index for this example.

Destination: Byte TONI located at address 00778h, pointed to by PC + F740h, is the truncated
16-bit result of 00778h – 1038h = FF740h. Address 01038h is the location of the
index for this example.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU391F

16-bit signed PC index
(sign extended to 20 bits)

Program

counter PC

20-bit signed add

Memory address

FFFFF

00000

L
o
w

e
r

6
4
K

B

0FFFF

10000

PC.19:0

Upper Memory

PC.19:16 > 0

16-bit byte index

1 ... 15

19 16 15 0

S

PC ±32KB

S

xxxxh

Address

Space

F740h

4766h

PC

0103Ah

01038h

01036h

01038h

+0F740h

00778h

Before:
Address

Space

After:

05D0h01034h

xxxxh

F740h

4766h

PC0103Ah

01038h

01036h

50D0h01034h

xxxxh

xx45h

0077Ah

00778h

xxxxh

xx77h

0077Ah

00778h

32h

+45h

77h

src

dst

Sum

01036h

+04766h

0579Ch

xxxxh

xx32h

0579Eh

0579Ch

xxxxh

xx32h

0579Eh

0579Ch

www.ti.com Addressing Modes

19SLAU391F–August 2012–Revised March 2018
Submit Documentation Feedback

Copyright © 2012–2018, Texas Instruments Incorporated

CPUX

Chapter Excerpt from SLAU208

1.4.3.2 MSP430 Instruction With Symbolic Mode in Upper Memory
If the PC points to an address above the lower 64KB memory, the PC bits 19:16 are used for the address
calculation of the operand. The operand may be located in memory in the range PC ± 32KB, because the
index, X, is a signed 16-bit value. In this case, the address of the operand can overflow or underflow into
the lower 64KB memory space as shown in Figure 1-20 and Figure 1-21.

Figure 1-20. Symbolic Mode Running in Upper Memory

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU391F

FFFFF

0000C

L
o
w

e
r

6
4
K

B

0FFFF

10000

PC.19:0

PC.19:0

PC.19:0

±
3
2
K

B

PC.19:0

±
3
2
K

B

Addressing Modes www.ti.com

20 SLAU391F–August 2012–Revised March 2018
Submit Documentation Feedback

Copyright © 2012–2018, Texas Instruments Incorporated

CPUX

Chapter Excerpt from SLAU208

Figure 1-21. Overflow and Underflow for Symbolic Mode

Length: Two or three words
Operation: The sign-extended 16-bit index in the next word after the instruction is added to the

20 bits of the PC. This delivers a 20-bit address, which points to an address in the
range 0 to FFFFFh. The operand is the content of the addressed memory location.

Comment: Valid for source and destination. The assembler calculates the PC index and
inserts it

Example: ADD.W EDE,&TONI ;

This instruction adds the 16-bit data contained in source word EDE and destination
word TONI and places the 16-bit result into the destination word TONI. For this
example, the instruction is located at address 2F034h.

Source: Word EDE at address 3379Ch, pointed to by PC + 4766h, which is the 16-bit result
of 3379Ch – 2F036h = 04766h. Address 2F036h is the location of the index for this
example.

Destination: Word TONI located at address 00778h pointed to by the absolute address 00778h

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU391F

xxxxh

Address

Space

0778h

4766h

PC

2F03Ah

2F038h

2F036h

2F036h

+04766h

3379Ch

Before:
Address

Space

After:

5092h2F034h

xxxxh

0778h

4766h

PC2F03Ah

2F038h

2F036h

5092h2F034h

xxxxh

5432h

3379Eh

3379Ch

xxxxh

5432h

3379Eh

3379Ch

5432h

+2345h

7777h

src

dst

Sum

xxxxh

2345h

0077Ah

00778h

xxxxh

7777h

0077Ah

00778h

www.ti.com Addressing Modes

21SLAU391F–August 2012–Revised March 2018
Submit Documentation Feedback

Copyright © 2012–2018, Texas Instruments Incorporated

CPUX

Chapter Excerpt from SLAU208

1.4.3.3 MSP430X Instruction With Symbolic Mode
When using an MSP430X instruction with Symbolic mode, the operand can be located anywhere in the
range of PC + 19 bits.

Length: Three or four words
Operation: The operand address is the sum of the 20-bit PC and the 20-bit index. The 4 MSBs

of the index are contained in the extension word; the 16 LSBs are contained in the
word following the instruction.

Comment: Valid for source and destination. The assembler calculates the register index and
inserts it.

Example: ADDX.B EDE,TONI ;

This instruction adds the 8-bit data contained in source byte EDE and destination
byte TONI and places the result into the destination byte TONI.

Source: Byte EDE located at address 3579Ch, pointed to by PC + 14766h, is the 20-bit
result of 3579Ch – 21036h = 14766h. Address 21036h is the address of the index
in this example.

Destination: Byte TONI located at address 77778h, pointed to by PC + 56740h, is the 20-bit
result of 77778h – 21038h = 56740h. Address 21038h is the address of the index in
this example.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU391F

6740h

Address Space

4766h

50D0h

PC

21038h

21036h

21034h

21038h

+56740h

77778h

Before: Address SpaceAfter:

PC

xxxxh

xx45h

7777Ah

77778h

xxxxh

xx77h

7777Ah

77778h

32h

+45h

77h

src

dst

Sum

xxxxh

xx32h

3579Eh

3579Ch

xxxxh

xx32h

3579Eh

3579Ch

18C5h21032h

xxxxh2103Ah

6740h

4766h

50D0h

21038h

21036h

21034h

18C5h21032h

xxxxh2103Ah

21036h

+14766h

3579Ch

Addressing Modes www.ti.com

22 SLAU391F–August 2012–Revised March 2018
Submit Documentation Feedback

Copyright © 2012–2018, Texas Instruments Incorporated

CPUX

Chapter Excerpt from SLAU208

1.4.4 Absolute Mode
The Absolute mode uses the contents of the word following the instruction as the address of the operand.
The Absolute mode has two addressing possibilities:
• Absolute mode in lower 64KB memory
• MSP430X instruction with Absolute mode

1.4.4.1 Absolute Mode in Lower 64KB
If an MSP430 instruction is used with Absolute addressing mode, the absolute address is a 16-bit value
and, therefore, points to an address in the lower 64KB of the memory range. The address is calculated as
an index from 0 and is stored in the word following the instruction The RAM and the peripheral registers
can be accessed this way and existing MSP430 software is usable without modifications.

Length: Two or three words
Operation: The operand is the content of the addressed memory location.
Comment: Valid for source and destination. The assembler calculates the index from 0 and

inserts it.
Example: ADD.W &EDE,&TONI ;

This instruction adds the 16-bit data contained in the absolute source and
destination addresses and places the result into the destination.

Source: Word at address EDE
Destination: Word at address TONI

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU391F

xxxxh

Address Space

7778h

579Ch

PC

2103Ah

21038h

21036h

Before: Address SpaceAfter:

5292h21034h

xxxxh

7778h

579Ch

PC2103Ah

21038h

21036h

5292h21034h

xxxxh

2345h

0777Ah

07778h

xxxxh

7777h

0777Ah

07778h

5432h

+2345h

7777h

src

dst

Sum

xxxxh

5432h

0579Eh

0579Ch

xxxxh

5432h

0579Eh

0579Ch

www.ti.com Addressing Modes

23SLAU391F–August 2012–Revised March 2018
Submit Documentation Feedback

Copyright © 2012–2018, Texas Instruments Incorporated

CPUX

Chapter Excerpt from SLAU208

1.4.4.2 MSP430X Instruction With Absolute Mode
If an MSP430X instruction is used with Absolute addressing mode, the absolute address is a 20-bit value
and, therefore, points to any address in the memory range. The address value is calculated as an index
from 0. The 4 MSBs of the index are contained in the extension word, and the 16 LSBs are contained in
the word following the instruction.

Length: Three or four words
Operation: The operand is the content of the addressed memory location.
Comment: Valid for source and destination. The assembler calculates the index from 0 and

inserts it.
Example: ADDX.A &EDE,&TONI ;

This instruction adds the 20-bit data contained in the absolute source and
destination addresses and places the result into the destination.

Source: Two words beginning with address EDE
Destination: Two words beginning with address TONI

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU391F

7778h

Address

Space

579Ch

52D2h

PC

21038h

21036h

21034h

Before:
Address

Space

After:

PC

0001h

2345h

7777Ah

77778h

0007h

7777h

7777Ah

77778h

65432h

+12345h

77777h

src

dst

Sum

0006h

5432h

3579Eh

3579Ch

0006h

5432h

3579Eh

3579Ch

1987h21032h

xxxxh2103Ah

7778h

579Ch

52D2h

21038h

21036h

21034h

1987h21032h

xxxxh2103Ah

Addressing Modes www.ti.com

24 SLAU391F–August 2012–Revised March 2018
Submit Documentation Feedback

Copyright © 2012–2018, Texas Instruments Incorporated

CPUX

Chapter Excerpt from SLAU208

1.4.5 Indirect Register Mode
The Indirect Register mode uses the contents of the CPU register Rsrc as the source operand. The
Indirect Register mode always uses a 20-bit address.

Length: One, two, or three words
Operation: The operand is the content the addressed memory location. The source register

Rsrc is not modified.
Comment: Valid only for the source operand. The substitute for the destination operand is

0(Rdst).
Example: ADDX.W @R5,2100h(R6)

This instruction adds the two 16-bit operands contained in the source and the
destination addresses and places the result into the destination.

Source: Word pointed to by R5. R5 contains address 3579Ch for this example.
Destination: Word pointed to by R6 + 2100h, which results in address 45678h + 2100h = 7778h

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU391F

xxxxh

Address

Space

2100h

55A6h PC

21038h

21036h

21034h

3579Ch

45678h

R5

R6

45678h

+02100h

47778h

Register
Before:

Address

Space

Register
After:

xxxxh

2100h

55A6h

PC21038h

21036h

21034h

3579Ch

45678h

R5

R6

xxxxh

2345h

4777Ah

47778h

xxxxh

7777h

4777Ah

47778h

5432h

+2345h

7777h

src

dst

Sum

xxxxh

5432h

3579Eh

3579Ch

xxxxh

5432h

3579Eh

3579ChR5 R5

www.ti.com Addressing Modes

25SLAU391F–August 2012–Revised March 2018
Submit Documentation Feedback

Copyright © 2012–2018, Texas Instruments Incorporated

CPUX

Chapter Excerpt from SLAU208

1.4.6 Indirect Autoincrement Mode
The Indirect Autoincrement mode uses the contents of the CPU register Rsrc as the source operand. Rsrc
is then automatically incremented by 1 for byte instructions, by 2 for word instructions, and by 4 for
address-word instructions immediately after accessing the source operand. If the same register is used for
source and destination, it contains the incremented address for the destination access. Indirect
Autoincrement mode always uses 20-bit addresses.

Length: One, two, or three words
Operation: The operand is the content of the addressed memory location.
Comment: Valid only for the source operand
Example: ADD.B @R5+,0(R6)

This instruction adds the 8-bit data contained in the source and the destination
addresses and places the result into the destination.

Source: Byte pointed to by R5. R5 contains address 3579Ch for this example.
Destination: Byte pointed to by R6 + 0h, which results in address 0778h for this example

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU391F

xxxxh

Address

Space

0000h

55F6h PC

21038h

21036h

21034h

3579Ch

00778h

R5

R6

00778h

+0000h

00778h

Register
Before:

Address

Space

Register
After:

xxxxh

0000h

55F6h

PC21038h

21036h

21034h

3579Dh

00778h

R5

R6

xxxxh

xx45h

0077Ah

00778h

xxxxh

xx77h

0077Ah

00778h

32h

+45h

77h

src

dst

Sum

xxh

32h

3579Dh

3579Ch

xxh

xx32h

3579Dh

3579ChR5

R5

Addressing Modes www.ti.com

26 SLAU391F–August 2012–Revised March 2018
Submit Documentation Feedback

Copyright © 2012–2018, Texas Instruments Incorporated

CPUX

Chapter Excerpt from SLAU208

1.4.7 Immediate Mode
The Immediate mode allows accessing constants as operands by including the constant in the memory
location following the instruction. The PC is used with the Indirect Autoincrement mode. The PC points to
the immediate value contained in the next word. After the fetching of the immediate operand, the PC is
incremented by 2 for byte, word, or address-word instructions. The Immediate mode has two addressing
possibilities:
• 8-bit or 16-bit constants with MSP430 instructions
• 20-bit constants with MSP430X instruction

1.4.7.1 MSP430 Instructions With Immediate Mode
If an MSP430 instruction is used with Immediate addressing mode, the constant is an 8- or 16-bit value
and is stored in the word following the instruction.

Length: Two or three words. One word less if a constant of the constant generator can be
used for the immediate operand.

Operation: The 16-bit immediate source operand is used together with the 16-bit destination
operand.

Comment: Valid only for the source operand
Example: ADD #3456h,&TONI

This instruction adds the 16-bit immediate operand 3456h to the data in the
destination address TONI.

Source: 16-bit immediate value 3456h
Destination: Word at address TONI

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU391F

7778h

Address

Space

3456h

50F2h

PC

21038h

21036h

21034h

Before:
Address

Space

After:

PC

0001h

2345h

7777Ah

77778h

0003h

579Bh

7777Ah

77778h

23456h

+12345h

3579Bh

src

dst

Sum

1907h21032h

xxxxh2103Ah

7778h

3456h

50F2h

21038h

21036h

21034h

1907h21032h

xxxxh2103Ah

xxxxh

Address

Space

0778h

3456h

PC

2103Ah

21038h

21036h

Before:
Address

Space

After:

50B2h21034h

xxxxh

0778h

3456h

PC2103Ah

21038h

21036h

50B2h21034h

xxxxh

2345h

0077Ah

00778h

xxxxh

579Bh

0077Ah

00778h

3456h

+2345h

579Bh

src

dst

Sum

www.ti.com Addressing Modes

27SLAU391F–August 2012–Revised March 2018
Submit Documentation Feedback

Copyright © 2012–2018, Texas Instruments Incorporated

CPUX

Chapter Excerpt from SLAU208

1.4.7.2 MSP430X Instructions With Immediate Mode
If an MSP430X instruction is used with Immediate addressing mode, the constant is a 20-bit value. The 4
MSBs of the constant are stored in the extension word, and the 16 LSBs of the constant are stored in the
word following the instruction.

Length: Three or four words. One word less if a constant of the constant generator can be
used for the immediate operand.

Operation: The 20-bit immediate source operand is used together with the 20-bit destination
operand.

Comment: Valid only for the source operand
Example: ADDX.A #23456h,&TONI ;

This instruction adds the 20-bit immediate operand 23456h to the data in the
destination address TONI.

Source: 20-bit immediate value 23456h
Destination: Two words beginning with address TONI

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU391F

15 12 11 8 7 6 5 4 0

Op-code Rsrc Ad B/W As Rdst

Source or Destination 15:0

Destination 15:0

MSP430 and MSP430X Instructions www.ti.com

28 SLAU391F–August 2012–Revised March 2018
Submit Documentation Feedback

Copyright © 2012–2018, Texas Instruments Incorporated

CPUX

Chapter Excerpt from SLAU208

1.5 MSP430 and MSP430X Instructions
MSP430 instructions are the 27 implemented instructions of the MSP430 CPU. These instructions are
used throughout the 1MB memory range unless their 16-bit capability is exceeded. The MSP430X
instructions are used when the addressing of the operands or the data length exceeds the 16-bit capability
of the MSP430 instructions.

There are three possibilities when choosing between an MSP430 and MSP430X instruction:
• To use only the MSP430 instructions – The only exceptions are the CALLA and the RETA instruction.

This can be done if a few, simple rules are met:
– Place all constants, variables, arrays, tables, and data in the lower 64KB. This allows the use of

MSP430 instructions with 16-bit addressing for all data accesses. No pointers with 20-bit addresses
are needed.

– Place subroutine constants immediately after the subroutine code. This allows the use of the
symbolic addressing mode with its 16-bit index to reach addresses within the range of PC + 32KB.

• To use only MSP430X instructions – The disadvantages of this method are the reduced speed due to
the additional CPU cycles and the increased program space due to the necessary extension word for
any double-operand instruction.

• Use the best fitting instruction where needed.

Section 1.5.1 lists and describes the MSP430 instructions, and Section 1.5.2 lists and describes the
MSP430X instructions.

1.5.1 MSP430 Instructions
The MSP430 instructions can be used, regardless if the program resides in the lower 64KB or beyond it.
The only exceptions are the instructions CALL and RET, which are limited to the lower 64KB address
range. CALLA and RETA instructions have been added to the MSP430X CPU to handle subroutines in the
entire address range with no code size overhead.

1.5.1.1 MSP430 Double-Operand (Format I) Instructions
Figure 1-22 shows the format of the MSP430 double-operand instructions. Source and destination words
are appended for the Indexed, Symbolic, Absolute, and Immediate modes. Table 1-4 lists the 12 MSP430
double-operand instructions.

Figure 1-22. MSP430 Double-Operand Instruction Format

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU391F

15 7 6 5 4 0

Op-code B/W Ad Rdst

Destination 15:0

www.ti.com MSP430 and MSP430X Instructions

29SLAU391F–August 2012–Revised March 2018
Submit Documentation Feedback

Copyright © 2012–2018, Texas Instruments Incorporated

CPUX

Chapter Excerpt from SLAU208

(1) * = Status bit is affected.
– = Status bit is not affected.
0 = Status bit is cleared.
1 = Status bit is set.

Table 1-4. MSP430 Double-Operand Instructions

Mnemonic S-Reg,
D-Reg Operation

Status Bits (1)

V N Z C
MOV(.B) src,dst src → dst – – – –

ADD(.B) src,dst src + dst → dst * * * *

ADDC(.B) src,dst src + dst + C → dst * * * *

SUB(.B) src,dst dst + .not.src + 1 → dst * * * *

SUBC(.B) src,dst dst + .not.src + C → dst * * * *

CMP(.B) src,dst dst - src * * * *

DADD(.B) src,dst src + dst + C → dst (decimally) * * * *

BIT(.B) src,dst src .and. dst 0 * * Z

BIC(.B) src,dst .not.src .and. dst → dst – – – –

BIS(.B) src,dst src .or. dst → dst – – – –

XOR(.B) src,dst src .xor. dst → dst * * * Z

AND(.B) src,dst src .and. dst → dst 0 * * Z

1.5.1.2 MSP430 Single-Operand (Format II) Instructions
Figure 1-23 shows the format for MSP430 single-operand instructions, except RETI. The destination word
is appended for the Indexed, Symbolic, Absolute, and Immediate modes. Table 1-5 lists the seven single-
operand instructions.

Figure 1-23. MSP430 Single-Operand Instructions

(1) * = Status bit is affected.
– = Status bit is not affected.
0 = Status bit is cleared.
1 = Status bit is set.

Table 1-5. MSP430 Single-Operand Instructions

Mnemonic S-Reg,
D-Reg Operation

Status Bits (1)

V N Z C
RRC(.B) dst C → MSB →.......LSB → C 0 * * *

RRA(.B) dst MSB → MSB →....LSB → C 0 * * *

PUSH(.B) src SP - 2 → SP, src → SP – – – –

SWPB dst bit 15...bit 8 ↔ bit 7...bit 0 – – – –

CALL dst Call subroutine in lower 64KB – – – –

RETI TOS → SR, SP + 2 → SP * * * *

TOS → PC,SP + 2 → SP

SXT dst Register mode: bit 7 → bit 8...bit 19
Other modes: bit 7 → bit 8...bit 15 0 * * Z

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU391F

15

Op-Code

13 12 10 9 8 0

Condition S 10-Bit Signed PC Offset

MSP430 and MSP430X Instructions www.ti.com

30 SLAU391F–August 2012–Revised March 2018
Submit Documentation Feedback

Copyright © 2012–2018, Texas Instruments Incorporated

CPUX

Chapter Excerpt from SLAU208

1.5.1.3 Jump Instructions
Figure 1-24 shows the format for MSP430 and MSP430X jump instructions. The signed 10-bit word offset
of the jump instruction is multiplied by two, sign-extended to a 20-bit address, and added to the 20-bit PC.
This allows jumps in a range of –511 to +512 words relative to the PC in the full 20-bit address space.
Jumps do not affect the status bits. Table 1-6 lists and describes the eight jump instructions.

Figure 1-24. Format of Conditional Jump Instructions

Table 1-6. Conditional Jump Instructions

Mnemonic S-Reg,
D-Reg Operation

JEQ, JZ Label Jump to label if zero bit is set

JNE, JNZ Label Jump to label if zero bit is reset

JC Label Jump to label if carry bit is set

JNC Label Jump to label if carry bit is reset

JN Label Jump to label if negative bit is set

JGE Label Jump to label if (N .XOR. V) = 0

JL Label Jump to label if (N .XOR. V) = 1

JMP Label Jump to label unconditionally

1.5.1.4 Emulated Instructions
In addition to the MSP430 and MSP430X instructions, emulated instructions are instructions that make
code easier to write and read, but do not have op-codes themselves. Instead, they are replaced
automatically by the assembler with a core instruction. There is no code or performance penalty for using
emulated instructions. The emulated instructions are listed in Table 1-7.

(1) * = Status bit is affected.
– = Status bit is not affected.
0 = Status bit is cleared.
1 = Status bit is set.

Table 1-7. Emulated Instructions

Instruction Explanation Emulation
Status Bits (1)

V N Z C
ADC(.B) dst Add Carry to dst ADDC(.B) #0,dst * * * *

BR dst Branch indirectly dst MOV dst,PC – – – –

CLR(.B) dst Clear dst MOV(.B) #0,dst – – – –

CLRC Clear Carry bit BIC #1,SR – – – 0

CLRN Clear Negative bit BIC #4,SR – 0 – –

CLRZ Clear Zero bit BIC #2,SR – – 0 –

DADC(.B) dst Add Carry to dst decimally DADD(.B) #0,dst * * * *

DEC(.B) dst Decrement dst by 1 SUB(.B) #1,dst * * * *

DECD(.B) dst Decrement dst by 2 SUB(.B) #2,dst * * * *

DINT Disable interrupt BIC #8,SR – – – –

EINT Enable interrupt BIS #8,SR – – – –

INC(.B) dst Increment dst by 1 ADD(.B) #1,dst * * * *

INCD(.B) dst Increment dst by 2 ADD(.B) #2,dst * * * *

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU391F

www.ti.com MSP430 and MSP430X Instructions

31SLAU391F–August 2012–Revised March 2018
Submit Documentation Feedback

Copyright © 2012–2018, Texas Instruments Incorporated

CPUX

Chapter Excerpt from SLAU208

Table 1-7. Emulated Instructions (continued)

Instruction Explanation Emulation
Status Bits (1)

V N Z C
INV(.B) dst Invert dst XOR(.B) #–1,dst * * * *

NOP No operation MOV R3,R3 – – – –

POP dst Pop operand from stack MOV @SP+,dst – – – –

RET Return from subroutine MOV @SP+,PC – – – –

RLA(.B) dst Shift left dst arithmetically ADD(.B) dst,dst * * * *

RLC(.B) dst Shift left dst logically through Carry ADDC(.B) dst,dst * * * *

SBC(.B) dst Subtract Carry from dst SUBC(.B) #0,dst * * * *

SETC Set Carry bit BIS #1,SR – – – 1

SETN Set Negative bit BIS #4,SR – 1 – –

SETZ Set Zero bit BIS #2,SR – – 1 –

TST(.B) dst Test dst (compare with 0) CMP(.B) #0,dst 0 * * 1

1.5.1.5 MSP430 Instruction Execution
The number of CPU clock cycles required for an instruction depends on the instruction format and the
addressing modes used – not the instruction itself. The number of clock cycles refers to MCLK.

1.5.1.5.1 Instruction Cycles and Length for Interrupt, Reset, and Subroutines
Table 1-8 lists the length and the CPU cycles for reset, interrupts, and subroutines.

Table 1-8. Interrupt, Return, and Reset Cycles and Length

Action Execution Time
(MCLK Cycles)

Length of Instruction
(Words)

Return from interrupt RETI 5 1
Return from subroutine RET 4 1
Interrupt request service (cycles needed before first
instruction) 6 –

WDT reset 4 –
Reset (RST/NMI) 4 –

1.5.1.5.2 Format II (Single-Operand) Instruction Cycles and Lengths
Table 1-9 lists the length and the CPU cycles for all addressing modes of the MSP430 single-operand
instructions.

Table 1-9. MSP430 Format II Instruction Cycles and Length

Addressing Mode
No. of Cycles

Length of
Instruction ExampleRRA, RRC

SWPB, SXT PUSH CALL

Rn 1 3 4 1 SWPB R5

@Rn 3 3 4 1 RRC @R9

@Rn+ 3 3 4 1 SWPB @R10+

#N N/A 3 4 2 CALL #LABEL

X(Rn) 4 4 5 2 CALL 2(R7)

EDE 4 4 5 2 PUSH EDE

&EDE 4 4 6 2 SXT &EDE

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU391F

MSP430 and MSP430X Instructions www.ti.com

32 SLAU391F–August 2012–Revised March 2018
Submit Documentation Feedback

Copyright © 2012–2018, Texas Instruments Incorporated

CPUX

Chapter Excerpt from SLAU208

1.5.1.5.3 Jump Instructions Cycles and Lengths
All jump instructions require one code word and take two CPU cycles to execute, regardless of whether
the jump is taken or not.

1.5.1.5.4 Format I (Double-Operand) Instruction Cycles and Lengths
Table 1-10 lists the length and CPU cycles for all addressing modes of the MSP430 Format I instructions.

(1) MOV, BIT, and CMP instructions execute in one fewer cycle.

Table 1-10. MSP430 Format I Instructions Cycles and Length

Addressing Mode
No. of Cycles Length of

Instruction Example
Source Destination

Rn Rm 1 1 MOV R5,R8

PC 3 1 BR R9

x(Rm) 4 (1) 2 ADD R5,4(R6)

EDE 4 (1) 2 XOR R8,EDE

&EDE 4 (1) 2 MOV R5,&EDE

@Rn Rm 2 1 AND @R4,R5

PC 4 1 BR @R8

x(Rm) 5 (1) 2 XOR @R5,8(R6)

EDE 5 (1) 2 MOV @R5,EDE

&EDE 5 (1) 2 XOR @R5,&EDE

@Rn+ Rm 2 1 ADD @R5+,R6

PC 4 1 BR @R9+

x(Rm) 5 (1) 2 XOR @R5,8(R6)

EDE 5 (1) 2 MOV @R9+,EDE

&EDE 5 (1) 2 MOV @R9+,&EDE

#N Rm 2 2 MOV #20,R9

PC 3 2 BR #2AEh

x(Rm) 5 (1) 3 MOV #0300h,0(SP)

EDE 5 (1) 3 ADD #33,EDE

&EDE 5 (1) 3 ADD #33,&EDE

x(Rn) Rm 3 2 MOV 2(R5),R7

PC 5 2 BR 2(R6)

TONI 6 (1) 3 MOV 4(R7),TONI

x(Rm) 6 (1) 3 ADD 4(R4),6(R9)

&TONI 6 (1) 3 MOV 2(R4),&TONI

EDE Rm 3 2 AND EDE,R6

PC 5 2 BR EDE

TONI 6 (1) 3 CMP EDE,TONI

x(Rm) 6 (1) 3 MOV EDE,0(SP)

&TONI 6 (1) 3 MOV EDE,&TONI

&EDE Rm 3 2 MOV &EDE,R8

PC 5 2 BR &EDE

TONI 6 (1) 3 MOV &EDE,TONI

x(Rm) 6 (1) 3 MOV &EDE,0(SP)

&TONI 6 (1) 3 MOV &EDE,&TONI

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU391F

15 12 11 10 7 6 5 4 3 0

0 0 0 1 1 Source bits 19:16 A/L 0 0 Destination bits 19:16

15 12 11 10 9 8 7 6 5 4 3 0

0001 1 00 ZC # A/L 0 0 (n−1)/Rn

www.ti.com MSP430 and MSP430X Instructions

33SLAU391F–August 2012–Revised March 2018
Submit Documentation Feedback

Copyright © 2012–2018, Texas Instruments Incorporated

CPUX

Chapter Excerpt from SLAU208

1.5.2 MSP430X Extended Instructions
The extended MSP430X instructions give the MSP430X CPU full access to its 20-bit address space. Most
MSP430X instructions require an additional word of op-code called the extension word. Some extended
instructions do not require an additional word and are noted in the instruction description. All addresses,
indexes, and immediate numbers have 20-bit values when preceded by the extension word.

There are two types of extension words:
• Register or register mode for Format I instructions and register mode for Format II instructions
• Extension word for all other address mode combinations

1.5.2.1 Register Mode Extension Word
The register mode extension word is shown in Figure 1-25 and described in Table 1-11. An example is
shown in Figure 1-27.

Figure 1-25. Extension Word for Register Modes

Table 1-11. Description of the Extension Word Bits for Register Mode

Bit Description
15:11 Extension word op-code. Op-codes 1800h to 1FFFh are extension words.
10:9 Reserved
ZC Zero carry

0 The executed instruction uses the status of the carry bit C.
1 The executed instruction uses the carry bit as 0. The carry bit is defined by the result of the final operation after

instruction execution.
Repetition

0 The number of instruction repetitions is set by extension word bits 3:0.
1 The number of instruction repetitions is defined by the value of the four LSBs of Rn. See description for bits 3:0.

A/L Data length extension. Together with the B/W bits of the following MSP430 instruction, the AL bit defines the used data
length of the instruction.

A/L B/W Comment
0 0 Reserved
0 1 20-bit address word
1 0 16-bit word
1 1 8-bit byte

5:4 Reserved
3:0 Repetition count

= 0 These four bits set the repetition count n. These bits contain n – 1.
= 1 These four bits define the CPU register whose bits 3:0 set the number of repetitions. Rn.3:0 contain n – 1.

1.5.2.2 Non-Register Mode Extension Word
The extension word for non-register modes is shown in Figure 1-26 and described in Table 1-12. An
example is shown in Figure 1-28.

Figure 1-26. Extension Word for Non-Register Modes

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU391F

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 1 1 00 ZC # A/L Rsvd (n−1)/Rn

Op-code Rsrc Ad B/W As Rdst

XORX.A R9,R8

0 0 0 1 1 0 0 0 0 0 0

14(XOR) 9 0 1 0 8(R8)

XORX instruction Source R9

0: Use Carry

1: Repetition count
in bits 3:0

01: Address word

Destination
register mode

Source
register mode

Destination R8

MSP430 and MSP430X Instructions www.ti.com

34 SLAU391F–August 2012–Revised March 2018
Submit Documentation Feedback

Copyright © 2012–2018, Texas Instruments Incorporated

CPUX

Chapter Excerpt from SLAU208

Table 1-12. Description of Extension Word Bits for Non-Register Modes

Bit Description
15:11 Extension word op-code. Op-codes 1800h to 1FFFh are extension words.
Source Bits
19:16

The four MSBs of the 20-bit source. Depending on the source addressing mode, these four MSBs may belong to an
immediate operand, an index, or to an absolute address.

A/L Data length extension. Together with the B/W bits of the following MSP430 instruction, the AL bit defines the used
data length of the instruction.
A/L B/W Comment
0 0 Reserved
0 1 20-bit address word
1 0 16-bit word
1 1 8-bit byte

5:4 Reserved
Destination
Bits 19:16

The four MSBs of the 20-bit destination. Depending on the destination addressing mode, these four MSBs may
belong to an index or to an absolute address.

NOTE: B/W and A/L bit settings for SWPBX and SXTX

A/L B/W
0 0 SWPBX.A, SXTX.A
0 1 N/A
1 0 SWPB.W, SXTX.W
1 1 N/A

Figure 1-27. Example for Extended Register or Register Instruction

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU391F

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 1 1 Source 19:16 A/L Rsvd Destination 19:16

Op-code Rsrc Ad B/W As Rdst

XORX.A #12345h, 45678h(R15)

0 0 0 1 1 1 0 0 4

14 (XOR) 0 (PC) 1 1 3 15 (R15)

18xx extension word 12345h

@PC+

X(Rn)

Source 15:0

Destination 15:0

Immediate operand LSBs: 2345h

Index destination LSBs: 5678h

01: Address
word

www.ti.com MSP430 and MSP430X Instructions

35SLAU391F–August 2012–Revised March 2018
Submit Documentation Feedback

Copyright © 2012–2018, Texas Instruments Incorporated

CPUX

Chapter Excerpt from SLAU208

Figure 1-28. Example for Extended Immediate or Indexed Instruction

1.5.2.3 Extended Double-Operand (Format I) Instructions
All 12 double-operand instructions have extended versions as listed in Table 1-13.

(1) * = Status bit is affected.
– = Status bit is not affected.
0 = Status bit is cleared.
1 = Status bit is set.

Table 1-13. Extended Double-Operand Instructions

Mnemonic Operands Operation
Status Bits (1)

V N Z C
MOVX(.B,.A) src,dst src → dst – – – –

ADDX(.B,.A) src,dst src + dst → dst * * * *

ADDCX(.B,.A) src,dst src + dst + C → dst * * * *

SUBX(.B,.A) src,dst dst + .not.src + 1 → dst * * * *

SUBCX(.B,.A) src,dst dst + .not.src + C → dst * * * *

CMPX(.B,.A) src,dst dst – src * * * *

DADDX(.B,.A) src,dst src + dst + C → dst (decimal) * * * *

BITX(.B,.A) src,dst src .and. dst 0 * * Z

BICX(.B,.A) src,dst .not.src .and. dst → dst – – – –

BISX(.B,.A) src,dst src .or. dst → dst – – – –

XORX(.B,.A) src,dst src .xor. dst → dst * * * Z

ANDX(.B,.A) src,dst src .and. dst → dst 0 * * Z

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU391F

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 19:16

Operand LSBs 15:0

0...

Address

Address+2

15 14 13 12 11 10 9 8 7 6 5 4 3 0

0 0 0 1 1 0 A/L n−1/Rn

Op-code B/W dst

0 ZC # 0 0

src 0 0 0

0 0 0 1 1 A/L

Op-code B/W dst

src.15:0

src.19:16 0 0

src Ad As

0 0 0 1 1 A/L

Op-code B/W dst

dst.15:0

0 0

src Ad

0 0 0 1 1 A/L dst.19:16

Op-code B/W dst

src.15:0

0 0

src Ad

0 0 0 0

dst.19:160 0 0 0

As

src.19:16

As

dst.15:0

MSP430 and MSP430X Instructions www.ti.com

36 SLAU391F–August 2012–Revised March 2018
Submit Documentation Feedback

Copyright © 2012–2018, Texas Instruments Incorporated

CPUX

Chapter Excerpt from SLAU208

The four possible addressing combinations for the extension word for Format I instructions are shown in
Figure 1-29.

Figure 1-29. Extended Format I Instruction Formats

If the 20-bit address of a source or destination operand is located in memory, not in a CPU register, then
two words are used for this operand as shown in Figure 1-30.

Figure 1-30. 20-Bit Addresses in Memory

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU391F

15 14 13 12 11 10 9 8 7 6 5 4 3 0

0 0 0 1 1 0 A/L n−1/Rn

Op-code B/W dst

0 ZC # 0 0

0 0 0 1 1 A/L

Op-code B/W dst

0 0

0 0 0 1 1 A/L

Op-code B/W dst

dst.15:0

0 0

0 0 0 0

dst.19:160 0 0 0

0 0 0 0

0 0

1 x

x 1

www.ti.com MSP430 and MSP430X Instructions

37SLAU391F–August 2012–Revised March 2018
Submit Documentation Feedback

Copyright © 2012–2018, Texas Instruments Incorporated

CPUX

Chapter Excerpt from SLAU208

1.5.2.4 Extended Single-Operand (Format II) Instructions
Extended MSP430X Format II instructions are listed in Table 1-14.

(1) * = Status bit is affected.
– = Status bit is not affected.
0 = Status bit is cleared.
1 = Status bit is set.

Table 1-14. Extended Single-Operand Instructions

Mnemonic Operands Operation
Status Bits (1)

n V N Z C
CALLA dst Call indirect to subroutine (20-bit address) – – – –

POPM.A #n,Rdst Pop n 20-bit registers from stack 1 to 16 – – – –

POPM.W #n,Rdst Pop n 16-bit registers from stack 1 to 16 – – – –

PUSHM.A #n,Rsrc Push n 20-bit registers to stack 1 to 16 – – – –

PUSHM.W #n,Rsrc Push n 16-bit registers to stack 1 to 16 – – – –

PUSHX(.B,.A) src Push 8-, 16-, or 20-bit source to stack – – – –

RRCM(.A) #n,Rdst Rotate right Rdst n bits through carry (16-, 20-bit register) 1 to 4 0 * * *

RRUM(.A) #n,Rdst Rotate right Rdst n bits unsigned (16-, 20-bit register) 1 to 4 0 * * *

RRAM(.A) #n,Rdst Rotate right Rdst n bits arithmetically (16-, 20-bit register) 1 to 4 0 * * *

RLAM(.A) #n,Rdst Rotate left Rdst n bits arithmetically (16-, 20-bit register) 1 to 4 * * * *

RRCX(.B,.A) dst Rotate right dst through carry (8-, 16-, 20-bit data) 1 0 * * *

RRUX(.B,.A) Rdst Rotate right dst unsigned (8-, 16-, 20-bit) 1 0 * * *

RRAX(.B,.A) dst Rotate right dst arithmetically 1 0 * * *

SWPBX(.A) dst Exchange low byte with high byte 1 – – – –

SXTX(.A) Rdst Bit7 → bit8 ... bit19 1 0 * * Z

SXTX(.A) dst Bit7 → bit8 ... MSB 1 0 * * Z

The three possible addressing mode combinations for Format II instructions are shown in Figure 1-31.

Figure 1-31. Extended Format II Instruction Format

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU391F

15 4 3 0

Op-code Rdst

Op-code Rdst

Op-code #imm/ix/abs19:16

index15:0

#imm15:0 / index15:0 / &abs15:0

15 12 11 8 7 4 3 0

C Rsrc Op-code 0(PC)

C #imm/abs19:16 Op-code 0(PC)

C Rsrc Op-code 0(PC)

#imm15:0 / &abs15:0

index15:0

15 12 11 10 9 4 3 0

C n−1 Op-code Rdst

15 8 7 4 3 0

Op-code n−1 Rdst − n+1

MSP430 and MSP430X Instructions www.ti.com

38 SLAU391F–August 2012–Revised March 2018
Submit Documentation Feedback

Copyright © 2012–2018, Texas Instruments Incorporated

CPUX

Chapter Excerpt from SLAU208

1.5.2.4.1 Extended Format II Instruction Format Exceptions
Exceptions for the Format II instruction formats are shown in Figure 1-32 through Figure 1-35.

Figure 1-32. PUSHM and POPM Instruction Format

Figure 1-33. RRCM, RRAM, RRUM, and RLAM Instruction Format

Figure 1-34. BRA Instruction Format

Figure 1-35. CALLA Instruction Format

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU391F

www.ti.com MSP430 and MSP430X Instructions

39SLAU391F–August 2012–Revised March 2018
Submit Documentation Feedback

Copyright © 2012–2018, Texas Instruments Incorporated

CPUX

Chapter Excerpt from SLAU208

1.5.2.5 Extended Emulated Instructions
The extended instructions together with the constant generator form the extended emulated instructions.
Table 1-15 lists the emulated instructions.

Table 1-15. Extended Emulated Instructions

Instruction Explanation Emulation
ADCX(.B,.A) dst Add carry to dst ADDCX(.B,.A) #0,dst

BRA dst Branch indirect dst MOVA dst,PC

RETA Return from subroutine MOVA @SP+,PC

CLRA Rdst Clear Rdst MOV #0,Rdst

CLRX(.B,.A) dst Clear dst MOVX(.B,.A) #0,dst

DADCX(.B,.A) dst Add carry to dst decimally DADDX(.B,.A) #0,dst

DECX(.B,.A) dst Decrement dst by 1 SUBX(.B,.A) #1,dst

DECDA Rdst Decrement Rdst by 2 SUBA #2,Rdst

DECDX(.B,.A) dst Decrement dst by 2 SUBX(.B,.A) #2,dst

INCX(.B,.A) dst Increment dst by 1 ADDX(.B,.A) #1,dst

INCDA Rdst Increment Rdst by 2 ADDA #2,Rdst

INCDX(.B,.A) dst Increment dst by 2 ADDX(.B,.A) #2,dst

INVX(.B,.A) dst Invert dst XORX(.B,.A) #-1,dst

RLAX(.B,.A) dst Shift left dst arithmetically ADDX(.B,.A) dst,dst

RLCX(.B,.A) dst Shift left dst logically through carry ADDCX(.B,.A) dst,dst

SBCX(.B,.A) dst Subtract carry from dst SUBCX(.B,.A) #0,dst

TSTA Rdst Test Rdst (compare with 0) CMPA #0,Rdst

TSTX(.B,.A) dst Test dst (compare with 0) CMPX(.B,.A) #0,dst

POPX dst Pop to dst MOVX(.B, .A) @SP+,dst

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU391F

MSP430 and MSP430X Instructions www.ti.com

40 SLAU391F–August 2012–Revised March 2018
Submit Documentation Feedback

Copyright © 2012–2018, Texas Instruments Incorporated

CPUX

Chapter Excerpt from SLAU208

1.5.2.6 MSP430X Address Instructions
MSP430X address instructions are instructions that support 20-bit operands but have restricted
addressing modes. The addressing modes are restricted to the Register mode and the Immediate mode,
except for the MOVA instruction as listed in Table 1-16. Restricting the addressing modes removes the
need for the additional extension-word op-code improving code density and execution time. Address
instructions should be used any time an MSP430X instruction is needed with the corresponding restricted
addressing mode.

(1) * = Status bit is affected.
– = Status bit is not affected.
0 = Status bit is cleared.
1 = Status bit is set.

Table 1-16. Address Instructions, Operate on 20-Bit Register Data

Mnemonic Operands Operation
Status Bits (1)

V N Z C
ADDA Rsrc,Rdst Add source to destination register * * * *

#imm20,Rdst

MOVA Rsrc,Rdst Move source to destination – – – –

#imm20,Rdst

z16(Rsrc),Rdst

EDE,Rdst

&abs20,Rdst

@Rsrc,Rdst

@Rsrc+,Rdst

Rsrc,z16(Rdst)

Rsrc,&abs20

CMPA Rsrc,Rdst Compare source to destination register * * * *

#imm20,Rdst

SUBA Rsrc,Rdst Subtract source from destination register * * * *

#imm20,Rdst

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU391F

www.ti.com MSP430 and MSP430X Instructions

41SLAU391F–August 2012–Revised March 2018
Submit Documentation Feedback

Copyright © 2012–2018, Texas Instruments Incorporated

CPUX

Chapter Excerpt from SLAU208

1.5.2.7 MSP430X Instruction Execution
The number of CPU clock cycles required for an MSP430X instruction depends on the instruction format
and the addressing modes used, not the instruction itself. The number of clock cycles refers to MCLK.

1.5.2.7.1 MSP430X Format II (Single-Operand) Instruction Cycles and Lengths
Table 1-17 lists the length and the CPU cycles for all addressing modes of the MSP430X extended single-
operand instructions.

(1) Add one cycle when Rn = SP

Table 1-17. MSP430X Format II Instruction Cycles and Length

Instruction
Execution Cycles, Length of Instruction (Words)

Rn @Rn @Rn+ #N X(Rn) EDE &EDE
RRAM n, 1 – – – – – –
RRCM n, 1 – – – – – –
RRUM n, 1 – – – – – –
RLAM n, 1 – – – – – –
PUSHM 2+n, 1 – – – – – –
PUSHM.A 2+2n, 1 – – – – – –
POPM 2+n, 1 – – – – – –
POPM.A 2+2n, 1 – – – – – –
CALLA 5, 1 6, 1 6, 1 5, 2 5 (1), 2 7, 2 7, 2
RRAX(.B) 1+n, 2 4, 2 4, 2 – 5, 3 5, 3 5, 3
RRAX.A 1+n, 2 6, 2 6, 2 – 7, 3 7, 3 7, 3
RRCX(.B) 1+n, 2 4, 2 4, 2 – 5, 3 5, 3 5, 3
RRCX.A 1+n, 2 6, 2 6, 2 – 7, 3 7, 3 7, 3
PUSHX(.B) 4, 2 4, 2 4, 2 4, 3 5 (1), 3 5, 3 5, 3
PUSHX.A 5, 2 6, 2 6, 2 5, 3 7 (1), 3 7, 3 7, 3
POPX(.B) 3, 2 – – – 5, 3 5, 3 5, 3
POPX.A 4, 2 – – – 7, 3 7, 3 7, 3

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU391F

MSP430 and MSP430X Instructions www.ti.com

42 SLAU391F–August 2012–Revised March 2018
Submit Documentation Feedback

Copyright © 2012–2018, Texas Instruments Incorporated

CPUX

Chapter Excerpt from SLAU208

1.5.2.7.2 MSP430X Format I (Double-Operand) Instruction Cycles and Lengths
Table 1-18 lists the length and CPU cycles for all addressing modes of the MSP430X extended Format I
instructions.

(1) Repeat instructions require n + 1 cycles, where n is the number of times the instruction is executed.
(2) Reduce the cycle count by one for MOV, BIT, and CMP instructions.
(3) Reduce the cycle count by two for MOV, BIT, and CMP instructions.
(4) Reduce the cycle count by one for MOV, ADD, and SUB instructions.

Table 1-18. MSP430X Format I Instruction Cycles and Length

Addressing Mode No. of Cycles Length of
Instruction Examples

Source Destination .B/.W .A .B/.W/.A
Rn Rm (1) 2 2 2 BITX.B R5,R8

PC 4 4 2 ADDX R9,PC

x(Rm) 5 (2) 7 (3) 3 ANDX.A R5,4(R6)

EDE 5 (2) 7 (3) 3 XORX R8,EDE

&EDE 5 (2) 7 (3) 3 BITX.W R5,&EDE

@Rn Rm 3 4 2 BITX @R5,R8

PC 5 6 2 ADDX @R9,PC

x(Rm) 6 (2) 9 (3) 3 ANDX.A @R5,4(R6)

EDE 6 (2) 9 (3) 3 XORX @R8,EDE

&EDE 6 (2) 9 (3) 3 BITX.B @R5,&EDE

@Rn+ Rm 3 4 2 BITX @R5+,R8

PC 5 6 2 ADDX.A @R9+,PC

x(Rm) 6 (2) 9 (3) 3 ANDX @R5+,4(R6)

EDE 6 (2) 9 (3) 3 XORX.B @R8+,EDE

&EDE 6 (2) 9 (3) 3 BITX @R5+,&EDE

#N Rm 3 3 3 BITX #20,R8

PC (4) 4 4 3 ADDX.A #FE000h,PC

x(Rm) 6 (2) 8 (3) 4 ANDX #1234,4(R6)

EDE 6 (2) 8 (3) 4 XORX #A5A5h,EDE

&EDE 6 (2) 8 (3) 4 BITX.B #12,&EDE

x(Rn) Rm 4 5 3 BITX 2(R5),R8

PC (4) 6 7 3 SUBX.A 2(R6),PC

TONI 7 (2) 10 (3) 4 ANDX 4(R7),4(R6)

x(Rm) 7 (2) 10 (3) 4 XORX.B 2(R6),EDE

&TONI 7 (2) 10 (3) 4 BITX 8(SP),&EDE

EDE Rm 4 5 3 BITX.B EDE,R8

PC (4) 6 7 3 ADDX.A EDE,PC

TONI 7 (2) 10 (3) 4 ANDX EDE,4(R6)

x(Rm) 7 (2) 10 (3) 4 ANDX EDE,TONI

&TONI 7 (2) 10 (3) 4 BITX EDE,&TONI

&EDE Rm 4 5 3 BITX &EDE,R8

PC (4) 6 7 3 ADDX.A &EDE,PC

TONI 7 (2) 10 (3) 4 ANDX.B &EDE,4(R6)

x(Rm) 7 (2) 10 (3) 4 XORX &EDE,TONI

&TONI 7 (2) 10 (3) 4 BITX &EDE,&TONI

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU391F

www.ti.com MSP430 and MSP430X Instructions

43SLAU391F–August 2012–Revised March 2018
Submit Documentation Feedback

Copyright © 2012–2018, Texas Instruments Incorporated

CPUX

Chapter Excerpt from SLAU208

1.5.2.7.3 MSP430X Address Instruction Cycles and Lengths
Table 1-19 lists the length and the CPU cycles for all addressing modes of the MSP430X address
instructions.

Table 1-19. Address Instruction Cycles and Length

Addressing Mode Execution Time
(MCLK Cycles)

Length of Instruction
(Words)

Example
Source Destination MOVA

BRA
CMPA
ADDA
SUBA

MOVA
CMPA
ADDA
SUBA

Rn Rn 1 1 1 1 CMPA R5,R8

PC 3 3 1 1 SUBA R9,PC

x(Rm) 4 – 2 – MOVA R5,4(R6)

EDE 4 – 2 – MOVA R8,EDE

&EDE 4 – 2 – MOVA R5,&EDE

@Rn Rm 3 – 1 – MOVA @R5,R8

PC 5 – 1 – MOVA @R9,PC

@Rn+ Rm 3 – 1 – MOVA @R5+,R8

PC 5 – 1 – MOVA @R9+,PC

#N Rm 2 3 2 2 CMPA #20,R8

PC 3 3 2 2 SUBA #FE000h,PC

x(Rn) Rm 4 – 2 – MOVA 2(R5),R8

PC 6 – 2 – MOVA 2(R6),PC

EDE Rm 4 – 2 – MOVA EDE,R8

PC 6 – 2 – MOVA EDE,PC

&EDE Rm 4 – 2 – MOVA &EDE,R8

PC 6 – 2 – MOVA &EDE,PC

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU391F

Instruction Set Description www.ti.com

44 SLAU391F–August 2012–Revised March 2018
Submit Documentation Feedback

Copyright © 2012–2018, Texas Instruments Incorporated

CPUX

Chapter Excerpt from SLAU208

1.6 Instruction Set Description
Table 1-20 shows all available instructions:

Table 1-20. Instruction Map of MSP430X

000 040 080 0C0 100 140 180 1C0 200 240 280 2C0 300 340 380 3C0
0xxx MOVA, CMPA, ADDA, SUBA, RRCM, RRAM, RLAM, RRUM

10xx RRC RRC.
B

SWP
B RRA RRA.

B SXT PUS
H

PUS
H.B CALL RETI CALL

A
14xx PUSHM.A, POPM.A, PUSHM.W, POPM.W
18xx

Extension word for Format I and Format II instructions
1Cxx
20xx JNE, JNZ
24xx JEQ, JZ
28xx JNC
2Cxx JC
30xx JN
34xx JGE
38xx JL
3Cxx JMP
4xxx MOV, MOV.B
5xxx ADD, ADD.B
6xxx ADDC, ADDC.B
7xxx SUBC, SUBC.B
8xxx SUB, SUB.B
9xxx CMP, CMP.B
Axxx DADD, DADD.B
Bxxx BIT, BIT.B
Cxxx BIC, BIC.B
Dxxx BIS, BIS.B
Exxx XOR, XOR.B
Fxxx AND, AND.B

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU391F

www.ti.com Instruction Set Description

45SLAU391F–August 2012–Revised March 2018
Submit Documentation Feedback

Copyright © 2012–2018, Texas Instruments Incorporated

CPUX

Chapter Excerpt from SLAU208

1.6.1 Extended Instruction Binary Descriptions
Detailed MSP430X instruction binary descriptions are shown in the following tables.

Instruction
Instruction

Group src or data.19:16 Instruction
Identifier dst

15 12 11 8 7 4 3 0
MOVA 0 0 0 0 src 0 0 0 0 dst MOVA @Rsrc,Rdst

0 0 0 0 src 0 0 0 1 dst MOVA @Rsrc+,Rdst

0 0 0 0 &abs.19:16 0 0 1 0 dst MOVA &abs20,Rdst

&abs.15:0

0 0 0 0 src 0 0 1 1 dst MOVA z16(Rsrc),Rdst

x.15:0

0 0 0 0 src 0 1 1 0 &abs.19:16 MOVA Rsrc,&abs20

&abs.15:0

0 0 0 0 src 0 1 1 1 dst MOVA Rsrc,z16(Rdst)

x.15:0

0 0 0 0 imm.19:16 1 0 0 0 dst MOVA #imm20,Rdst

imm.15:0
CMPA 0 0 0 0 imm.19:16 1 0 0 1 dst CMPA #imm20,Rdst

imm.15:0
ADDA 0 0 0 0 imm.19:16 1 0 1 0 dst ADDA #imm20,Rdst

imm.15:0
SUBA 0 0 0 0 imm.19:16 1 0 1 1 dst SUBA #imm20,Rdst

imm.15:0
MOVA 0 0 0 0 src 1 1 0 0 dst MOVA Rsrc,Rdst

CMPA 0 0 0 0 src 1 1 0 1 dst CMPA Rsrc,Rdst

ADDA 0 0 0 0 src 1 1 1 0 dst ADDA Rsrc,Rdst

SUBA 0 0 0 0 src 1 1 1 1 dst SUBA Rsrc,Rdst

Instruction
Instruction

Group Bit Loc. Inst. ID Instruction
Identifier dst

15 12 11 10 9 8 7 4 3 0
RRCM.A 0 0 0 0 n – 1 0 0 0 1 0 0 dst RRCM.A #n,Rdst

RRAM.A 0 0 0 0 n – 1 0 1 0 1 0 0 dst RRAM.A #n,Rdst

RLAM.A 0 0 0 0 n – 1 1 0 0 1 0 0 dst RLAM.A #n,Rdst

RRUM.A 0 0 0 0 n – 1 1 1 0 1 0 0 dst RRUM.A #n,Rdst

RRCM.W 0 0 0 0 n – 1 0 0 0 1 0 1 dst RRCM.W #n,Rdst

RRAM.W 0 0 0 0 n – 1 0 1 0 1 0 1 dst RRAM.W #n,Rdst

RLAM.W 0 0 0 0 n – 1 1 0 0 1 0 1 dst RLAM.W #n,Rdst

RRUM.W 0 0 0 0 n – 1 1 1 0 1 0 1 dst RRUM.W #n,Rdst

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU391F

Instruction Set Description www.ti.com

46 SLAU391F–August 2012–Revised March 2018
Submit Documentation Feedback

Copyright © 2012–2018, Texas Instruments Incorporated

CPUX

Chapter Excerpt from SLAU208

Instruction
Instruction Identifier dst

15 12 11 8 7 6 5 4 3 0
RETI 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0
CALLA 0 0 0 1 0 0 1 1 0 1 0 0 dst CALLA Rdst

0 0 0 1 0 0 1 1 0 1 0 1 dst CALLA x(Rdst)

x.15:0

0 0 0 1 0 0 1 1 0 1 1 0 dst CALLA @Rdst

0 0 0 1 0 0 1 1 0 1 1 1 dst CALLA @Rdst+

0 0 0 1 0 0 1 1 1 0 0 0 &abs.19:16 CALLA &abs20

&abs.15:0

0 0 0 1 0 0 1 1 1 0 0 1 x.19:16 CALLA EDE

x.15:0 CALLA x(PC)

0 0 0 1 0 0 1 1 1 0 1 1 imm.19:16 CALLA #imm20

imm.15:0
Reserved 0 0 0 1 0 0 1 1 1 0 1 0 x x x x
Reserved 0 0 0 1 0 0 1 1 1 1 x x x x x x
PUSHM.A 0 0 0 1 0 1 0 0 n – 1 dst PUSHM.A #n,Rdst

PUSHM.W 0 0 0 1 0 1 0 1 n – 1 dst PUSHM.W #n,Rdst

POPM.A 0 0 0 1 0 1 1 0 n – 1 dst – n + 1 POPM.A #n,Rdst

POPM.W 0 0 0 1 0 1 1 1 n – 1 dst – n + 1 POPM.W #n,Rdst

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU391F

www.ti.com Instruction Set Description

47SLAU391F–August 2012–Revised March 2018
Submit Documentation Feedback

Copyright © 2012–2018, Texas Instruments Incorporated

CPUX

Chapter Excerpt from SLAU208

1.6.2 MSP430 Instructions
The MSP430 instructions are listed and described on the following pages.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU391F

Instruction Set Description www.ti.com

48 SLAU391F–August 2012–Revised March 2018
Submit Documentation Feedback

Copyright © 2012–2018, Texas Instruments Incorporated

CPUX

Chapter Excerpt from SLAU208

1.6.2.1 ADC

* ADC[.W] Add carry to destination
* ADC.B Add carry to destination
Syntax ADC dst or ADC.W dst

ADC.B dst

Operation dst + C → dst
Emulation ADDC #0,dst

ADDC.B #0,dst

Description The carry bit (C) is added to the destination operand. The previous contents of the
destination are lost.

Status Bits N: Set if result is negative, reset if positive
Z: Set if result is zero, reset otherwise
C: Set if dst was incremented from 0FFFFh to 0000, reset otherwise

Set if dst was incremented from 0FFh to 00, reset otherwise
V: Set if an arithmetic overflow occurs, otherwise reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example The 16-bit counter pointed to by R13 is added to a 32-bit counter pointed to by R12.

ADD @R13,0(R12) ; Add LSDs
ADC 2(R12) ; Add carry to MSD

Example The 8-bit counter pointed to by R13 is added to a 16-bit counter pointed to by R12.

ADD.B @R13,0(R12) ; Add LSDs
ADC.B 1(R12) ; Add carry to MSD

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU391F

www.ti.com Instruction Set Description

49SLAU391F–August 2012–Revised March 2018
Submit Documentation Feedback

Copyright © 2012–2018, Texas Instruments Incorporated

CPUX

Chapter Excerpt from SLAU208

1.6.2.2 ADD

ADD[.W] Add source word to destination word
ADD.B Add source byte to destination byte
Syntax ADD src,dst or ADD.W src,dst

ADD.B src,dst

Operation src + dst → dst
Description The source operand is added to the destination operand. The previous content of the

destination is lost.
Status Bits N: Set if result is negative (MSB = 1), reset if positive (MSB = 0)

Z: Set if result is zero, reset otherwise
C: Set if there is a carry from the MSB of the result, reset otherwise
V: Set if the result of two positive operands is negative, or if the result of two negative

numbers is positive, reset otherwise
Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example Ten is added to the 16-bit counter CNTR located in lower 64 K.

ADD.W #10,&CNTR ; Add 10 to 16-bit counter

Example A table word pointed to by R5 (20-bit address in R5) is added to R6. The jump to label
TONI is performed on a carry.

ADD.W @R5,R6 ; Add table word to R6. R6.19:16 = 0
JC TONI ; Jump if carry
... ; No carry

Example A table byte pointed to by R5 (20-bit address) is added to R6. The jump to label TONI is
performed if no carry occurs. The table pointer is auto-incremented by 1. R6.19:8 = 0

ADD.B @R5+,R6 ; Add byte to R6. R5 + 1. R6: 000xxh
JNC TONI ; Jump if no carry
... ; Carry occurred

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU391F

Instruction Set Description www.ti.com

50 SLAU391F–August 2012–Revised March 2018
Submit Documentation Feedback

Copyright © 2012–2018, Texas Instruments Incorporated

CPUX

Chapter Excerpt from SLAU208

1.6.2.3 ADDC

ADDC[.W] Add source word and carry to destination word
ADDC.B Add source byte and carry to destination byte
Syntax ADDC src,dst or ADDC.W src,dst

ADDC.B src,dst

Operation src + dst + C → dst
Description The source operand and the carry bit C are added to the destination operand. The

previous content of the destination is lost.
Status Bits N: Set if result is negative (MSB = 1), reset if positive (MSB = 0)

Z: Set if result is zero, reset otherwise
C: Set if there is a carry from the MSB of the result, reset otherwise
V: Set if the result of two positive operands is negative, or if the result of two negative

numbers is positive, reset otherwise
Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example Constant value 15 and the carry of the previous instruction are added to the 16-bit

counter CNTR located in lower 64 K.

ADDC.W #15,&CNTR ; Add 15 + C to 16-bit CNTR

Example A table word pointed to by R5 (20-bit address) and the carry C are added to R6. The
jump to label TONI is performed on a carry. R6.19:16 = 0

ADDC.W @R5,R6 ; Add table word + C to R6
JC TONI ; Jump if carry
... ; No carry

Example A table byte pointed to by R5 (20-bit address) and the carry bit C are added to R6. The
jump to label TONI is performed if no carry occurs. The table pointer is auto-incremented
by 1. R6.19:8 = 0

ADDC.B @R5+,R6 ; Add table byte + C to R6. R5 + 1
JNC TONI ; Jump if no carry
... ; Carry occurred

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU391F

www.ti.com Instruction Set Description

51SLAU391F–August 2012–Revised March 2018
Submit Documentation Feedback

Copyright © 2012–2018, Texas Instruments Incorporated

CPUX

Chapter Excerpt from SLAU208

1.6.2.4 AND

AND[.W] Logical AND of source word with destination word
AND.B Logical AND of source byte with destination byte
Syntax AND src,dst or AND.W src,dst

AND.B src,dst

Operation src .and. dst → dst
Description The source operand and the destination operand are logically ANDed. The result is

placed into the destination. The source operand is not affected.
Status Bits N: Set if result is negative (MSB = 1), reset if positive (MSB = 0)

Z: Set if result is zero, reset otherwise
C: Set if the result is not zero, reset otherwise. C = (.not. Z)
V: Reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example The bits set in R5 (16-bit data) are used as a mask (AA55h) for the word TOM located in

the lower 64 K. If the result is zero, a branch is taken to label TONI. R5.19:16 = 0

MOV #AA55h,R5 ; Load 16-bit mask to R5
AND R5,&TOM ; TOM .and. R5 -> TOM
JZ TONI ; Jump if result 0
... ; Result > 0

or shorter:

AND #AA55h,&TOM ; TOM .and. AA55h -> TOM
JZ TONI ; Jump if result 0

Example A table byte pointed to by R5 (20-bit address) is logically ANDed with R6. R5 is
incremented by 1 after the fetching of the byte. R6.19:8 = 0

AND.B @R5+,R6 ; AND table byte with R6. R5 + 1

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU391F

Instruction Set Description www.ti.com

52 SLAU391F–August 2012–Revised March 2018
Submit Documentation Feedback

Copyright © 2012–2018, Texas Instruments Incorporated

CPUX

Chapter Excerpt from SLAU208

1.6.2.5 BIC

BIC[.W] Clear bits set in source word in destination word
BIC.B Clear bits set in source byte in destination byte
Syntax BIC src,dst or BIC.W src,dst

BIC.B src,dst

Operation (.not. src) .and. dst → dst
Description The inverted source operand and the destination operand are logically ANDed. The

result is placed into the destination. The source operand is not affected.
Status Bits N: Not affected

Z: Not affected
C: Not affected
V: Not affected

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example The bits 15:14 of R5 (16-bit data) are cleared. R5.19:16 = 0

BIC #0C000h,R5 ; Clear R5.19:14 bits

Example A table word pointed to by R5 (20-bit address) is used to clear bits in R7. R7.19:16 = 0

BIC.W @R5,R7 ; Clear bits in R7 set in @R5

Example A table byte pointed to by R5 (20-bit address) is used to clear bits in Port1.

BIC.B @R5,&P1OUT ; Clear I/O port P1 bits set in @R5

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU391F

www.ti.com Instruction Set Description

53SLAU391F–August 2012–Revised March 2018
Submit Documentation Feedback

Copyright © 2012–2018, Texas Instruments Incorporated

CPUX

Chapter Excerpt from SLAU208

1.6.2.6 BIS

BIS[.W] Set bits set in source word in destination word
BIS.B Set bits set in source byte in destination byte
Syntax BIS src,dst or BIS.W src,dst

BIS.B src,dst

Operation src .or. dst → dst
Description The source operand and the destination operand are logically ORed. The result is placed

into the destination. The source operand is not affected.
Status Bits N: Not affected

Z: Not affected
C: Not affected
V: Not affected

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example Bits 15 and 13 of R5 (16-bit data) are set to one. R5.19:16 = 0

BIS #A000h,R5 ; Set R5 bits

Example A table word pointed to by R5 (20-bit address) is used to set bits in R7. R7.19:16 = 0

BIS.W @R5,R7 ; Set bits in R7

Example A table byte pointed to by R5 (20-bit address) is used to set bits in Port1. R5 is
incremented by 1 afterwards.

BIS.B @R5+,&P1OUT ; Set I/O port P1 bits. R5 + 1

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU391F

Instruction Set Description www.ti.com

54 SLAU391F–August 2012–Revised March 2018
Submit Documentation Feedback

Copyright © 2012–2018, Texas Instruments Incorporated

CPUX

Chapter Excerpt from SLAU208

1.6.2.7 BIT

BIT[.W] Test bits set in source word in destination word
BIT.B Test bits set in source byte in destination byte
Syntax BIT src,dst or BIT.W src,dst

BIT.B src,dst

Operation src .and. dst
Description The source operand and the destination operand are logically ANDed. The result affects

only the status bits in SR.
Register mode: the register bits Rdst.19:16 (.W) resp. Rdst. 19:8 (.B) are not cleared!

Status Bits N: Set if result is negative (MSB = 1), reset if positive (MSB = 0)
Z: Set if result is zero, reset otherwise
C: Set if the result is not zero, reset otherwise. C = (.not. Z)
V: Reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example Test if one (or both) of bits 15 and 14 of R5 (16-bit data) is set. Jump to label TONI if this

is the case. R5.19:16 are not affected.

BIT #C000h,R5 ; Test R5.15:14 bits
JNZ TONI ; At least one bit is set in R5
... ; Both bits are reset

Example A table word pointed to by R5 (20-bit address) is used to test bits in R7. Jump to label
TONI if at least one bit is set. R7.19:16 are not affected.

BIT.W @R5,R7 ; Test bits in R7
JC TONI ; At least one bit is set
... ; Both are reset

Example A table byte pointed to by R5 (20-bit address) is used to test bits in output Port1. Jump
to label TONI if no bit is set. The next table byte is addressed.

BIT.B @R5+,&P1OUT ; Test I/O port P1 bits. R5 + 1
JNC TONI ; No corresponding bit is set
... ; At least one bit is set

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU391F

www.ti.com Instruction Set Description

55SLAU391F–August 2012–Revised March 2018
Submit Documentation Feedback

Copyright © 2012–2018, Texas Instruments Incorporated

CPUX

Chapter Excerpt from SLAU208

1.6.2.8 BR, BRANCH

* BR,
BRANCH

Branch to destination in lower 64K address space

Syntax BR dst

Operation dst → PC
Emulation MOV dst,PC

Description An unconditional branch is taken to an address anywhere in the lower 64K address
space. All source addressing modes can be used. The branch instruction is a word
instruction.

Status Bits Status bits are not affected.
Example Examples for all addressing modes are given.

BR #EXEC ; Branch to label EXEC or direct branch (for example #0A4h)
; Core instruction MOV @PC+,PC

BR EXEC ; Branch to the address contained in EXEC
; Core instruction MOV X(PC),PC
; Indirect address

BR &EXEC ; Branch to the address contained in absolute
; address EXEC
; Core instruction MOV X(0),PC
; Indirect address

BR R5 ; Branch to the address contained in R5
; Core instruction MOV R5,PC
; Indirect R5

BR @R5 ; Branch to the address contained in the word
; pointed to by R5.
; Core instruction MOV @R5,PC
; Indirect, indirect R5

BR @R5+ ; Branch to the address contained in the word pointed
; to by R5 and increment pointer in R5 afterwards.
; The next time-S/W flow uses R5 pointer-it can
; alter program execution due to access to
; next address in a table pointed to by R5
; Core instruction MOV @R5,PC
; Indirect, indirect R5 with autoincrement

BR X(R5) ; Branch to the address contained in the address
; pointed to by R5 + X (for example table with address
; starting at X). X can be an address or a label
; Core instruction MOV X(R5),PC
; Indirect, indirect R5 + X

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU391F

Instruction Set Description www.ti.com

56 SLAU391F–August 2012–Revised March 2018
Submit Documentation Feedback

Copyright © 2012–2018, Texas Instruments Incorporated

CPUX

Chapter Excerpt from SLAU208

1.6.2.9 CALL

CALL Call a subroutine in lower 64 K
Syntax CALL dst

Operation dst → tmp 16-bit dst is evaluated and stored
SP – 2 → SP
PC → @SP updated PC with return address to TOS
tmp → PC saved 16-bit dst to PC

Description A subroutine call is made from an address in the lower 64 K to a subroutine address in
the lower 64 K. All seven source addressing modes can be used. The call instruction is a
word instruction. The return is made with the RET instruction.

Status Bits Status bits are not affected.
PC.19:16 cleared (address in lower 64 K)

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Examples Examples for all addressing modes are given.

Immediate Mode: Call a subroutine at label EXEC (lower 64 K) or call directly to address.

CALL #EXEC ; Start address EXEC
CALL #0AA04h ; Start address 0AA04h

Symbolic Mode: Call a subroutine at the 16-bit address contained in address EXEC.
EXEC is located at the address (PC + X) where X is within PC ± 32 K.

CALL EXEC ; Start address at @EXEC. z16(PC)

Absolute Mode: Call a subroutine at the 16-bit address contained in absolute address
EXEC in the lower 64 K.

CALL &EXEC ; Start address at @EXEC

Register mode: Call a subroutine at the 16-bit address contained in register R5.15:0.

CALL R5 ; Start address at R5

Indirect Mode: Call a subroutine at the 16-bit address contained in the word pointed to by
register R5 (20-bit address).

CALL @R5 ; Start address at @R5

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU391F

www.ti.com Instruction Set Description

57SLAU391F–August 2012–Revised March 2018
Submit Documentation Feedback

Copyright © 2012–2018, Texas Instruments Incorporated

CPUX

Chapter Excerpt from SLAU208

1.6.2.10 CLR

* CLR[.W] Clear destination
* CLR.B Clear destination
Syntax CLR dst or CLR.W dst

CLR.B dst

Operation 0 → dst
Emulation MOV #0,dst

MOV.B #0,dst

Description The destination operand is cleared.
Status Bits Status bits are not affected.
Example RAM word TONI is cleared.

CLR TONI ; 0 -> TONI

Example Register R5 is cleared.

CLR R5

Example RAM byte TONI is cleared.

CLR.B TONI ; 0 -> TONI

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU391F

Instruction Set Description www.ti.com

58 SLAU391F–August 2012–Revised March 2018
Submit Documentation Feedback

Copyright © 2012–2018, Texas Instruments Incorporated

CPUX

Chapter Excerpt from SLAU208

1.6.2.11 CLRC

* CLRC Clear carry bit
Syntax CLRC

Operation 0 → C
Emulation BIC #1,SR

Description The carry bit (C) is cleared. The clear carry instruction is a word instruction.
Status Bits N: Not affected

Z: Not affected
C: Cleared
V: Not affected

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example The 16-bit decimal counter pointed to by R13 is added to a 32-bit counter pointed to by

R12.

CLRC ; C=0: defines start
DADD @R13,0(R12) ; add 16-bit counter to low word of 32-bit counter
DADC 2(R12) ; add carry to high word of 32-bit counter

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU391F

www.ti.com Instruction Set Description

59SLAU391F–August 2012–Revised March 2018
Submit Documentation Feedback

Copyright © 2012–2018, Texas Instruments Incorporated

CPUX

Chapter Excerpt from SLAU208

1.6.2.12 CLRN

* CLRN Clear negative bit
Syntax CLRN

Operation 0 → N
or
(.NOT.src .AND. dst → dst)

Emulation BIC #4,SR

Description The constant 04h is inverted (0FFFBh) and is logically ANDed with the destination
operand. The result is placed into the destination. The clear negative bit instruction is a
word instruction.

Status Bits N: Reset to 0
Z: Not affected
C: Not affected
V: Not affected

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example The negative bit in the SR is cleared. This avoids special treatment with negative

numbers of the subroutine called.

CLRN
CALL SUBR
......
......

SUBR JN SUBRET ; If input is negative: do nothing and return
......
......
......

SUBRET RET

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU391F

Instruction Set Description www.ti.com

60 SLAU391F–August 2012–Revised March 2018
Submit Documentation Feedback

Copyright © 2012–2018, Texas Instruments Incorporated

CPUX

Chapter Excerpt from SLAU208

1.6.2.13 CLRZ

* CLRZ Clear zero bit
Syntax CLRZ

Operation 0 → Z
or
(.NOT.src .AND. dst → dst)

Emulation BIC #2,SR

Description The constant 02h is inverted (0FFFDh) and logically ANDed with the destination
operand. The result is placed into the destination. The clear zero bit instruction is a word
instruction.

Status Bits N: Not affected
Z: Reset to 0
C: Not affected
V: Not affected

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example The zero bit in the SR is cleared.

CLRZ

Indirect, Auto-Increment mode: Call a subroutine at the 16-bit address contained in the
word pointed to by register R5 (20-bit address) and increment the 16-bit address in R5
afterwards by 2. The next time the software uses R5 as a pointer, it can alter the
program execution due to access to the next word address in the table pointed to by R5.

CALL @R5+ ; Start address at @R5. R5 + 2

Indexed mode: Call a subroutine at the 16-bit address contained in the 20-bit address
pointed to by register (R5 + X); for example, a table with addresses starting at X. The
address is within the lower 64KB. X is within ±32KB.

CALL X(R5) ; Start address at @(R5+X). z16(R5)

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU391F

www.ti.com Instruction Set Description

61SLAU391F–August 2012–Revised March 2018
Submit Documentation Feedback

Copyright © 2012–2018, Texas Instruments Incorporated

CPUX

Chapter Excerpt from SLAU208

1.6.2.14 CMP

CMP[.W] Compare source word and destination word
CMP.B Compare source byte and destination byte
Syntax CMP src,dst or CMP.W src,dst

CMP.B src,dst

Operation (.not.src) + 1 + dst
or
dst – src

Description The source operand is subtracted from the destination operand. This is made by adding
the 1s complement of the source + 1 to the destination. The result affects only the status
bits in SR.
Register mode: the register bits Rdst.19:16 (.W) resp. Rdst. 19:8 (.B) are not cleared.

Status Bits N: Set if result is negative (src > dst), reset if positive (src ≤ dst)
Z: Set if result is zero (src = dst), reset otherwise (src ≠ dst)
C: Set if there is a carry from the MSB, reset otherwise
V: Set if the subtraction of a negative source operand from a positive destination

operand delivers a negative result, or if the subtraction of a positive source operand
from a negative destination operand delivers a positive result, reset otherwise (no
overflow).

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example Compare word EDE with a 16-bit constant 1800h. Jump to label TONI if EDE equals the

constant. The address of EDE is within PC + 32 K.

CMP #01800h,EDE ; Compare word EDE with 1800h
JEQ TONI ; EDE contains 1800h
... ; Not equal

Example A table word pointed to by (R5 + 10) is compared with R7. Jump to label TONI if R7
contains a lower, signed 16-bit number. R7.19:16 is not cleared. The address of the
source operand is a 20-bit address in full memory range.

CMP.W 10(R5),R7 ; Compare two signed numbers
JL TONI ; R7 < 10(R5)
... ; R7 >= 10(R5)

Example A table byte pointed to by R5 (20-bit address) is compared to the value in output Port1.
Jump to label TONI if values are equal. The next table byte is addressed.

CMP.B @R5+,&P1OUT ; Compare P1 bits with table. R5 + 1
JEQ TONI ; Equal contents
... ; Not equal

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU391F

Instruction Set Description www.ti.com

62 SLAU391F–August 2012–Revised March 2018
Submit Documentation Feedback

Copyright © 2012–2018, Texas Instruments Incorporated

CPUX

Chapter Excerpt from SLAU208

1.6.2.15 DADC

* DADC[.W] Add carry decimally to destination
* DADC.B Add carry decimally to destination
Syntax DADC dst or DADC.W dst

DADC.B dst

Operation dst + C → dst (decimally)
Emulation DADD #0,dst

DADD.B #0,dst

Description The carry bit (C) is added decimally to the destination.
Status Bits N: Set if MSB is 1

Z: Set if dst is 0, reset otherwise
C: Set if destination increments from 9999 to 0000, reset otherwise

Set if destination increments from 99 to 00, reset otherwise
V: Undefined

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example The four-digit decimal number contained in R5 is added to an eight-digit decimal number

pointed to by R8.

CLRC ; Reset carry
; next instruction's start condition is defined

DADD R5,0(R8) ; Add LSDs + C
DADC 2(R8) ; Add carry to MSD

Example The two-digit decimal number contained in R5 is added to a four-digit decimal number
pointed to by R8.

CLRC ; Reset carry
; next instruction's start condition is defined

DADD.B R5,0(R8) ; Add LSDs + C
DADC 1(R8) ; Add carry to MSDs

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU391F

www.ti.com Instruction Set Description

63SLAU391F–August 2012–Revised March 2018
Submit Documentation Feedback

Copyright © 2012–2018, Texas Instruments Incorporated

CPUX

Chapter Excerpt from SLAU208

1.6.2.16 DADD

* DADD[.W] Add source word and carry decimally to destination word
* DADD.B Add source byte and carry decimally to destination byte
Syntax DADD src,dst or DADD.W src,dst

DADD.B src,dst

Operation src + dst + C → dst (decimally)
Description The source operand and the destination operand are treated as two (.B) or four (.W)

binary coded decimals (BCD) with positive signs. The source operand and the carry bit C
are added decimally to the destination operand. The source operand is not affected. The
previous content of the destination is lost. The result is not defined for non-BCD
numbers.

Status Bits N: Set if MSB of result is 1 (word > 7999h, byte > 79h), reset if MSB is 0
Z: Set if result is zero, reset otherwise
C: Set if the BCD result is too large (word > 9999h, byte > 99h), reset otherwise
V: Undefined

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example Decimal 10 is added to the 16-bit BCD counter DECCNTR.

DADD #10h,&DECCNTR ; Add 10 to 4-digit BCD counter

Example The eight-digit BCD number contained in 16-bit RAM addresses BCD and BCD+2 is
added decimally to an eight-digit BCD number contained in R4 and R5 (BCD+2 and R5
contain the MSDs). The carry C is added, and cleared.

CLRC ; Clear carry
DADD.W &BCD,R4 ; Add LSDs. R4.19:16 = 0
DADD.W &BCD+2,R5 ; Add MSDs with carry. R5.19:16 = 0
JC OVERFLOW ; Result >9999,9999: go to error routine
... ; Result ok

Example The two-digit BCD number contained in word BCD (16-bit address) is added decimally to
a two-digit BCD number contained in R4. The carry C is added, also. R4.19:8 = 0

CLRC ; Clear carry
DADD.B &BCD,R4 ; Add BCD to R4 decimally.

R4: 0,00ddh

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU391F

EDE

EDE+254

TONI

TONI+254

Instruction Set Description www.ti.com

64 SLAU391F–August 2012–Revised March 2018
Submit Documentation Feedback

Copyright © 2012–2018, Texas Instruments Incorporated

CPUX

Chapter Excerpt from SLAU208

1.6.2.17 DEC

* DEC[.W] Decrement destination
* DEC.B Decrement destination
Syntax DEC dst or DEC.W dst

DEC.B dst

Operation dst – 1 → dst
Emulation SUB #1,dst

SUB.B #1,dst

Description The destination operand is decremented by one. The original contents are lost.
Status Bits N: Set if result is negative, reset if positive

Z: Set if dst contained 1, reset otherwise
C: Reset if dst contained 0, set otherwise
V: Set if an arithmetic overflow occurs, otherwise reset.

Set if initial value of destination was 08000h, otherwise reset.
Set if initial value of destination was 080h, otherwise reset.

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example R10 is decremented by 1.

DEC R10 ; Decrement R10

; Move a block of 255 bytes from memory location starting with EDE to
; memory location starting with TONI. Tables should not overlap: start of
; destination address TONI must not be within the range EDE to EDE+0FEh

MOV #EDE,R6
MOV #255,R10

L$1 MOV.B @R6+,TONI-EDE-1(R6)
DEC R10
JNZ L$1

Do not transfer tables using the routine above with the overlap shown in Figure 1-36.

Figure 1-36. Decrement Overlap

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU391F

www.ti.com Instruction Set Description

65SLAU391F–August 2012–Revised March 2018
Submit Documentation Feedback

Copyright © 2012–2018, Texas Instruments Incorporated

CPUX

Chapter Excerpt from SLAU208

1.6.2.18 DECD

* DECD[.W] Double-decrement destination
* DECD.B Double-decrement destination
Syntax DECD dst or DECD.W dst

DECD.B dst

Operation dst – 2 → dst
Emulation SUB #2,dst

SUB.B #2,dst

Description The destination operand is decremented by two. The original contents are lost.
Status Bits N: Set if result is negative, reset if positive

Z: Set if dst contained 2, reset otherwise
C: Reset if dst contained 0 or 1, set otherwise
V: Set if an arithmetic overflow occurs, otherwise reset

Set if initial value of destination was 08001 or 08000h, otherwise reset
Set if initial value of destination was 081 or 080h, otherwise reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example R10 is decremented by 2.

DECD R10 ; Decrement R10 by two

; Move a block of 255 bytes from memory location starting with EDE to
; memory location starting with TONI.
; Tables should not overlap: start of destination address TONI must not
; be within the range EDE to EDE+0FEh

MOV #EDE,R6
MOV #255,R10

L$1 MOV.B @R6+,TONI-EDE-2(R6)
DECD R10
JNZ L$1

Example Memory at location LEO is decremented by two.

DECD.B LEO ; Decrement MEM(LEO)

Decrement status byte STATUS by two

DECD.B STATUS

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU391F

Instruction Set Description www.ti.com

66 SLAU391F–August 2012–Revised March 2018
Submit Documentation Feedback

Copyright © 2012–2018, Texas Instruments Incorporated

CPUX

Chapter Excerpt from SLAU208

1.6.2.19 DINT

* DINT Disable (general) interrupts
Syntax DINT

Operation 0 → GIE
or
(0FFF7h .AND. SR → SR / .NOT.src .AND. dst → dst)

Emulation BIC #8,SR

Description All interrupts are disabled.
The constant 08h is inverted and logically ANDed with the SR. The result is placed into
the SR.

Status Bits Status bits are not affected.
Mode Bits GIE is reset. OSCOFF and CPUOFF are not affected.
Example The general interrupt enable (GIE) bit in the SR is cleared to allow a nondisrupted move

of a 32-bit counter. This ensures that the counter is not modified during the move by any
interrupt.

DINT ; All interrupt events using the GIE bit are disabled
NOP ; Required due to pipelined CPU architecture
MOV COUNTHI,R5 ; Copy counter
MOV COUNTLO,R6
EINT ; All interrupt events using the GIE bit are enabled

NOTE: Disable interrupt

Due to the pipelined CPU architecture, clearing the general interrupt enable (GIE) requires
special care.
• Include at least one instruction between DINT and the start of an code

sequence that requires protection from interrupts. For example: Insert a NOP
instruction after the DINT.

• Never clear the general interrupt enable (GIE) immediately after setting it. Insert
at least one instruction in between such sequence.

The rules above apply to all instructions that clear the general interrupt enable bit. Not
following these rules might result in unexpected CPU execution.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU391F

www.ti.com Instruction Set Description

67SLAU391F–August 2012–Revised March 2018
Submit Documentation Feedback

Copyright © 2012–2018, Texas Instruments Incorporated

CPUX

Chapter Excerpt from SLAU208

1.6.2.20 EINT

* EINT Enable (general) interrupts
Syntax EINT

Operation 1 → GIE
or
(0008h .OR. SR → SR / .src .OR. dst → dst)

Emulation BIS #8,SR

Description All interrupts are enabled.
The constant #08h and the SR are logically ORed. The result is placed into the SR.

Status Bits Status bits are not affected.
Mode Bits GIE is set. OSCOFF and CPUOFF are not affected.
Example The general interrupt enable (GIE) bit in the SR is set.

PUSH.B &P1IN
BIC.B @SP,&P1IFG ; Reset only accepted flags
NOP ; Required due to pipelined CPU architecture
EINT ; Preset port 1 interrupt flags stored on stack

; other interrupts are allowed
BIT #Mask,@SP
JEQ MaskOK ; Flags are present identically to mask: jump
......

MaskOK BIC #Mask,@SP
......
INCD SP ; Housekeeping: inverse to PUSH instruction

; at the start of interrupt subroutine. Corrects
; the stack pointer.

RETI

NOTE: Enable interrupt

Due to the pipelined CPU architecture, setting the general interrupt enable (GIE) requires
special care.
• The instruction immediately after the enable interrupts instruction (EINT) is

always executed, even if an interrupt service request is pending.
• Include at least one instruction between the clear of an interrupt enable or

interrupt flag and the EINT instruction. For example: Insert a NOP instruction in
front of the EINT instruction.

• Never clear the general interrupt enable (GIE) immediately after setting it. Insert
at least one instruction in between such sequence.

The rules above apply to all instructions that set the general interrupt enable bit. Not
following these rules might result in unexpected CPU execution.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU391F

Instruction Set Description www.ti.com

68 SLAU391F–August 2012–Revised March 2018
Submit Documentation Feedback

Copyright © 2012–2018, Texas Instruments Incorporated

CPUX

Chapter Excerpt from SLAU208

1.6.2.21 INC

* INC[.W] Increment destination
* INC.B Increment destination
Syntax INC dst or INC.W dst

INC.B dst

Operation dst + 1 → dst
Emulation ADD #1,dst

Description The destination operand is incremented by one. The original contents are lost.
Status Bits N: Set if result is negative, reset if positive

Z: Set if dst contained 0FFFFh, reset otherwise
Set if dst contained 0FFh, reset otherwise

C: Set if dst contained 0FFFFh, reset otherwise
Set if dst contained 0FFh, reset otherwise

V: Set if dst contained 07FFFh, reset otherwise
Set if dst contained 07Fh, reset otherwise

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example The status byte, STATUS, of a process is incremented. When it is equal to 11, a branch

to OVFL is taken.

INC.B STATUS
CMP.B #11,STATUS
JEQ OVFL

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU391F

www.ti.com Instruction Set Description

69SLAU391F–August 2012–Revised March 2018
Submit Documentation Feedback

Copyright © 2012–2018, Texas Instruments Incorporated

CPUX

Chapter Excerpt from SLAU208

1.6.2.22 INCD

* INCD[.W] Double-increment destination
* INCD.B Double-increment destination
Syntax INCD dst or INCD.W dst

INCD.B dst

Operation dst + 2 → dst
Emulation ADD #2,dst

Description The destination operand is incremented by two. The original contents are lost.
Status Bits N: Set if result is negative, reset if positive

Z: Set if dst contained 0FFFEh, reset otherwise
Set if dst contained 0FEh, reset otherwise

C: Set if dst contained 0FFFEh or 0FFFFh, reset otherwise
Set if dst contained 0FEh or 0FFh, reset otherwise

V: Set if dst contained 07FFEh or 07FFFh, reset otherwise
Set if dst contained 07Eh or 07Fh, reset otherwise

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example The item on the top of the stack (TOS) is removed without using a register.

.......
PUSH R5 ; R5 is the result of a calculation, which is stored

; in the system stack
INCD SP ; Remove TOS by double-increment from stack

; Do not use INCD.B, SP is a word-aligned register
RET

Example The byte on the top of the stack is incremented by two.

INCD.B 0(SP) ; Byte on TOS is increment by two

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU391F

Instruction Set Description www.ti.com

70 SLAU391F–August 2012–Revised March 2018
Submit Documentation Feedback

Copyright © 2012–2018, Texas Instruments Incorporated

CPUX

Chapter Excerpt from SLAU208

1.6.2.23 INV

* INV[.W] Invert destination
* INV.B Invert destination
Syntax INV dst or INV.W dst

INV.B dst

Operation .not.dst → dst
Emulation XOR #0FFFFh,dst

XOR.B #0FFh,dst

Description The destination operand is inverted. The original contents are lost.
Status Bits N: Set if result is negative, reset if positive

Z: Set if dst contained 0FFFFh, reset otherwise
Set if dst contained 0FFh, reset otherwise

C: Set if result is not zero, reset otherwise (= .NOT. Zero)
V: Set if initial destination operand was negative, otherwise reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example Content of R5 is negated (twos complement).

MOV #00AEh,R5 ; R5 = 000AEh
INV R5 ; Invert R5, R5 = 0FF51h
INC R5 ; R5 is now negated, R5 = 0FF52h

Example Content of memory byte LEO is negated.

MOV.B #0AEh,LEO ; MEM(LEO) = 0AEh
INV.B LEO ; Invert LEO, MEM(LEO) = 051h
INC.B LEO ; MEM(LEO) is negated, MEM(LEO) = 052h

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU391F

www.ti.com Instruction Set Description

71SLAU391F–August 2012–Revised March 2018
Submit Documentation Feedback

Copyright © 2012–2018, Texas Instruments Incorporated

CPUX

Chapter Excerpt from SLAU208

1.6.2.24 JC, JHS

JC Jump if carry
JHS Jump if higher or same (unsigned)
Syntax JC label

JHS label

Operation If C = 1: PC + (2 × Offset) → PC
If C = 0: execute the following instruction

Description The carry bit C in the SR is tested. If it is set, the signed 10-bit word offset contained in
the instruction is multiplied by two, sign extended, and added to the 20-bit PC. This
means a jump in the range –511 to +512 words relative to the PC in the full memory
range. If C is reset, the instruction after the jump is executed.
JC is used for the test of the carry bit C.
JHS is used for the comparison of unsigned numbers.

Status Bits Status bits are not affected
Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example The state of the port 1 pin P1IN.1 bit defines the program flow.

BIT.B #2,&P1IN ; Port 1, bit 1 set? Bit -> C
JC Label1 ; Yes, proceed at Label1
... ; No, continue

Example If R5 ≥ R6 (unsigned), the program continues at Label2.

CMP R6,R 5 ; Is R5 >= R6? Info to C
JHS Label2 ; Yes, C = 1
... ; No, R5 < R6. Continue

Example If R5 ≥ 12345h (unsigned operands), the program continues at Label2.

CMPA #12345h,R5 ; Is R5 >= 12345h? Info to C
JHS Label2 ; Yes, 12344h < R5 <= F,FFFFh. C = 1
... ; No, R5 < 12345h. Continue

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU391F

Instruction Set Description www.ti.com

72 SLAU391F–August 2012–Revised March 2018
Submit Documentation Feedback

Copyright © 2012–2018, Texas Instruments Incorporated

CPUX

Chapter Excerpt from SLAU208

1.6.2.25 JEQ, JZ

JEQ Jump if equal
JZ Jump if zero
Syntax JEQ label

JZ label

Operation If Z = 1: PC + (2 × Offset) → PC
If Z = 0: execute following instruction

Description The zero bit Z in the SR is tested. If it is set, the signed 10-bit word offset contained in
the instruction is multiplied by two, sign extended, and added to the 20-bit PC. This
means a jump in the range –511 to +512 words relative to the PC in the full memory
range. If Z is reset, the instruction after the jump is executed.
JZ is used for the test of the zero bit Z.
JEQ is used for the comparison of operands.

Status Bits Status bits are not affected
Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example The state of the P2IN.0 bit defines the program flow.

BIT.B #1,&P2IN ; Port 2, bit 0 reset?
JZ Label1 ; Yes, proceed at Label1
... ; No, set, continue

Example If R5 = 15000h (20-bit data), the program continues at Label2.

CMPA #15000h,R5 ; Is R5 = 15000h? Info to SR
JEQ Label2 ; Yes, R5 = 15000h. Z = 1
... ; No, R5 not equal 15000h. Continue

Example R7 (20-bit counter) is incremented. If its content is zero, the program continues at
Label4.

ADDA #1,R7 ; Increment R7
JZ Label4 ; Zero reached: Go to Label4
... ; R7 not equal 0. Continue here.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU391F

www.ti.com Instruction Set Description

73SLAU391F–August 2012–Revised March 2018
Submit Documentation Feedback

Copyright © 2012–2018, Texas Instruments Incorporated

CPUX

Chapter Excerpt from SLAU208

1.6.2.26 JGE

JGE Jump if greater or equal (signed)
Syntax JGE label

Operation If (N .xor. V) = 0: PC + (2 × Offset) → PC
If (N .xor. V) = 1: execute following instruction

Description The negative bit N and the overflow bit V in the SR are tested. If both bits are set or both
are reset, the signed 10-bit word offset contained in the instruction is multiplied by two,
sign extended, and added to the 20-bit PC. This means a jump in the range -511 to +512
words relative to the PC in full Memory range. If only one bit is set, the instruction after
the jump is executed.
JGE is used for the comparison of signed operands: also for incorrect results due to
overflow, the decision made by the JGE instruction is correct.
Note that JGE emulates the nonimplemented JP (jump if positive) instruction if used after
the instructions AND, BIT, RRA, SXTX, and TST. These instructions clear the V bit.

Status Bits Status bits are not affected.
Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example If byte EDE (lower 64 K) contains positive data, go to Label1. Software can run in the full

memory range.

TST.B &EDE ; Is EDE positive? V <- 0
JGE Label1 ; Yes, JGE emulates JP
... ; No, 80h <= EDE <= FFh

Example If the content of R6 is greater than or equal to the memory pointed to by R7, the program
continues a Label5. Signed data. Data and program in full memory range.

CMP @R7,R6 ; Is R6 >= @R7?
JGE Label5 ; Yes, go to Label5
... ; No, continue here

Example If R5 ≥ 12345h (signed operands), the program continues at Label2. Program in full
memory range.

CMPA #12345h,R5 ; Is R5 >= 12345h?
JGE Label2 ; Yes, 12344h < R5 <= 7FFFFh
... ; No, 80000h <= R5 < 12345h

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU391F

Instruction Set Description www.ti.com

74 SLAU391F–August 2012–Revised March 2018
Submit Documentation Feedback

Copyright © 2012–2018, Texas Instruments Incorporated

CPUX

Chapter Excerpt from SLAU208

1.6.2.27 JL

JL Jump if less (signed)
Syntax JL label

Operation If (N .xor. V) = 1: PC + (2 × Offset) → PC
If (N .xor. V) = 0: execute following instruction

Description The negative bit N and the overflow bit V in the SR are tested. If only one is set, the
signed 10-bit word offset contained in the instruction is multiplied by two, sign extended,
and added to the 20-bit PC. This means a jump in the range –511 to +512 words relative
to the PC in full memory range. If both bits N and V are set or both are reset, the
instruction after the jump is executed.
JL is used for the comparison of signed operands: also for incorrect results due to
overflow, the decision made by the JL instruction is correct.

Status Bits Status bits are not affected.
Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example If byte EDE contains a smaller, signed operand than byte TONI, continue at Label1. The

address EDE is within PC ± 32 K.

CMP.B &TONI,EDE ; Is EDE < TONI
JL Label1 ; Yes
... ; No, TONI <= EDE

Example If the signed content of R6 is less than the memory pointed to by R7 (20-bit address), the
program continues at Label5. Data and program in full memory range.

CMP @R7,R6 ; Is R6 < @R7?
JL Label5 ; Yes, go to Label5
... ; No, continue here

Example If R5 < 12345h (signed operands), the program continues at Label2. Data and program
in full memory range.

CMPA #12345h,R5 ; Is R5 < 12345h?
JL Label2 ; Yes, 80000h =< R5 < 12345h
... ; No, 12344h < R5 <= 7FFFFh

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU391F

www.ti.com Instruction Set Description

75SLAU391F–August 2012–Revised March 2018
Submit Documentation Feedback

Copyright © 2012–2018, Texas Instruments Incorporated

CPUX

Chapter Excerpt from SLAU208

1.6.2.28 JMP

JMP Jump unconditionally
Syntax JMP label

Operation PC + (2 × Offset) → PC
Description The signed 10-bit word offset contained in the instruction is multiplied by two, sign

extended, and added to the 20-bit PC. This means an unconditional jump in the range
–511 to +512 words relative to the PC in the full memory. The JMP instruction may be
used as a BR or BRA instruction within its limited range relative to the PC.

Status Bits Status bits are not affected
Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example The byte STATUS is set to 10. Then a jump to label MAINLOOP is made. Data in lower

64 K, program in full memory range.

MOV.B #10,&STATUS ; Set STATUS to 10
JMP MAINLOOP ; Go to main loop

Example The interrupt vector TAIV of Timer_A3 is read and used for the program flow. Program in
full memory range, but interrupt handlers always starts in lower 64 K.

ADD &TAIV,PC ; Add Timer_A interrupt vector to PC
RETI ; No Timer_A interrupt pending
JMP IHCCR1 ; Timer block 1 caused interrupt
JMP IHCCR2 ; Timer block 2 caused interrupt
RETI ; No legal interrupt, return

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU391F

Instruction Set Description www.ti.com

76 SLAU391F–August 2012–Revised March 2018
Submit Documentation Feedback

Copyright © 2012–2018, Texas Instruments Incorporated

CPUX

Chapter Excerpt from SLAU208

1.6.2.29 JN

JN Jump if negative
Syntax JN label

Operation If N = 1: PC + (2 × Offset) → PC
If N = 0: execute following instruction

Description The negative bit N in the SR is tested. If it is set, the signed 10-bit word offset contained
in the instruction is multiplied by two, sign extended, and added to the 20-bit program
PC. This means a jump in the range -511 to +512 words relative to the PC in the full
memory range. If N is reset, the instruction after the jump is executed.

Status Bits Status bits are not affected.
Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example The byte COUNT is tested. If it is negative, program execution continues at Label0. Data

in lower 64 K, program in full memory range.

TST.B &COUNT ; Is byte COUNT negative?
JN Label0 ; Yes, proceed at Label0
... ; COUNT >= 0

Example R6 is subtracted from R5. If the result is negative, program continues at Label2. Program
in full memory range.

SUB R6,R5 ; R5 - R6 -> R5
JN Label2 ; R5 is negative: R6 > R5 (N = 1)
... ; R5 >= 0. Continue here.

Example R7 (20-bit counter) is decremented. If its content is below zero, the program continues at
Label4. Program in full memory range.

SUBA #1,R7 ; Decrement R7
JN Label4 ; R7 < 0: Go to Label4
... ; R7 >= 0. Continue here.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU391F

www.ti.com Instruction Set Description

77SLAU391F–August 2012–Revised March 2018
Submit Documentation Feedback

Copyright © 2012–2018, Texas Instruments Incorporated

CPUX

Chapter Excerpt from SLAU208

1.6.2.30 JNC, JLO

JNC Jump if no carry
JLO Jump if lower (unsigned)
Syntax JNC label

JLO label

Operation If C = 0: PC + (2 × Offset) → PC
If C = 1: execute following instruction

Description The carry bit C in the SR is tested. If it is reset, the signed 10-bit word offset contained in
the instruction is multiplied by two, sign extended, and added to the 20-bit PC. This
means a jump in the range –511 to +512 words relative to the PC in the full memory
range. If C is set, the instruction after the jump is executed.
JNC is used for the test of the carry bit C.
JLO is used for the comparison of unsigned numbers.

Status Bits Status bits are not affected.
Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example If byte EDE < 15, the program continues at Label2. Unsigned data. Data in lower 64 K,

program in full memory range.

CMP.B #15,&EDE ; Is EDE < 15? Info to C
JLO Label2 ; Yes, EDE < 15. C = 0
... ; No, EDE >= 15. Continue

Example The word TONI is added to R5. If no carry occurs, continue at Label0. The address of
TONI is within PC ± 32 K.

ADD TONI,R5 ; TONI + R5 -> R5. Carry -> C
JNC Label0 ; No carry
... ; Carry = 1: continue here

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU391F

Instruction Set Description www.ti.com

78 SLAU391F–August 2012–Revised March 2018
Submit Documentation Feedback

Copyright © 2012–2018, Texas Instruments Incorporated

CPUX

Chapter Excerpt from SLAU208

1.6.2.31 JNZ, JNE

JNZ Jump if not zero
JNE Jump if not equal
Syntax JNZ label

JNE label

Operation If Z = 0: PC + (2 × Offset) → PC
If Z = 1: execute following instruction

Description The zero bit Z in the SR is tested. If it is reset, the signed 10-bit word offset contained in
the instruction is multiplied by two, sign extended, and added to the 20-bit PC. This
means a jump in the range –511 to +512 words relative to the PC in the full memory
range. If Z is set, the instruction after the jump is executed.
JNZ is used for the test of the zero bit Z.
JNE is used for the comparison of operands.

Status Bits Status bits are not affected.
Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example The byte STATUS is tested. If it is not zero, the program continues at Label3. The

address of STATUS is within PC ± 32 K.

TST.B STATUS ; Is STATUS = 0?
JNZ Label3 ; No, proceed at Label3
... ; Yes, continue here

Example If word EDE ≠ 1500, the program continues at Label2. Data in lower 64 K, program in full
memory range.

CMP #1500,&EDE ; Is EDE = 1500? Info to SR
JNE Label2 ; No, EDE not equal 1500.
... ; Yes, R5 = 1500. Continue

Example R7 (20-bit counter) is decremented. If its content is not zero, the program continues at
Label4. Program in full memory range.

SUBA #1,R7 ; Decrement R7
JNZ Label4 ; Zero not reached: Go to Label4
... ; Yes, R7 = 0. Continue here.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU391F

www.ti.com Instruction Set Description

79SLAU391F–August 2012–Revised March 2018
Submit Documentation Feedback

Copyright © 2012–2018, Texas Instruments Incorporated

CPUX

Chapter Excerpt from SLAU208

1.6.2.32 MOV

MOV[.W] Move source word to destination word
MOV.B Move source byte to destination byte
Syntax MOV src,dst or MOV.W src,dst

MOV.B src,dst

Operation src → dst
Description The source operand is copied to the destination. The source operand is not affected.
Status Bits N: Not affected

Z: Not affected
C: Not affected
V: Not affected

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example Move a 16-bit constant 1800h to absolute address-word EDE (lower 64 K)

MOV #01800h,&EDE ; Move 1800h to EDE

Example The contents of table EDE (word data, 16-bit addresses) are copied to table TOM. The
length of the tables is 030h words. Both tables reside in the lower 64 K.

MOV #EDE,R10 ; Prepare pointer (16-bit address)
Loop MOV @R10+,TOM-EDE-2(R10) ; R10 points to both tables.

; R10+2
CMP #EDE+60h,R10 ; End of table reached?
JLO Loop ; Not yet
... ; Copy completed

Example The contents of table EDE (byte data, 16-bit addresses) are copied to table TOM. The
length of the tables is 020h bytes. Both tables may reside in full memory range, but must
be within R10 ± 32 K.

MOVA #EDE,R10 ; Prepare pointer (20-bit)
MOV #20h,R9 ; Prepare counter

Loop MOV.B @R10+,TOM-EDE-1(R10) ; R10 points to both tables.
; R10+1

DEC R9 ; Decrement counter
JNZ Loop ; Not yet done
... ; Copy completed

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU391F

Instruction Set Description www.ti.com

80 SLAU391F–August 2012–Revised March 2018
Submit Documentation Feedback

Copyright © 2012–2018, Texas Instruments Incorporated

CPUX

Chapter Excerpt from SLAU208

1.6.2.33 NOP

* NOP No operation
Syntax NOP

Operation None
Emulation MOV #0, R3

Description No operation is performed. The instruction may be used for the elimination of instructions
during the software check or for defined waiting times.

Status Bits Status bits are not affected.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU391F

www.ti.com Instruction Set Description

81SLAU391F–August 2012–Revised March 2018
Submit Documentation Feedback

Copyright © 2012–2018, Texas Instruments Incorporated

CPUX

Chapter Excerpt from SLAU208

1.6.2.34 POP

* POP[.W] Pop word from stack to destination
* POP.B Pop byte from stack to destination
Syntax POP dst

POP.B dst

Operation @SP → temp
SP + 2 → SP
temp → dst

Emulation MOV @SP+,dst or MOV.W @SP+,dst

MOV.B @SP+,dst

Description The stack location pointed to by the SP (TOS) is moved to the destination. The SP is
incremented by two afterwards.

Status Bits Status bits are not affected.
Example The contents of R7 and the SR are restored from the stack.

POP R7 ; Restore R7
POP SR ; Restore status register

Example The contents of RAM byte LEO is restored from the stack.

POP.B LEO ; The low byte of the stack is moved to LEO.

Example The contents of R7 is restored from the stack.

POP.B R7 ; The low byte of the stack is moved to R7,
; the high byte of R7 is 00h

Example The contents of the memory pointed to by R7 and the SR are restored from the stack.

POP.B 0(R7) ; The low byte of the stack is moved to the
; the byte which is pointed to by R7
: Example: R7 = 203h
; Mem(R7) = low byte of system stack
: Example: R7 = 20Ah
; Mem(R7) = low byte of system stack

POP SR ; Last word on stack moved to the SR

NOTE: System stack pointer

The system SP is always incremented by two, independent of the byte suffix.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU391F

Instruction Set Description www.ti.com

82 SLAU391F–August 2012–Revised March 2018
Submit Documentation Feedback

Copyright © 2012–2018, Texas Instruments Incorporated

CPUX

Chapter Excerpt from SLAU208

1.6.2.35 PUSH

PUSH[.W] Save a word on the stack
PUSH.B Save a byte on the stack
Syntax PUSH dst or PUSH.W dst

PUSH.B dst

Operation SP – 2 → SP
dst → @SP

Description The 20-bit SP SP is decremented by two. The operand is then copied to the RAM word
addressed by the SP. A pushed byte is stored in the low byte; the high byte is not
affected.

Status Bits Status bits are not affected.
Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example Save the two 16-bit registers R9 and R10 on the stack

PUSH R9 ; Save R9 and R10 XXXXh
PUSH R10 ; YYYYh

Example Save the two bytes EDE and TONI on the stack. The addresses EDE and TONI are
within PC ± 32 K.

PUSH.B EDE ; Save EDE xxXXh
PUSH.B TONI ; Save TONI xxYYh

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU391F

Item n

PC
Return

Item n

Stack before RET

instruction

Stack after RET

instruction

SP

SP

www.ti.com Instruction Set Description

83SLAU391F–August 2012–Revised March 2018
Submit Documentation Feedback

Copyright © 2012–2018, Texas Instruments Incorporated

CPUX

Chapter Excerpt from SLAU208

1.6.2.36 RET

* RET Return from subroutine
Syntax RET

Operation @SP →PC.15:0 Saved PC to PC.15:0. PC.19:16 ← 0
SP + 2 → SP

Description The 16-bit return address (lower 64 K), pushed onto the stack by a CALL instruction is
restored to the PC. The program continues at the address following the subroutine call.
The four MSBs of the PC.19:16 are cleared.

Status Bits Status bits are not affected.
PC.19:16: Cleared

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example Call a subroutine SUBR in the lower 64 K and return to the address in the lower 64 K

after the CALL.

CALL #SUBR ; Call subroutine starting at SUBR
... ; Return by RET to here

SUBR PUSH R14 ; Save R14 (16 bit data)
... ; Subroutine code
POP R14 ; Restore R14
RET ; Return to lower 64 K

Figure 1-37. Stack After a RET Instruction

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU391F

Instruction Set Description www.ti.com

84 SLAU391F–August 2012–Revised March 2018
Submit Documentation Feedback

Copyright © 2012–2018, Texas Instruments Incorporated

CPUX

Chapter Excerpt from SLAU208

1.6.2.37 RETI

RETI Return from interrupt
Syntax RETI

Operation @SP → SR.15:0
SP + 2 → SP

Restore saved SR with PC.19:16

@SP → PC.15:0
SP + 2 → SP

Restore saved PC.15:0
Housekeeping

Description The SR is restored to the value at the beginning of the interrupt service routine. This
includes the four MSBs of the PC.19:16. The SP is incremented by two afterward.
The 20-bit PC is restored from PC.19:16 (from same stack location as the status bits)
and PC.15:0. The 20-bit PC is restored to the value at the beginning of the interrupt
service routine. The program continues at the address following the last executed
instruction when the interrupt was granted. The SP is incremented by two afterward. No
interrupt flags are modified by this command.

Status Bits N: Restored from stack
C: Restored from stack
Z: Restored from stack
V: Restored from stack

Mode Bits OSCOFF, CPUOFF, and GIE are restored from stack.
Example Interrupt handler in the lower 64 K. A 20-bit return address is stored on the stack.

INTRPT PUSHM.A #2,R14 ; Save R14 and R13 (20-bit data)
... ; Interrupt handler code
POPM.A #2,R14 ; Restore R13 and R14 (20-bit data)
RETI ; Return to 20-bit address in full memory range

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU391F

15 0

7 0

C

Byte

Word

0

www.ti.com Instruction Set Description

85SLAU391F–August 2012–Revised March 2018
Submit Documentation Feedback

Copyright © 2012–2018, Texas Instruments Incorporated

CPUX

Chapter Excerpt from SLAU208

1.6.2.38 RLA

* RLA[.W] Rotate left arithmetically
* RLA.B Rotate left arithmetically
Syntax RLA dst or RLA.W dst

RLA.B dst

Operation C ← MSB ← MSB-1 LSB+1 ← LSB ← 0
Emulation ADD dst,dst

ADD.B dst,dst

Description The destination operand is shifted left one position as shown in Figure 1-38. The MSB is
shifted into the carry bit (C) and the LSB is filled with 0. The RLA instruction acts as a
signed multiplication by 2.
An overflow occurs if dst ≥ 04000h and dst < 0C000h before operation is performed; the
result has changed sign.

Figure 1-38. Destination Operand—Arithmetic Shift Left

An overflow occurs if dst ≥ 040h and dst < 0C0h before the operation is performed; the
result has changed sign.

Status Bits N: Set if result is negative, reset if positive
Z: Set if result is zero, reset otherwise
C: Loaded from the MSB
V: Set if an arithmetic overflow occurs; the initial value is 04000h ≤ dst < 0C000h,

reset otherwise
Set if an arithmetic overflow occurs; the initial value is 040h ≤ dst < 0C0h, reset
otherwise

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example R7 is multiplied by 2.

RLA R7 ; Shift left R7 (x 2)

Example The low byte of R7 is multiplied by 4.

RLA.B R7 ; Shift left low byte of R7 (x 2)
RLA.B R7 ; Shift left low byte of R7 (x 4)

NOTE: RLA substitution

The assembler does not recognize the instructions:
RLA @R5+ RLA.B @R5+ RLA(.B) @R5

They must be substituted by:
ADD @R5+,-2(R5) ADD.B @R5+,-1(R5) ADD(.B) @R5

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU391F

15 0

7 0

C

Byte

Word

Instruction Set Description www.ti.com

86 SLAU391F–August 2012–Revised March 2018
Submit Documentation Feedback

Copyright © 2012–2018, Texas Instruments Incorporated

CPUX

Chapter Excerpt from SLAU208

1.6.2.39 RLC

* RLC[.W] Rotate left through carry
* RLC.B Rotate left through carry
Syntax RLC dst or RLC.W dst

RLC.B dst

Operation C ← MSB ← MSB-1 LSB+1 ← LSB ← C
Emulation ADDC dst,dst

Description The destination operand is shifted left one position as shown in Figure 1-39. The carry bit
(C) is shifted into the LSB, and the MSB is shifted into the carry bit (C).

Figure 1-39. Destination Operand—Carry Left Shift

Status Bits N: Set if result is negative, reset if positive
Z: Set if result is zero, reset otherwise
C: Loaded from the MSB
V: Set if an arithmetic overflow occurs; the initial value is 04000h ≤ dst < 0C000h,

reset otherwise
Set if an arithmetic overflow occurs; the initial value is 040h ≤ dst < 0C0h, reset
otherwise

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example R5 is shifted left one position.

RLC R5 ; (R5 x 2) + C -> R5

Example The input P1IN.1 information is shifted into the LSB of R5.

BIT.B #2,&P1IN ; Information -> Carry
RLC R5 ; Carry=P0in.1 -> LSB of R5

Example The MEM(LEO) content is shifted left one position.

RLC.B LEO ; Mem(LEO) x 2 + C -> Mem(LEO)

NOTE: RLA substitution

The assembler does not recognize the instructions:
RLC @R5+ RLC.B @R5+ RLC(.B) @R5

They must be substituted by:
ADDC @R5+,-2(R5) ADDC.B @R5+,-1(R5) ADDC(.B) @R5

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU391F

C

19 0

MSB0 0 0 0 0 0 0

715

0 0 0 0 0 LSB

C

19 0

MSB0 0 0 0

15

LSB

www.ti.com Instruction Set Description

87SLAU391F–August 2012–Revised March 2018
Submit Documentation Feedback

Copyright © 2012–2018, Texas Instruments Incorporated

CPUX

Chapter Excerpt from SLAU208

1.6.2.40 RRA

RRA[.W] Rotate right arithmetically destination word
RRA.B Rotate right arithmetically destination byte
Syntax RRA.B dst or RRA.W dst

Operation MSB → MSB → MSB–1 → ... LSB+1 → LSB → C
Description The destination operand is shifted right arithmetically by one bit position as shown in

Figure 1-40. The MSB retains its value (sign). RRA operates equal to a signed division
by 2. The MSB is retained and shifted into the MSB–1. The LSB+1 is shifted into the
LSB. The previous LSB is shifted into the carry bit C.

Status Bits N: Set if result is negative (MSB = 1), reset otherwise (MSB = 0)
Z: Set if result is zero, reset otherwise
C: Loaded from the LSB
V: Reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example The signed 16-bit number in R5 is shifted arithmetically right one position.

RRA R5 ; R5/2 -> R5

Example The signed RAM byte EDE is shifted arithmetically right one position.

RRA.B EDE ; EDE/2 -> EDE

Figure 1-40. Rotate Right Arithmetically RRA.B and RRA.W

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU391F

C

19 0

MSB0 0 0 0 0 0 0

715

0 0 0 0 0 LSB

C

19 0

MSB0 0 0 0

15

LSB

Instruction Set Description www.ti.com

88 SLAU391F–August 2012–Revised March 2018
Submit Documentation Feedback

Copyright © 2012–2018, Texas Instruments Incorporated

CPUX

Chapter Excerpt from SLAU208

1.6.2.41 RRC

RRC[.W] Rotate right through carry destination word
RRC.B Rotate right through carry destination byte
Syntax RRC dst or RRC.W dst

RRC.B dst

Operation C → MSB → MSB–1 → ... LSB+1 → LSB → C
Description The destination operand is shifted right by one bit position as shown in Figure 1-41. The

carry bit C is shifted into the MSB and the LSB is shifted into the carry bit C.
Status Bits N: Set if result is negative (MSB = 1), reset otherwise (MSB = 0)

Z: Set if result is zero, reset otherwise
C: Loaded from the LSB
V: Reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example RAM word EDE is shifted right one bit position. The MSB is loaded with 1.

SETC ; Prepare carry for MSB
RRC EDE ; EDE = EDE >> 1 + 8000h

Figure 1-41. Rotate Right Through Carry RRC.B and RRC.W

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU391F

www.ti.com Instruction Set Description

89SLAU391F–August 2012–Revised March 2018
Submit Documentation Feedback

Copyright © 2012–2018, Texas Instruments Incorporated

CPUX

Chapter Excerpt from SLAU208

1.6.2.42 SBC

* SBC[.W] Subtract borrow (.NOT. carry) from destination
* SBC.B Subtract borrow (.NOT. carry) from destination
Syntax SBC dst or SBC.W dst

SBC.B dst

Operation dst + 0FFFFh + C → dst
dst + 0FFh + C → dst

Emulation SUBC #0,dst

SUBC.B #0,dst

Description The carry bit (C) is added to the destination operand minus one. The previous contents
of the destination are lost.

Status Bits N: Set if result is negative, reset if positive
Z: Set if result is zero, reset otherwise
C: Set if there is a carry from the MSB of the result, reset otherwise

Set to 1 if no borrow, reset if borrow
V: Set if an arithmetic overflow occurs, reset otherwise

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example The 16-bit counter pointed to by R13 is subtracted from a 32-bit counter pointed to by

R12.

SUB @R13,0(R12) ; Subtract LSDs
SBC 2(R12) ; Subtract carry from MSD

Example The 8-bit counter pointed to by R13 is subtracted from a 16-bit counter pointed to by
R12.

SUB.B @R13,0(R12) ; Subtract LSDs
SBC.B 1(R12) ; Subtract carry from MSD

NOTE: Borrow implementation

The borrow is treated as a .NOT. carry:

Borrow Carry Bit
Yes 0
No 1

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU391F

Instruction Set Description www.ti.com

90 SLAU391F–August 2012–Revised March 2018
Submit Documentation Feedback

Copyright © 2012–2018, Texas Instruments Incorporated

CPUX

Chapter Excerpt from SLAU208

1.6.2.43 SETC

* SETC Set carry bit
Syntax SETC

Operation 1 → C
Emulation BIS #1,SR

Description The carry bit (C) is set.
Status Bits N: Not affected

Z: Not affected
C: Set
V: Not affected

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example Emulation of the decimal subtraction:

Subtract R5 from R6 decimally.
Assume that R5 = 03987h and R6 = 04137h.

DSUB ADD #06666h,R5 ; Move content R5 from 0-9 to 6-0Fh
; R5 = 03987h + 06666h = 09FEDh

INV R5 ; Invert this (result back to 0-9)
; R5 = .NOT. R5 = 06012h

SETC ; Prepare carry = 1
DADD R5,R6 ; Emulate subtraction by addition of:

; (010000h - R5 - 1)
; R6 = R6 + R5 + 1
; R6 = 0150h

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU391F

www.ti.com Instruction Set Description

91SLAU391F–August 2012–Revised March 2018
Submit Documentation Feedback

Copyright © 2012–2018, Texas Instruments Incorporated

CPUX

Chapter Excerpt from SLAU208

1.6.2.44 SETN

* SETN Set negative bit
Syntax SETN

Operation 1 → N
Emulation BIS #4,SR

Description The negative bit (N) is set.
Status Bits N: Set

Z: Not affected
C: Not affected
V: Not affected

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU391F

Instruction Set Description www.ti.com

92 SLAU391F–August 2012–Revised March 2018
Submit Documentation Feedback

Copyright © 2012–2018, Texas Instruments Incorporated

CPUX

Chapter Excerpt from SLAU208

1.6.2.45 SETZ

* SETZ Set zero bit
Syntax SETZ

Operation 1 → N
Emulation BIS #2,SR

Description The zero bit (Z) is set.
Status Bits N: Not affected

Z: Set
C: Not affected
V: Not affected

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU391F

www.ti.com Instruction Set Description

93SLAU391F–August 2012–Revised March 2018
Submit Documentation Feedback

Copyright © 2012–2018, Texas Instruments Incorporated

CPUX

Chapter Excerpt from SLAU208

1.6.2.46 SUB

SUB[.W] Subtract source word from destination word
SUB.B Subtract source byte from destination byte
Syntax SUB src,dst or SUB.W src,dst

SUB.B src,dst

Operation (.not.src) + 1 + dst → dst or dst – src → dst
Description The source operand is subtracted from the destination operand. This is made by adding

the 1s complement of the source + 1 to the destination. The source operand is not
affected, the result is written to the destination operand.

Status Bits N: Set if result is negative (src > dst), reset if positive (src ≤ dst)
Z: Set if result is zero (src = dst), reset otherwise (src ≠ dst)
C: Set if there is a carry from the MSB, reset otherwise
V: Set if the subtraction of a negative source operand from a positive destination

operand delivers a negative result, or if the subtraction of a positive source operand
from a negative destination operand delivers a positive result, reset otherwise (no
overflow)

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example A 16-bit constant 7654h is subtracted from RAM word EDE.

SUB #7654h,&EDE ; Subtract 7654h from EDE

Example A table word pointed to by R5 (20-bit address) is subtracted from R7. Afterwards, if R7
contains zero, jump to label TONI. R5 is then auto-incremented by 2. R7.19:16 = 0.

SUB @R5+,R7 ; Subtract table number from R7. R5 + 2
JZ TONI ; R7 = @R5 (before subtraction)
... ; R7 <> @R5 (before subtraction)

Example Byte CNT is subtracted from byte R12 points to. The address of CNT is within PC ± 32K.
The address R12 points to is in full memory range.

SUB.B CNT,0(R12) ; Subtract CNT from @R12

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU391F

Instruction Set Description www.ti.com

94 SLAU391F–August 2012–Revised March 2018
Submit Documentation Feedback

Copyright © 2012–2018, Texas Instruments Incorporated

CPUX

Chapter Excerpt from SLAU208

1.6.2.47 SUBC

SUBC[.W] Subtract source word with carry from destination word
SUBC.B Subtract source byte with carry from destination byte
Syntax SUBC src,dst or SUBC.W src,dst

SUBC.B src,dst

Operation (.not.src) + C + dst → dst or dst – (src – 1) + C → dst
Description The source operand is subtracted from the destination operand. This is done by adding

the 1s complement of the source + carry to the destination. The source operand is not
affected, the result is written to the destination operand. Used for 32, 48, and 64-bit
operands.

Status Bits N: Set if result is negative (MSB = 1), reset if positive (MSB = 0)
Z: Set if result is zero, reset otherwise
C: Set if there is a carry from the MSB, reset otherwise
V: Set if the subtraction of a negative source operand from a positive destination

operand delivers a negative result, or if the subtraction of a positive source operand
from a negative destination operand delivers a positive result, reset otherwise (no
overflow)

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example A 16-bit constant 7654h is subtracted from R5 with the carry from the previous

instruction. R5.19:16 = 0

SUBC.W #7654h,R5 ; Subtract 7654h + C from R5

Example A 48-bit number (3 words) pointed to by R5 (20-bit address) is subtracted from a 48-bit
counter in RAM, pointed to by R7. R5 points to the next 48-bit number afterwards. The
address R7 points to is in full memory range.

SUB @R5+,0(R7) ; Subtract LSBs. R5 + 2
SUBC @R5+,2(R7) ; Subtract MIDs with C. R5 + 2
SUBC @R5+,4(R7) ; Subtract MSBs with C. R5 + 2

Example Byte CNT is subtracted from the byte, R12 points to. The carry of the previous instruction
is used. The address of CNT is in lower 64 K.

SUBC.B &CNT,0(R12) ; Subtract byte CNT from @R12

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU391F

15 8 7 0

15 8 7 0

Low Byte

Low ByteHigh Byte

High Byte

Before SWPB

After SWPB

0

x

0...

19

19

16

16

15 8 7 0

15 8 7 0

Low Byte

Low ByteHigh Byte

High Byte

Before SWPB

After SWPB

www.ti.com Instruction Set Description

95SLAU391F–August 2012–Revised March 2018
Submit Documentation Feedback

Copyright © 2012–2018, Texas Instruments Incorporated

CPUX

Chapter Excerpt from SLAU208

1.6.2.48 SWPB

SWPB Swap bytes
Syntax SWPB dst

Operation dst.15:8 ↔ dst.7:0
Description The high and the low byte of the operand are exchanged. PC.19:16 bits are cleared in

register mode.
Status Bits Status bits are not affected
Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example Exchange the bytes of RAM word EDE (lower 64 K)

MOV #1234h,&EDE ; 1234h -> EDE
SWPB &EDE ; 3412h -> EDE

Figure 1-42. Swap Bytes in Memory

Figure 1-43. Swap Bytes in a Register

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU391F

Instruction Set Description www.ti.com

96 SLAU391F–August 2012–Revised March 2018
Submit Documentation Feedback

Copyright © 2012–2018, Texas Instruments Incorporated

CPUX

Chapter Excerpt from SLAU208

1.6.2.49 SXT

SXT Extend sign
Syntax SXT dst

Operation dst.7 → dst.15:8, dst.7 → dst.19:8 (register mode)
Description Register mode: the sign of the low byte of the operand is extended into the bits

Rdst.19:8.
Rdst.7 = 0: Rdst.19:8 = 000h afterwards
Rdst.7 = 1: Rdst.19:8 = FFFh afterwards

Other modes: the sign of the low byte of the operand is extended into the high byte.
dst.7 = 0: high byte = 00h afterwards
dst.7 = 1: high byte = FFh afterwards

Status Bits N: Set if result is negative, reset otherwise
Z: Set if result is zero, reset otherwise
C: Set if result is not zero, reset otherwise (C = .not.Z)
V: Reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example The signed 8-bit data in EDE (lower 64 K) is sign extended and added to the 16-bit

signed data in R7.

MOV.B &EDE,R5 ; EDE -> R5. 00XXh
SXT R5 ; Sign extend low byte to R5.19:8
ADD R5,R7 ; Add signed 16-bit values

Example The signed 8-bit data in EDE (PC +32 K) is sign extended and added to the 20-bit data
in R7.

MOV.B EDE,R5 ; EDE -> R5. 00XXh
SXT R5 ; Sign extend low byte to R5.19:8
ADDA R5,R7 ; Add signed 20-bit values

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU391F

www.ti.com Instruction Set Description

97SLAU391F–August 2012–Revised March 2018
Submit Documentation Feedback

Copyright © 2012–2018, Texas Instruments Incorporated

CPUX

Chapter Excerpt from SLAU208

1.6.2.50 TST

* TST[.W] Test destination
* TST.B Test destination
Syntax TST dst or TST.W dst

TST.B dst

Operation dst + 0FFFFh + 1
dst + 0FFh + 1

Emulation CMP #0,dst

CMP.B #0,dst

Description The destination operand is compared with zero. The status bits are set according to the
result. The destination is not affected.

Status Bits N: Set if destination is negative, reset if positive
Z: Set if destination contains zero, reset otherwise
C: Set
V: Reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example R7 is tested. If it is negative, continue at R7NEG; if it is positive but not zero, continue at

R7POS.

TST R7 ; Test R7
JN R7NEG ; R7 is negative
JZ R7ZERO ; R7 is zero

R7POS ; R7 is positive but not zero
R7NEG ; R7 is negative
R7ZERO ; R7 is zero

Example The low byte of R7 is tested. If it is negative, continue at R7NEG; if it is positive but not
zero, continue at R7POS.

TST.B R7 ; Test low byte of R7
JN R7NEG ; Low byte of R7 is negative
JZ R7ZERO ; Low byte of R7 is zero

R7POS ; Low byte of R7 is positive but not zero
R7NEG ; Low byte of R7 is negative
R7ZERO ; Low byte of R7 is zero

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU391F

Instruction Set Description www.ti.com

98 SLAU391F–August 2012–Revised March 2018
Submit Documentation Feedback

Copyright © 2012–2018, Texas Instruments Incorporated

CPUX

Chapter Excerpt from SLAU208

1.6.2.51 XOR

XOR[.W] Exclusive OR source word with destination word
XOR.B Exclusive OR source byte with destination byte
Syntax XOR src,dst or XOR.W src,dst

XOR.B src,dst

Operation src .xor. dst → dst
Description The source and destination operands are exclusively ORed. The result is placed into the

destination. The source operand is not affected. The previous content of the destination
is lost.

Status Bits N: Set if result is negative (MSB = 1), reset if positive (MSB = 0)
Z: Set if result is zero, reset otherwise
C: Set if result is not zero, reset otherwise (C = .not. Z)
V: Set if both operands are negative before execution, reset otherwise

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example Toggle bits in word CNTR (16-bit data) with information (bit = 1) in address-word TONI.

Both operands are located in lower 64 K.

XOR &TONI,&CNTR ; Toggle bits in CNTR

Example A table word pointed to by R5 (20-bit address) is used to toggle bits in R6. R6.19:16 = 0.

XOR @R5,R6 ; Toggle bits in R6

Example Reset to zero those bits in the low byte of R7 that are different from the bits in byte EDE.
R7.19:8 = 0. The address of EDE is within PC ± 32 K.

XOR.B EDE,R7 ; Set different bits to 1 in R7.
INV.B R7 ; Invert low byte of R7, high byte is 0h

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU391F

www.ti.com Instruction Set Description

99SLAU391F–August 2012–Revised March 2018
Submit Documentation Feedback

Copyright © 2012–2018, Texas Instruments Incorporated

CPUX

Chapter Excerpt from SLAU208

1.6.3 Extended Instructions
The extended MSP430X instructions give the MSP430X CPU full access to its 20-bit address space.
MSP430X instructions require an additional word of op-code called the extension word. All addresses,
indexes, and immediate numbers have 20-bit values when preceded by the extension word. The
MSP430X extended instructions are listed and described in the following pages.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU391F

Instruction Set Description www.ti.com

100 SLAU391F–August 2012–Revised March 2018
Submit Documentation Feedback

Copyright © 2012–2018, Texas Instruments Incorporated

CPUX

Chapter Excerpt from SLAU208

1.6.3.1 ADCX

* ADCX.A Add carry to destination address-word
* ADCX.[W] Add carry to destination word
* ADCX.B Add carry to destination byte
Syntax ADCX.A dst

ADCX dst or ADCX.W dst

ADCX.B dst

Operation dst + C → dst
Emulation ADDCX.A #0,dst

ADDCX #0,dst

ADDCX.B #0,dst

Description The carry bit (C) is added to the destination operand. The previous contents of the
destination are lost.

Status Bits N: Set if result is negative (MSB = 1), reset if positive (MSB = 0)
Z: Set if result is zero, reset otherwise
C: Set if there is a carry from the MSB of the result, reset otherwise
V: Set if the result of two positive operands is negative, or if the result of two negative

numbers is positive, reset otherwise
Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example The 40-bit counter, pointed to by R12 and R13, is incremented.

INCX.A @R12 ; Increment lower 20 bits
ADCX.A @R13 ; Add carry to upper 20 bits

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU391F

www.ti.com Instruction Set Description

101SLAU391F–August 2012–Revised March 2018
Submit Documentation Feedback

Copyright © 2012–2018, Texas Instruments Incorporated

CPUX

Chapter Excerpt from SLAU208

1.6.3.2 ADDX

ADDX.A Add source address-word to destination address-word
ADDX.[W] Add source word to destination word
ADDX.B Add source byte to destination byte
Syntax ADDX.A src,dst

ADDX src,dst or ADDX.W src,dst

ADDX.B src,dst

Operation src + dst → dst
Description The source operand is added to the destination operand. The previous contents of the

destination are lost. Both operands can be located in the full address space.
Status Bits N: Set if result is negative (MSB = 1), reset if positive (MSB = 0)

Z: Set if result is zero, reset otherwise
C: Set if there is a carry from the MSB of the result, reset otherwise
V: Set if the result of two positive operands is negative, or if the result of two negative

numbers is positive, reset otherwise
Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example Ten is added to the 20-bit pointer CNTR located in two words CNTR (LSBs) and

CNTR+2 (MSBs).

ADDX.A #10,CNTR ; Add 10 to 20-bit pointer

Example A table word (16-bit) pointed to by R5 (20-bit address) is added to R6. The jump to label
TONI is performed on a carry.

ADDX.W @R5,R6 ; Add table word to R6
JC TONI ; Jump if carry
... ; No carry

Example A table byte pointed to by R5 (20-bit address) is added to R6. The jump to label TONI is
performed if no carry occurs. The table pointer is auto-incremented by 1.

ADDX.B @R5+,R6 ; Add table byte to R6. R5 + 1. R6: 000xxh
JNC TONI ; Jump if no carry
... ; Carry occurred

Note: Use ADDA for the following two cases for better code density and execution.

ADDX.A Rsrc,Rdst
ADDX.A #imm20,Rdst

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU391F

Instruction Set Description www.ti.com

102 SLAU391F–August 2012–Revised March 2018
Submit Documentation Feedback

Copyright © 2012–2018, Texas Instruments Incorporated

CPUX

Chapter Excerpt from SLAU208

1.6.3.3 ADDCX

ADDCX.A Add source address-word and carry to destination address-word
ADDCX.[W] Add source word and carry to destination word
ADDCX.B Add source byte and carry to destination byte
Syntax ADDCX.A src,dst

ADDCX src,dst or ADDCX.W src,dst

ADDCX.B src,dst

Operation src + dst + C → dst
Description The source operand and the carry bit C are added to the destination operand. The

previous contents of the destination are lost. Both operands may be located in the full
address space.

Status Bits N: Set if result is negative (MSB = 1), reset if positive (MSB = 0)
Z: Set if result is zero, reset otherwise
C: Set if there is a carry from the MSB of the result, reset otherwise
V: Set if the result of two positive operands is negative, or if the result of two negative

numbers is positive, reset otherwise
Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example Constant 15 and the carry of the previous instruction are added to the 20-bit counter

CNTR located in two words.

ADDCX.A #15,&CNTR ; Add 15 + C to 20-bit CNTR

Example A table word pointed to by R5 (20-bit address) and the carry C are added to R6. The
jump to label TONI is performed on a carry.

ADDCX.W @R5,R6 ; Add table word + C to R6
JC TONI ; Jump if carry
... ; No carry

Example A table byte pointed to by R5 (20-bit address) and the carry bit C are added to R6. The
jump to label TONI is performed if no carry occurs. The table pointer is auto-incremented
by 1.

ADDCX.B @R5+,R6 ; Add table byte + C to R6. R5 + 1
JNC TONI ; Jump if no carry
... ; Carry occurred

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU391F

www.ti.com Instruction Set Description

103SLAU391F–August 2012–Revised March 2018
Submit Documentation Feedback

Copyright © 2012–2018, Texas Instruments Incorporated

CPUX

Chapter Excerpt from SLAU208

1.6.3.4 ANDX

ANDX.A Logical AND of source address-word with destination address-word
ANDX.[W] Logical AND of source word with destination word
ANDX.B Logical AND of source byte with destination byte
Syntax ANDX.A src,dst

ANDX src,dst or ANDX.W src,dst

ANDX.B src,dst

Operation src .and. dst → dst
Description The source operand and the destination operand are logically ANDed. The result is

placed into the destination. The source operand is not affected. Both operands may be
located in the full address space.

Status Bits N: Set if result is negative (MSB = 1), reset if positive (MSB = 0)
Z: Set if result is zero, reset otherwise
C: Set if the result is not zero, reset otherwise. C = (.not. Z)
V: Reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example The bits set in R5 (20-bit data) are used as a mask (AAA55h) for the address-word TOM

located in two words. If the result is zero, a branch is taken to label TONI.

MOVA #AAA55h,R5 ; Load 20-bit mask to R5
ANDX.A R5,TOM ; TOM .and. R5 -> TOM
JZ TONI ; Jump if result 0
... ; Result > 0

or shorter:

ANDX.A #AAA55h,TOM ; TOM .and. AAA55h -> TOM
JZ TONI ; Jump if result 0

Example A table byte pointed to by R5 (20-bit address) is logically ANDed with R6. R6.19:8 = 0.
The table pointer is auto-incremented by 1.

ANDX.B @R5+,R6 ; AND table byte with R6. R5 + 1

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU391F

Instruction Set Description www.ti.com

104 SLAU391F–August 2012–Revised March 2018
Submit Documentation Feedback

Copyright © 2012–2018, Texas Instruments Incorporated

CPUX

Chapter Excerpt from SLAU208

1.6.3.5 BICX

BICX.A Clear bits set in source address-word in destination address-word
BICX.[W] Clear bits set in source word in destination word
BICX.B Clear bits set in source byte in destination byte
Syntax BICX.A src,dst

BICX src,dst or BICX.W src,dst

BICX.B src,dst

Operation (.not. src) .and. dst → dst
Description The inverted source operand and the destination operand are logically ANDed. The

result is placed into the destination. The source operand is not affected. Both operands
may be located in the full address space.

Status Bits N: Not affected
Z: Not affected
C: Not affected
V: Not affected

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example The bits 19:15 of R5 (20-bit data) are cleared.

BICX.A #0F8000h,R5 ; Clear R5.19:15 bits

Example A table word pointed to by R5 (20-bit address) is used to clear bits in R7. R7.19:16 = 0.

BICX.W @R5,R7 ; Clear bits in R7

Example A table byte pointed to by R5 (20-bit address) is used to clear bits in output Port1.

BICX.B @R5,&P1OUT ; Clear I/O port P1 bits

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU391F

www.ti.com Instruction Set Description

105SLAU391F–August 2012–Revised March 2018
Submit Documentation Feedback

Copyright © 2012–2018, Texas Instruments Incorporated

CPUX

Chapter Excerpt from SLAU208

1.6.3.6 BISX

BISX.A Set bits set in source address-word in destination address-word
BISX.[W] Set bits set in source word in destination word
BISX.B Set bits set in source byte in destination byte
Syntax BISX.A src,dst

BISX src,dst or BISX.W src,dst

BISX.B src,dst

Operation src .or. dst → dst
Description The source operand and the destination operand are logically ORed. The result is placed

into the destination. The source operand is not affected. Both operands may be located
in the full address space.

Status Bits N: Not affected
Z: Not affected
C: Not affected
V: Not affected

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example Bits 16 and 15 of R5 (20-bit data) are set to one.

BISX.A #018000h,R5 ; Set R5.16:15 bits

Example A table word pointed to by R5 (20-bit address) is used to set bits in R7.

BISX.W @R5,R7 ; Set bits in R7

Example A table byte pointed to by R5 (20-bit address) is used to set bits in output Port1.

BISX.B @R5,&P1OUT ; Set I/O port P1 bits

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU391F

Instruction Set Description www.ti.com

106 SLAU391F–August 2012–Revised March 2018
Submit Documentation Feedback

Copyright © 2012–2018, Texas Instruments Incorporated

CPUX

Chapter Excerpt from SLAU208

1.6.3.7 BITX

BITX.A Test bits set in source address-word in destination address-word
BITX.[W] Test bits set in source word in destination word
BITX.B Test bits set in source byte in destination byte
Syntax BITX.A src,dst

BITX src,dst or BITX.W src,dst

BITX.B src,dst

Operation src .and. dst → dst
Description The source operand and the destination operand are logically ANDed. The result affects

only the status bits. Both operands may be located in the full address space.
Status Bits N: Set if result is negative (MSB = 1), reset if positive (MSB = 0)

Z: Set if result is zero, reset otherwise
C: Set if the result is not zero, reset otherwise. C = (.not. Z)
V: Reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example Test if bit 16 or 15 of R5 (20-bit data) is set. Jump to label TONI if so.

BITX.A #018000h,R5 ; Test R5.16:15 bits
JNZ TONI ; At least one bit is set
... ; Both are reset

Example A table word pointed to by R5 (20-bit address) is used to test bits in R7. Jump to label
TONI if at least one bit is set.

BITX.W @R5,R7 ; Test bits in R7: C = .not.Z
JC TONI ; At least one is set
... ; Both are reset

Example A table byte pointed to by R5 (20-bit address) is used to test bits in input Port1. Jump to
label TONI if no bit is set. The next table byte is addressed.

BITX.B @R5+,&P1IN ; Test input P1 bits. R5 + 1
JNC TONI ; No corresponding input bit is set
... ; At least one bit is set

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU391F

www.ti.com Instruction Set Description

107SLAU391F–August 2012–Revised March 2018
Submit Documentation Feedback

Copyright © 2012–2018, Texas Instruments Incorporated

CPUX

Chapter Excerpt from SLAU208

1.6.3.8 CLRX

* CLRX.A Clear destination address-word
* CLRX.[W] Clear destination word
* CLRX.B Clear destination byte
Syntax CLRX.A dst

CLRX dst or CLRX.W dst

CLRX.B dst

Operation 0 → dst
Emulation MOVX.A #0,dst

MOVX #0,dst

MOVX.B #0,dst

Description The destination operand is cleared.
Status Bits Status bits are not affected.
Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example RAM address-word TONI is cleared.

CLRX.A TONI ; 0 -> TONI

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU391F

Instruction Set Description www.ti.com

108 SLAU391F–August 2012–Revised March 2018
Submit Documentation Feedback

Copyright © 2012–2018, Texas Instruments Incorporated

CPUX

Chapter Excerpt from SLAU208

1.6.3.9 CMPX

CMPX.A Compare source address-word and destination address-word
CMPX.[W] Compare source word and destination word
CMPX.B Compare source byte and destination byte
Syntax CMPX.A src,dst

CMPX src,dst or CMPX.W src,dst

CMPX.B src,dst

Operation (.not. src) + 1 + dst or dst – src
Description The source operand is subtracted from the destination operand by adding the 1s

complement of the source + 1 to the destination. The result affects only the status bits.
Both operands may be located in the full address space.

Status Bits N: Set if result is negative (src > dst), reset if positive (src ≤ dst)
Z: Set if result is zero (src = dst), reset otherwise (src ≠ dst)
C: Set if there is a carry from the MSB, reset otherwise
V: Set if the subtraction of a negative source operand from a positive destination

operand delivers a negative result, or if the subtraction of a positive source operand
from a negative destination operand delivers a positive result, reset otherwise (no
overflow)

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example Compare EDE with a 20-bit constant 18000h. Jump to label TONI if EDE equals the

constant.

CMPX.A #018000h,EDE ; Compare EDE with 18000h
JEQ TONI ; EDE contains 18000h
... ; Not equal

Example A table word pointed to by R5 (20-bit address) is compared with R7. Jump to label TONI
if R7 contains a lower, signed, 16-bit number.

CMPX.W @R5,R7 ; Compare two signed numbers
JL TONI ; R7 < @R5
... ; R7 >= @R5

Example A table byte pointed to by R5 (20-bit address) is compared to the input in I/O Port1.
Jump to label TONI if the values are equal. The next table byte is addressed.

CMPX.B @R5+,&P1IN ; Compare P1 bits with table. R5 + 1
JEQ TONI ; Equal contents
... ; Not equal

Note: Use CMPA for the following two cases for better density and execution.

CMPA Rsrc,Rdst
CMPA #imm20,Rdst

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU391F

www.ti.com Instruction Set Description

109SLAU391F–August 2012–Revised March 2018
Submit Documentation Feedback

Copyright © 2012–2018, Texas Instruments Incorporated

CPUX

Chapter Excerpt from SLAU208

1.6.3.10 DADCX

* DADCX.A Add carry decimally to destination address-word
* DADCX.[W] Add carry decimally to destination word
* DADCX.B Add carry decimally to destination byte
Syntax DADCX.A dst

DADCX dst or DADCX.W dst

DADCX.B dst

Operation dst + C → dst (decimally)
Emulation DADDX.A #0,dst

DADDX #0,dst

DADDX.B #0,dst

Description The carry bit (C) is added decimally to the destination.
Status Bits N: Set if MSB of result is 1 (address-word > 79999h, word > 7999h, byte > 79h), reset

if MSB is 0
Z: Set if result is zero, reset otherwise
C: Set if the BCD result is too large (address-word > 99999h, word > 9999h, byte >

99h), reset otherwise
V: Undefined

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example The 40-bit counter, pointed to by R12 and R13, is incremented decimally.

DADDX.A #1,0(R12) ; Increment lower 20 bits
DADCX.A 0(R13) ; Add carry to upper 20 bits

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU391F

Instruction Set Description www.ti.com

110 SLAU391F–August 2012–Revised March 2018
Submit Documentation Feedback

Copyright © 2012–2018, Texas Instruments Incorporated

CPUX

Chapter Excerpt from SLAU208

1.6.3.11 DADDX

DADDX.A Add source address-word and carry decimally to destination address-word
DADDX.[W] Add source word and carry decimally to destination word
DADDX.B Add source byte and carry decimally to destination byte
Syntax DADDX.A src,dst

DADDX src,dst or DADDX.W src,dst

DADDX.B src,dst

Operation src + dst + C → dst (decimally)
Description The source operand and the destination operand are treated as two (.B), four (.W), or

five (.A) binary coded decimals (BCD) with positive signs. The source operand and the
carry bit C are added decimally to the destination operand. The source operand is not
affected. The previous contents of the destination are lost. The result is not defined for
non-BCD numbers. Both operands may be located in the full address space.

Status Bits N: Set if MSB of result is 1 (address-word > 79999h, word > 7999h, byte > 79h), reset
if MSB is 0.

Z: Set if result is zero, reset otherwise
C: Set if the BCD result is too large (address-word > 99999h, word > 9999h, byte >

99h), reset otherwise
V: Undefined

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example Decimal 10 is added to the 20-bit BCD counter DECCNTR located in two words.

DADDX.A #10h,&DECCNTR ; Add 10 to 20-bit BCD counter

Example The eight-digit BCD number contained in 20-bit addresses BCD and BCD+2 is added
decimally to an eight-digit BCD number contained in R4 and R5 (BCD+2 and R5 contain
the MSDs).

CLRC ; Clear carry
DADDX.W BCD,R4 ; Add LSDs
DADDX.W BCD+2,R5 ; Add MSDs with carry
JC OVERFLOW ; Result >99999999: go to error routine
... ; Result ok

Example The two-digit BCD number contained in 20-bit address BCD is added decimally to a two-
digit BCD number contained in R4.

CLRC ; Clear carry
DADDX.B BCD,R4 ; Add BCD to R4 decimally.

; R4: 000ddh

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU391F

www.ti.com Instruction Set Description

111SLAU391F–August 2012–Revised March 2018
Submit Documentation Feedback

Copyright © 2012–2018, Texas Instruments Incorporated

CPUX

Chapter Excerpt from SLAU208

1.6.3.12 DECX

* DECX.A Decrement destination address-word
* DECX.[W] Decrement destination word
* DECX.B Decrement destination byte
Syntax DECX.A dst

DECX dst or DECX.W dst

DECX.B dst

Operation dst – 1 → dst
Emulation SUBX.A #1,dst

SUBX #1,dst

SUBX.B #1,dst

Description The destination operand is decremented by one. The original contents are lost.
Status Bits N: Set if result is negative, reset if positive

Z: Set if dst contained 1, reset otherwise
C: Reset if dst contained 0, set otherwise
V: Set if an arithmetic overflow occurs, otherwise reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example RAM address-word TONI is decremented by one.

DECX.A TONI ; Decrement TONI

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU391F

Instruction Set Description www.ti.com

112 SLAU391F–August 2012–Revised March 2018
Submit Documentation Feedback

Copyright © 2012–2018, Texas Instruments Incorporated

CPUX

Chapter Excerpt from SLAU208

1.6.3.13 DECDX

* DECDX.A Double-decrement destination address-word
* DECDX.[W] Double-decrement destination word
* DECDX.B Double-decrement destination byte
Syntax DECDX.A dst

DECDX dst or DECDX.W dst

DECDX.B dst

Operation dst – 2 → dst
Emulation SUBX.A #2,dst

SUBX #2,dst

SUBX.B #2,dst

Description The destination operand is decremented by two. The original contents are lost.
Status Bits N: Set if result is negative, reset if positive

Z: Set if dst contained 2, reset otherwise
C: Reset if dst contained 0 or 1, set otherwise
V: Set if an arithmetic overflow occurs, otherwise reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example RAM address-word TONI is decremented by two.

DECDX.A TONI ; Decrement TONI

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU391F

www.ti.com Instruction Set Description

113SLAU391F–August 2012–Revised March 2018
Submit Documentation Feedback

Copyright © 2012–2018, Texas Instruments Incorporated

CPUX

Chapter Excerpt from SLAU208

1.6.3.14 INCX

* INCX.A Increment destination address-word
* INCX.[W] Increment destination word
* INCX.B Increment destination byte
Syntax INCX.A dst

INCX dst or INCX.W dst

INCX.B dst

Operation dst + 1 → dst
Emulation ADDX.A #1,dst

ADDX #1,dst

ADDX.B #1,dst

Description The destination operand is incremented by one. The original contents are lost.
Status Bits N: Set if result is negative, reset if positive

Z: Set if dst contained 0FFFFFh, reset otherwise
Set if dst contained 0FFFFh, reset otherwise
Set if dst contained 0FFh, reset otherwise

C: Set if dst contained 0FFFFFh, reset otherwise
Set if dst contained 0FFFFh, reset otherwise
Set if dst contained 0FFh, reset otherwise

V: Set if dst contained 07FFFh, reset otherwise
Set if dst contained 07FFFh, reset otherwise
Set if dst contained 07Fh, reset otherwise

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example RAM address-wordTONI is incremented by one.

INCX.A TONI ; Increment TONI (20-bits)

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU391F

Instruction Set Description www.ti.com

114 SLAU391F–August 2012–Revised March 2018
Submit Documentation Feedback

Copyright © 2012–2018, Texas Instruments Incorporated

CPUX

Chapter Excerpt from SLAU208

1.6.3.15 INCDX

* INCDX.A Double-increment destination address-word
* INCDX.[W] Double-increment destination word
* INCDX.B Double-increment destination byte
Syntax INCDX.A dst

INCDX dst or INCDX.W dst

INCDX.B dst

Operation dst + 2 → dst
Emulation ADDX.A #2,dst

ADDX #2,dst

ADDX.B #2,dst

Description The destination operand is incremented by two. The original contents are lost.
Status Bits N: Set if result is negative, reset if positive

Z: Set if dst contained 0FFFFEh, reset otherwise
Set if dst contained 0FFFEh, reset otherwise
Set if dst contained 0FEh, reset otherwise

C: Set if dst contained 0FFFFEh or 0FFFFFh, reset otherwise
Set if dst contained 0FFFEh or 0FFFFh, reset otherwise
Set if dst contained 0FEh or 0FFh, reset otherwise

V: Set if dst contained 07FFFEh or 07FFFFh, reset otherwise
Set if dst contained 07FFEh or 07FFFh, reset otherwise
Set if dst contained 07Eh or 07Fh, reset otherwise

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example RAM byte LEO is incremented by two; PC points to upper memory.

INCDX.B LEO ; Increment LEO by two

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU391F

www.ti.com Instruction Set Description

115SLAU391F–August 2012–Revised March 2018
Submit Documentation Feedback

Copyright © 2012–2018, Texas Instruments Incorporated

CPUX

Chapter Excerpt from SLAU208

1.6.3.16 INVX

* INVX.A Invert destination
* INVX.[W] Invert destination
* INVX.B Invert destination
Syntax INVX.A dst

INVX dst or INVX.W dst

INVX.B dst

Operation .NOT.dst → dst
Emulation XORX.A #0FFFFFh,dst

XORX #0FFFFh,dst

XORX.B #0FFh,dst

Description The destination operand is inverted. The original contents are lost.
Status Bits N: Set if result is negative, reset if positive

Z: Set if dst contained 0FFFFFh, reset otherwise
Set if dst contained 0FFFFh, reset otherwise
Set if dst contained 0FFh, reset otherwise

C: Set if result is not zero, reset otherwise (= .NOT. Zero)
V: Set if initial destination operand was negative, otherwise reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example 20-bit content of R5 is negated (twos complement).

INVX.A R5 ; Invert R5
INCX.A R5 ; R5 is now negated

Example Content of memory byte LEO is negated. PC is pointing to upper memory.

INVX.B LEO ; Invert LEO
INCX.B LEO ; MEM(LEO) is negated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU391F

Instruction Set Description www.ti.com

116 SLAU391F–August 2012–Revised March 2018
Submit Documentation Feedback

Copyright © 2012–2018, Texas Instruments Incorporated

CPUX

Chapter Excerpt from SLAU208

1.6.3.17 MOVX

MOVX.A Move source address-word to destination address-word
MOVX.[W] Move source word to destination word
MOVX.B Move source byte to destination byte
Syntax MOVX.A src,dst

MOVX src,dst or MOVX.W src,dst

MOVX.B src,dst

Operation src → dst
Description The source operand is copied to the destination. The source operand is not affected.

Both operands may be located in the full address space.
Status Bits N: Not affected

Z: Not affected
C: Not affected
V: Not affected

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example Move a 20-bit constant 18000h to absolute address-word EDE

MOVX.A #018000h,&EDE ; Move 18000h to EDE

Example The contents of table EDE (word data, 20-bit addresses) are copied to table TOM. The
length of the table is 030h words.

MOVA #EDE,R10 ; Prepare pointer (20-bit address)
Loop MOVX.W @R10+,TOM-EDE-2(R10) ; R10 points to both tables.

; R10+2
CMPA #EDE+60h,R10 ; End of table reached?
JLO Loop ; Not yet
... ; Copy completed

Example The contents of table EDE (byte data, 20-bit addresses) are copied to table TOM. The
length of the table is 020h bytes.

MOVA #EDE,R10 ; Prepare pointer (20-bit)
MOV #20h,R9 ; Prepare counter

Loop MOVX.W @R10+,TOM-EDE-2(R10) ; R10 points to both tables.
; R10+1

DEC R9 ; Decrement counter
JNZ Loop ; Not yet done
... ; Copy completed

Ten of the 28 possible addressing combinations of the MOVX.A instruction can use the
MOVA instruction. This saves two bytes and code cycles. Examples for the addressing
combinations are:

MOVX.A Rsrc,Rdst MOVA Rsrc,Rdst ; Reg/Reg
MOVX.A #imm20,Rdst MOVA #imm20,Rdst ; Immediate/Reg
MOVX.A &abs20,Rdst MOVA &abs20,Rdst ; Absolute/Reg
MOVX.A @Rsrc,Rdst MOVA @Rsrc,Rdst ; Indirect/Reg
MOVX.A @Rsrc+,Rdst MOVA @Rsrc+,Rdst ; Indirect,Auto/Reg
MOVX.A Rsrc,&abs20 MOVA Rsrc,&abs20 ; Reg/Absolute

The next four replacements are possible only if 16-bit indexes are sufficient for the
addressing:

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU391F

www.ti.com Instruction Set Description

117SLAU391F–August 2012–Revised March 2018
Submit Documentation Feedback

Copyright © 2012–2018, Texas Instruments Incorporated

CPUX

Chapter Excerpt from SLAU208

MOVX.A z20(Rsrc),Rdst MOVA z16(Rsrc),Rdst ; Indexed/Reg
MOVX.A Rsrc,z20(Rdst) MOVA Rsrc,z16(Rdst) ; Reg/Indexed
MOVX.A symb20,Rdst MOVA symb16,Rdst ; Symbolic/Reg
MOVX.A Rsrc,symb20 MOVA Rsrc,symb16 ; Reg/Symbolic

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU391F

Instruction Set Description www.ti.com

118 SLAU391F–August 2012–Revised March 2018
Submit Documentation Feedback

Copyright © 2012–2018, Texas Instruments Incorporated

CPUX

Chapter Excerpt from SLAU208

1.6.3.18 POPM

POPM.A Restore n CPU registers (20-bit data) from the stack
POPM.[W] Restore n CPU registers (16-bit data) from the stack
Syntax POPM.A #n,Rdst 1 ≤ n ≤ 16

POPM.W #n,Rdst or POPM #n,Rdst 1 ≤ n ≤ 16
Operation POPM.A: Restore the register values from stack to the specified CPU registers. The SP

is incremented by four for each register restored from stack. The 20-bit values from
stack (two words per register) are restored to the registers.
POPM.W: Restore the 16-bit register values from stack to the specified CPU registers.
The SP is incremented by two for each register restored from stack. The 16-bit values
from stack (one word per register) are restored to the CPU registers.
Note : This instruction does not use the extension word.

Description POPM.A: The CPU registers pushed on the stack are moved to the extended CPU
registers, starting with the CPU register (Rdst – n + 1). The SP is incremented by (n ×
4) after the operation.
POPM.W: The 16-bit registers pushed on the stack are moved back to the CPU
registers, starting with CPU register (Rdst – n + 1). The SP is incremented by (n × 2)
after the instruction. The MSBs (Rdst.19:16) of the restored CPU registers are cleared.

Status Bits Status bits are not affected, except SR is included in the operation.
Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example Restore the 20-bit registers R9, R10, R11, R12, R13 from the stack

POPM.A #5,R13 ; Restore R9, R10, R11, R12, R13

Example Restore the 16-bit registers R9, R10, R11, R12, R13 from the stack.

POPM.W #5,R13 ; Restore R9, R10, R11, R12, R13

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU391F

www.ti.com Instruction Set Description

119SLAU391F–August 2012–Revised March 2018
Submit Documentation Feedback

Copyright © 2012–2018, Texas Instruments Incorporated

CPUX

Chapter Excerpt from SLAU208

1.6.3.19 PUSHM

PUSHM.A Save n CPU registers (20-bit data) on the stack
PUSHM.[W] Save n CPU registers (16-bit words) on the stack
Syntax PUSHM.A #n,Rdst 1 ≤ n ≤ 16

PUSHM.W #n,Rdst or PUSHM #n,Rdst 1 ≤ n ≤ 16
Operation PUSHM.A: Save the 20-bit CPU register values on the stack. The SP is decremented

by four for each register stored on the stack. The MSBs are stored first (higher
address).
PUSHM.W: Save the 16-bit CPU register values on the stack. The SP is decremented
by two for each register stored on the stack.

Description PUSHM.A: The n CPU registers, starting with Rdst backwards, are stored on the stack.
The SP is decremented by (n × 4) after the operation. The data (Rn.19:0) of the pushed
CPU registers is not affected.
PUSHM.W: The n registers, starting with Rdst backwards, are stored on the stack. The
SP is decremented by (n × 2) after the operation. The data (Rn.19:0) of the pushed
CPU registers is not affected.
Note : This instruction does not use the extension word.

Status Bits Status bits are not affected.
Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example Save the five 20-bit registers R9, R10, R11, R12, R13 on the stack

PUSHM.A #5,R13 ; Save R13, R12, R11, R10, R9

Example Save the five 16-bit registers R9, R10, R11, R12, R13 on the stack

PUSHM.W #5,R13 ; Save R13, R12, R11, R10, R9

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU391F

Instruction Set Description www.ti.com

120 SLAU391F–August 2012–Revised March 2018
Submit Documentation Feedback

Copyright © 2012–2018, Texas Instruments Incorporated

CPUX

Chapter Excerpt from SLAU208

1.6.3.20 POPX

* POPX.A Restore single address-word from the stack
* POPX.[W] Restore single word from the stack
* POPX.B Restore single byte from the stack
Syntax POPX.A dst

POPX dst or POPX.W dst

POPX.B dst

Operation Restore the 8-, 16-, 20-bit value from the stack to the destination. 20-bit addresses are
possible. The SP is incremented by two (byte and word operands) and by four
(address-word operand).

Emulation MOVX(.B,.A) @SP+,dst

Description The item on TOS is written to the destination operand. Register mode, Indexed mode,
Symbolic mode, and Absolute mode are possible. The SP is incremented by two or
four.
Note: the SP is incremented by two also for byte operations.

Status Bits Status bits are not affected.
Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example Write the 16-bit value on TOS to the 20-bit address &EDE

POPX.W &EDE ; Write word to address EDE

Example Write the 20-bit value on TOS to R9

POPX.A R9 ; Write address-word to R9

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU391F

www.ti.com Instruction Set Description

121SLAU391F–August 2012–Revised March 2018
Submit Documentation Feedback

Copyright © 2012–2018, Texas Instruments Incorporated

CPUX

Chapter Excerpt from SLAU208

1.6.3.21 PUSHX

PUSHX.A Save single address-word to the stack
PUSHX.[W] Save single word to the stack
PUSHX.B Save single byte to the stack
Syntax PUSHX.A src

PUSHX src or PUSHX.W src

PUSHX.B src

Operation Save the 8-, 16-, 20-bit value of the source operand on the TOS. 20-bit addresses are
possible. The SP is decremented by two (byte and word operands) or by four (address-
word operand) before the write operation.

Description The SP is decremented by two (byte and word operands) or by four (address-word
operand). Then the source operand is written to the TOS. All seven addressing modes
are possible for the source operand.

Status Bits Status bits are not affected.
Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example Save the byte at the 20-bit address &EDE on the stack

PUSHX.B &EDE ; Save byte at address EDE

Example Save the 20-bit value in R9 on the stack.

PUSHX.A R9 ; Save address-word in R9

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU391F

C

19 0

MSB0000

15

LSB

C

19 0

MSB LSB

16

0

0

Instruction Set Description www.ti.com

122 SLAU391F–August 2012–Revised March 2018
Submit Documentation Feedback

Copyright © 2012–2018, Texas Instruments Incorporated

CPUX

Chapter Excerpt from SLAU208

1.6.3.22 RLAM

RLAM.A Rotate left arithmetically the 20-bit CPU register content
RLAM.[W] Rotate left arithmetically the 16-bit CPU register content
Syntax RLAM.A #n,Rdst 1 ≤ n ≤ 4

RLAM.W #n,Rdst or RLAM #n,Rdst 1 ≤ n ≤ 4
Operation C ← MSB ← MSB-1 LSB+1 ← LSB ← 0
Description The destination operand is shifted arithmetically left one, two, three, or four positions as

shown in Figure 1-44. RLAM works as a multiplication (signed and unsigned) with 2, 4,
8, or 16. The word instruction RLAM.W clears the bits Rdst.19:16.
Note : This instruction does not use the extension word.

Status Bits N: Set if result is negative
.A: Rdst.19 = 1, reset if Rdst.19 = 0
.W: Rdst.15 = 1, reset if Rdst.15 = 0

Z: Set if result is zero, reset otherwise
C: Loaded from the MSB (n = 1), MSB-1 (n = 2), MSB-2 (n = 3), MSB-3 (n = 4)
V: Undefined

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example The 20-bit operand in R5 is shifted left by three positions. It operates equal to an

arithmetic multiplication by 8.

RLAM.A #3,R5 ; R5 = R5 x 8

Figure 1-44. Rotate Left Arithmetically—RLAM[.W] and RLAM.A

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU391F

MSBC 0LSB

0

www.ti.com Instruction Set Description

123SLAU391F–August 2012–Revised March 2018
Submit Documentation Feedback

Copyright © 2012–2018, Texas Instruments Incorporated

CPUX

Chapter Excerpt from SLAU208

1.6.3.23 RLAX

* RLAX.A Rotate left arithmetically address-word
* RLAX.[W] Rotate left arithmetically word
* RLAX.B Rotate left arithmetically byte
Syntax RLAX.A dst

RLAX dst or RLAX.W dst

RLAX.B dst

Operation C ← MSB ← MSB-1 LSB+1 ← LSB ← 0
Emulation ADDX.A dst,dst

ADDX dst,dst

ADDX.B dst,dst

Description The destination operand is shifted left one position as shown in Figure 1-45. The MSB
is shifted into the carry bit (C) and the LSB is filled with 0. The RLAX instruction acts as
a signed multiplication by 2.

Status Bits N: Set if result is negative, reset if positive
Z: Set if result is zero, reset otherwise
C: Loaded from the MSB
V: Set if an arithmetic overflow occurs: the initial value is 040000h ≤ dst < 0C0000h;

reset otherwise
Set if an arithmetic overflow occurs: the initial value is 04000h ≤ dst < 0C000h;
reset otherwise
Set if an arithmetic overflow occurs: the initial value is 040h ≤ dst < 0C0h; reset
otherwise

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example The 20-bit value in R7 is multiplied by 2

RLAX.A R7 ; Shift left R7 (20-bit)

Figure 1-45. Destination Operand-Arithmetic Shift Left

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU391F

MSB

0

C LSB

Instruction Set Description www.ti.com

124 SLAU391F–August 2012–Revised March 2018
Submit Documentation Feedback

Copyright © 2012–2018, Texas Instruments Incorporated

CPUX

Chapter Excerpt from SLAU208

1.6.3.24 RLCX

* RLCX.A Rotate left through carry address-word
* RLCX.[W] Rotate left through carry word
* RLCX.B Rotate left through carry byte
Syntax RLCX.A dst

RLCX dst or RLCX.W dst

RLCX.B dst

Operation C ← MSB ← MSB-1 LSB+1 ← LSB ← C
Emulation ADDCX.A dst,dst

ADDCX dst,dst

ADDCX.B dst,dst

Description The destination operand is shifted left one position as shown in Figure 1-46. The carry
bit (C) is shifted into the LSB and the MSB is shifted into the carry bit (C).

Status Bits N: Set if result is negative, reset if positive
Z: Set if result is zero, reset otherwise
C: Loaded from the MSB
V: Set if an arithmetic overflow occurs: the initial value is 040000h ≤ dst < 0C0000h;

reset otherwise
Set if an arithmetic overflow occurs: the initial value is 04000h ≤ dst < 0C000h;
reset otherwise
Set if an arithmetic overflow occurs: the initial value is 040h ≤ dst < 0C0h; reset
otherwise

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example The 20-bit value in R5 is shifted left one position.

RLCX.A R5 ; (R5 x 2) + C -> R5

Example The RAM byte LEO is shifted left one position. PC is pointing to upper memory.

RLCX.B LEO ; RAM(LEO) x 2 + C -> RAM(LEO)

Figure 1-46. Destination Operand-Carry Left Shift

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU391F

C

19 0

MSB0000

15

LSB

C

19 0

MSB LSB

16

www.ti.com Instruction Set Description

125SLAU391F–August 2012–Revised March 2018
Submit Documentation Feedback

Copyright © 2012–2018, Texas Instruments Incorporated

CPUX

Chapter Excerpt from SLAU208

1.6.3.25 RRAM

RRAM.A Rotate right arithmetically the 20-bit CPU register content
RRAM.[W] Rotate right arithmetically the 16-bit CPU register content
Syntax RRAM.A #n,Rdst 1 ≤ n ≤ 4

RRAM.W #n,Rdst or RRAM #n,Rdst 1 ≤ n ≤ 4
Operation MSB → MSB → MSB–1 ... LSB+1 → LSB → C
Description The destination operand is shifted right arithmetically by one, two, three, or four bit

positions as shown in Figure 1-47. The MSB retains its value (sign). RRAM operates
equal to a signed division by 2, 4, 8, or 16. The MSB is retained and shifted into MSB-1.
The LSB+1 is shifted into the LSB, and the LSB is shifted into the carry bit C. The word
instruction RRAM.W clears the bits Rdst.19:16.
Note : This instruction does not use the extension word.

Status Bits N: Set if result is negative
.A: Rdst.19 = 1, reset if Rdst.19 = 0
.W: Rdst.15 = 1, reset if Rdst.15 = 0

Z: Set if result is zero, reset otherwise
C: Loaded from the LSB (n = 1), LSB+1 (n = 2), LSB+2 (n = 3), or LSB+3 (n = 4)
V: Reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example The signed 20-bit number in R5 is shifted arithmetically right two positions.

RRAM.A #2,R5 ; R5/4 -> R5

Example The signed 20-bit value in R15 is multiplied by 0.75. (0.5 + 0.25) × R15.

PUSHM.A #1,R15 ; Save extended R15 on stack
RRAM.A #1,R15 ; R15 y 0.5 -> R15
ADDX.A @SP+,R15 ; R15 y 0.5 + R15 = 1.5 y R15 -> R15
RRAM.A #1,R15 ; (1.5 y R15) y 0.5 = 0.75 y R15 -> R15

Figure 1-47. Rotate Right Arithmetically RRAM[.W] and RRAM.A

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU391F

Instruction Set Description www.ti.com

126 SLAU391F–August 2012–Revised March 2018
Submit Documentation Feedback

Copyright © 2012–2018, Texas Instruments Incorporated

CPUX

Chapter Excerpt from SLAU208

1.6.3.26 RRAX

RRAX.A Rotate right arithmetically the 20-bit operand
RRAX.[W] Rotate right arithmetically the 16-bit operand
RRAX.B Rotate right arithmetically the 8-bit operand
Syntax RRAX.A Rdst

RRAX.W Rdst

RRAX Rdst

RRAX.B Rdst

RRAX.A dst

RRAX dst or RRAX.W dst

RRAX.B dst

Operation MSB → MSB → MSB–1 ... LSB+1 → LSB → C
Description Register mode for the destination: the destination operand is shifted right by one bit

position as shown in Figure 1-48. The MSB retains its value (sign). The word instruction
RRAX.W clears the bits Rdst.19:16, the byte instruction RRAX.B clears the bits
Rdst.19:8. The MSB retains its value (sign), the LSB is shifted into the carry bit. RRAX
here operates equal to a signed division by 2.
All other modes for the destination: the destination operand is shifted right arithmetically
by one bit position as shown in Figure 1-49. The MSB retains its value (sign), the LSB
is shifted into the carry bit. RRAX here operates equal to a signed division by 2. All
addressing modes, with the exception of the Immediate mode, are possible in the full
memory.

Status Bits N: Set if result is negative, reset if positive
.A: dst.19 = 1, reset if dst.19 = 0
.W: dst.15 = 1, reset if dst.15 = 0
.B: dst.7 = 1, reset if dst.7 = 0

Z: Set if result is zero, reset otherwise
C: Loaded from the LSB
V: Reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example The signed 20-bit number in R5 is shifted arithmetically right four positions.

RPT #4
RRAX.A R5 ; R5/16 -> R5

Example The signed 8-bit value in EDE is multiplied by 0.5.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU391F

C

0

MSB

7

LSB

C

15 0

MSB LSB

C

19 0

MSB LSB

31 20

0 0

C

0

MSB

7

LSB

C

15 0

MSB LSB

C

19 0

MSB LSB

819

0 0

19 16

0000

www.ti.com Instruction Set Description

127SLAU391F–August 2012–Revised March 2018
Submit Documentation Feedback

Copyright © 2012–2018, Texas Instruments Incorporated

CPUX

Chapter Excerpt from SLAU208

RRAX.B &EDE ; EDE/2 -> EDE

Figure 1-48. Rotate Right Arithmetically RRAX(.B,.A) – Register Mode

Figure 1-49. Rotate Right Arithmetically RRAX(.B,.A) – Non-Register Mode

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU391F

Instruction Set Description www.ti.com

128 SLAU391F–August 2012–Revised March 2018
Submit Documentation Feedback

Copyright © 2012–2018, Texas Instruments Incorporated

CPUX

Chapter Excerpt from SLAU208

1.6.3.27 RRCM

RRCM.A Rotate right through carry the 20-bit CPU register content
RRCM.[W] Rotate right through carry the 16-bit CPU register content
Syntax RRCM.A #n,Rdst 1 ≤ n ≤ 4

RRCM.W #n,Rdst or RRCM #n,Rdst 1 ≤ n ≤ 4
Operation C → MSB → MSB–1 ... LSB+1 → LSB → C
Description The destination operand is shifted right by one, two, three, or four bit positions as

shown in Figure 1-50. The carry bit C is shifted into the MSB, the LSB is shifted into the
carry bit. The word instruction RRCM.W clears the bits Rdst.19:16.
Note : This instruction does not use the extension word.

Status Bits N: Set if result is negative
.A: Rdst.19 = 1, reset if Rdst.19 = 0
.W: Rdst.15 = 1, reset if Rdst.15 = 0

Z: Set if result is zero, reset otherwise
C: Loaded from the LSB (n = 1), LSB+1 (n = 2), LSB+2 (n = 3), or LSB+3 (n = 4)
V: Reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU391F

C

19 0

MSB0

15

LSB

C

19 0

MSB LSB

16

www.ti.com Instruction Set Description

129SLAU391F–August 2012–Revised March 2018
Submit Documentation Feedback

Copyright © 2012–2018, Texas Instruments Incorporated

CPUX

Chapter Excerpt from SLAU208

Example The address-word in R5 is shifted right by three positions. The MSB–2 is loaded with 1.

SETC ; Prepare carry for MSB-2
RRCM.A #3,R5 ; R5 = R5 » 3 + 20000h

Example The word in R6 is shifted right by two positions. The MSB is loaded with the LSB. The
MSB–1 is loaded with the contents of the carry flag.

RRCM.W #2,R6 ; R6 = R6 » 2. R6.19:16 = 0

Figure 1-50. Rotate Right Through Carry RRCM[.W] and RRCM.A

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU391F

Instruction Set Description www.ti.com

130 SLAU391F–August 2012–Revised March 2018
Submit Documentation Feedback

Copyright © 2012–2018, Texas Instruments Incorporated

CPUX

Chapter Excerpt from SLAU208

1.6.3.28 RRCX

RRCX.A Rotate right through carry the 20-bit operand
RRCX.[W] Rotate right through carry the 16-bit operand
RRCX.B Rotate right through carry the 8-bit operand
Syntax RRCX.A Rdst

RRCX.W Rdst

RRCX Rdst

RRCX.B Rdst

RRCX.A dst

RRCX dst or RRCX.W dst

RRCX.B dst

Operation C → MSB → MSB–1 ... LSB+1 → LSB → C
Description Register mode for the destination: the destination operand is shifted right by one bit

position as shown in Figure 1-51. The word instruction RRCX.W clears the bits
Rdst.19:16, the byte instruction RRCX.B clears the bits Rdst.19:8. The carry bit C is
shifted into the MSB, the LSB is shifted into the carry bit.
All other modes for the destination: the destination operand is shifted right by one bit
position as shown in Figure 1-52. The carry bit C is shifted into the MSB, the LSB is
shifted into the carry bit. All addressing modes, with the exception of the Immediate
mode, are possible in the full memory.

Status Bits N: Set if result is negative
.A: dst.19 = 1, reset if dst.19 = 0
.W: dst.15 = 1, reset if dst.15 = 0
.B: dst.7 = 1, reset if dst.7 = 0

Z: Set if result is zero, reset otherwise
C: Loaded from the LSB
V: Reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example The 20-bit operand at address EDE is shifted right by one position. The MSB is loaded

with 1.

SETC ; Prepare carry for MSB
RRCX.A EDE ; EDE = EDE » 1 + 80000h

Example The word in R6 is shifted right by 12 positions.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU391F

C

0

MSB

7

LSB

C

15 0

MSB LSB

C

19 0

MSB LSB

31 20

0 0

C

19 0

MSB0 − 0

7

LSB

C

19 0

MSB LSB

8

C

15 0

MSB LSB

19 16

0 0 0 0

www.ti.com Instruction Set Description

131SLAU391F–August 2012–Revised March 2018
Submit Documentation Feedback

Copyright © 2012–2018, Texas Instruments Incorporated

CPUX

Chapter Excerpt from SLAU208

RPT #12
RRCX.W R6 ; R6 = R6 » 12. R6.19:16 = 0

Figure 1-51. Rotate Right Through Carry RRCX(.B,.A) – Register Mode

Figure 1-52. Rotate Right Through Carry RRCX(.B,.A) – Non-Register Mode

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU391F

C

19 0

MSB0000

15

LSB

C

19 0

MSB LSB

0

0

16

Instruction Set Description www.ti.com

132 SLAU391F–August 2012–Revised March 2018
Submit Documentation Feedback

Copyright © 2012–2018, Texas Instruments Incorporated

CPUX

Chapter Excerpt from SLAU208

1.6.3.29 RRUM

RRUM.A Rotate right through carry the 20-bit CPU register content
RRUM.[W] Rotate right through carry the 16-bit CPU register content
Syntax RRUM.A #n,Rdst 1 ≤ n ≤ 4

RRUM.W #n,Rdst or RRUM #n,Rdst 1 ≤ n ≤ 4
Operation 0 → MSB → MSB–1 ... LSB+1 → LSB → C
Description The destination operand is shifted right by one, two, three, or four bit positions as

shown in Figure 1-53. Zero is shifted into the MSB, the LSB is shifted into the carry bit.
RRUM works like an unsigned division by 2, 4, 8, or 16. The word instruction RRUM.W
clears the bits Rdst.19:16.
Note : This instruction does not use the extension word.

Status Bits N: Set if result is negative
.A: Rdst.19 = 1, reset if Rdst.19 = 0
.W: Rdst.15 = 1, reset if Rdst.15 = 0

Z: Set if result is zero, reset otherwise
C: Loaded from the LSB (n = 1), LSB+1 (n = 2), LSB+2 (n = 3), or LSB+3 (n = 4)
V: Reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example The unsigned address-word in R5 is divided by 16.

RRUM.A #4,R5 ; R5 = R5 » 4. R5/16

Example The word in R6 is shifted right by one bit. The MSB R6.15 is loaded with 0.

RRUM.W #1,R6 ; R6 = R6/2. R6.19:15 = 0

Figure 1-53. Rotate Right Unsigned RRUM[.W] and RRUM.A

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU391F

C

19 0

MSB0 − 0

7

LSB

C

19 0

MSB LSB

8

C

15 0

MSB LSB

19 16

0 0 0 0

0

0

0

www.ti.com Instruction Set Description

133SLAU391F–August 2012–Revised March 2018
Submit Documentation Feedback

Copyright © 2012–2018, Texas Instruments Incorporated

CPUX

Chapter Excerpt from SLAU208

1.6.3.30 RRUX

RRUX.A Shift right unsigned the 20-bit CPU register content
RRUX.[W] Shift right unsigned the 16-bit CPU register content
RRUX.B Shift right unsigned the 8-bit CPU register content
Syntax RRUX.A Rdst

RRUX.W Rdst

RRUX Rdst

RRUX.B Rdst

Operation C=0 → MSB → MSB–1 ... LSB+1 → LSB → C
Description RRUX is valid for register mode only: the destination operand is shifted right by one bit

position as shown in Figure 1-54. The word instruction RRUX.W clears the bits
Rdst.19:16. The byte instruction RRUX.B clears the bits Rdst.19:8. Zero is shifted into
the MSB, the LSB is shifted into the carry bit.

Status Bits N: Set if result is negative
.A: dst.19 = 1, reset if dst.19 = 0
.W: dst.15 = 1, reset if dst.15 = 0
.B: dst.7 = 1, reset if dst.7 = 0

Z: Set if result is zero, reset otherwise
C: Loaded from the LSB
V: Reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example The word in R6 is shifted right by 12 positions.

RPT #12
RRUX.W R6 ; R6 = R6 » 12. R6.19:16 = 0

Figure 1-54. Rotate Right Unsigned RRUX(.B,.A) – Register Mode

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU391F

Instruction Set Description www.ti.com

134 SLAU391F–August 2012–Revised March 2018
Submit Documentation Feedback

Copyright © 2012–2018, Texas Instruments Incorporated

CPUX

Chapter Excerpt from SLAU208

1.6.3.31 SBCX

* SBCX.A Subtract borrow (.NOT. carry) from destination address-word
* SBCX.[W] Subtract borrow (.NOT. carry) from destination word
* SBCX.B Subtract borrow (.NOT. carry) from destination byte
Syntax SBCX.A dst

SBCX dst or SBCX.W dst

SBCX.B dst

Operation dst + 0FFFFFh + C → dst
dst + 0FFFFh + C → dst
dst + 0FFh + C → dst

Emulation SBCX.A #0,dst

SBCX #0,dst

SBCX.B #0,dst

Description The carry bit (C) is added to the destination operand minus one. The previous contents
of the destination are lost.

Status Bits N: Set if result is negative, reset if positive
Z: Set if result is zero, reset otherwise
C: Set if there is a carry from the MSB of the result, reset otherwise

Set to 1 if no borrow, reset if borrow
V: Set if an arithmetic overflow occurs, reset otherwise

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example The 8-bit counter pointed to by R13 is subtracted from a 16-bit counter pointed to by

R12.

SUBX.B @R13,0(R12) ; Subtract LSDs
SBCX.B 1(R12) ; Subtract carry from MSD

NOTE: Borrow implementation

The borrow is treated as a .NOT. carry:

Borrow Carry Bit
Yes 0
No 1

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU391F

www.ti.com Instruction Set Description

135SLAU391F–August 2012–Revised March 2018
Submit Documentation Feedback

Copyright © 2012–2018, Texas Instruments Incorporated

CPUX

Chapter Excerpt from SLAU208

1.6.3.32 SUBX

SUBX.A Subtract source address-word from destination address-word
SUBX.[W] Subtract source word from destination word
SUBX.B Subtract source byte from destination byte
Syntax SUBX.A src,dst

SUBX src,dst or SUBX.W src,dst

SUBX.B src,dst

Operation (.not. src) + 1 + dst → dst or dst – src → dst
Description The source operand is subtracted from the destination operand. This is done by adding

the 1s complement of the source + 1 to the destination. The source operand is not
affected. The result is written to the destination operand. Both operands may be located
in the full address space.

Status Bits N: Set if result is negative (src > dst), reset if positive (src ≤ dst)
Z: Set if result is zero (src = dst), reset otherwise (src ≠ dst)
C: Set if there is a carry from the MSB, reset otherwise
V: Set if the subtraction of a negative source operand from a positive destination

operand delivers a negative result, or if the subtraction of a positive source operand
from a negative destination operand delivers a positive result, reset otherwise (no
overflow)

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example A 20-bit constant 87654h is subtracted from EDE (LSBs) and EDE+2 (MSBs).

SUBX.A #87654h,EDE ; Subtract 87654h from EDE+2|EDE

Example A table word pointed to by R5 (20-bit address) is subtracted from R7. Jump to label
TONI if R7 contains zero after the instruction. R5 is auto-incremented by two. R7.19:16 =
0.

SUBX.W @R5+,R7 ; Subtract table number from R7. R5 + 2
JZ TONI ; R7 = @R5 (before subtraction)
... ; R7 <> @R5 (before subtraction)

Example Byte CNT is subtracted from the byte R12 points to in the full address space. Address of
CNT is within PC ± 512 K.

SUBX.B CNT,0(R12) ; Subtract CNT from @R12

Note: Use SUBA for the following two cases for better density and execution.

SUBX.A Rsrc,Rdst
SUBX.A #imm20,Rdst

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU391F

Instruction Set Description www.ti.com

136 SLAU391F–August 2012–Revised March 2018
Submit Documentation Feedback

Copyright © 2012–2018, Texas Instruments Incorporated

CPUX

Chapter Excerpt from SLAU208

1.6.3.33 SUBCX

SUBCX.A Subtract source address-word with carry from destination address-word
SUBCX.[W] Subtract source word with carry from destination word
SUBCX.B Subtract source byte with carry from destination byte
Syntax SUBCX.A src,dst

SUBCX src,dst or SUBCX.W src,dst

SUBCX.B src,dst

Operation (.not. src) + C + dst → dst or dst – (src – 1) + C → dst
Description The source operand is subtracted from the destination operand. This is made by adding

the 1s complement of the source + carry to the destination. The source operand is not
affected, the result is written to the destination operand. Both operands may be located
in the full address space.

Status Bits N: Set if result is negative (MSB = 1), reset if positive (MSB = 0)
Z: Set if result is zero, reset otherwise
C: Set if there is a carry from the MSB, reset otherwise
V: Set if the subtraction of a negative source operand from a positive destination

operand delivers a negative result, or if the subtraction of a positive source operand
from a negative destination operand delivers a positive result, reset otherwise (no
overflow).

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example A 20-bit constant 87654h is subtracted from R5 with the carry from the previous

instruction.

SUBCX.A #87654h,R5 ; Subtract 87654h + C from R5

Example A 48-bit number (3 words) pointed to by R5 (20-bit address) is subtracted from a 48-bit
counter in RAM, pointed to by R7. R5 auto-increments to point to the next 48-bit number.

SUBX.W @R5+,0(R7) ; Subtract LSBs. R5 + 2
SUBCX.W @R5+,2(R7) ; Subtract MIDs with C. R5 + 2
SUBCX.W @R5+,4(R7) ; Subtract MSBs with C. R5 + 2

Example Byte CNT is subtracted from the byte R12 points to. The carry of the previous instruction
is used. 20-bit addresses.

SUBCX.B &CNT,0(R12) ; Subtract byte CNT from @R12

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU391F

15 8 7 0

Low ByteHigh Byte

Before SWPBX.A

After SWPBX.A

X

19 1631 20

X

15 8 7 0

High ByteLow Byte0

19 1631 20

X

15 8 7 0

15 8 7 0

Low Byte

Low ByteHigh Byte

High Byte

Before SWPBX.A

After SWPBX.A

X

X

19

19

16

16

www.ti.com Instruction Set Description

137SLAU391F–August 2012–Revised March 2018
Submit Documentation Feedback

Copyright © 2012–2018, Texas Instruments Incorporated

CPUX

Chapter Excerpt from SLAU208

1.6.3.34 SWPBX

SWPBX.A Swap bytes of lower word
SWPBX.[W] Swap bytes of word
Syntax SWPBX.A dst

SWPBX dst or SWPBX.W dst

Operation dst.15:8 ↔ dst.7:0
Description Register mode: Rn.15:8 are swapped with Rn.7:0. When the .A extension is used,

Rn.19:16 are unchanged. When the .W extension is used, Rn.19:16 are cleared.
Other modes: When the .A extension is used, bits 31:20 of the destination address are
cleared, bits 19:16 are left unchanged, and bits 15:8 are swapped with bits 7:0. When
the .W extension is used, bits 15:8 are swapped with bits 7:0 of the addressed word.

Status Bits Status bits are not affected.
Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example Exchange the bytes of RAM address-word EDE

MOVX.A #23456h,&EDE ; 23456h -> EDE
SWPBX.A EDE ; 25634h -> EDE

Example Exchange the bytes of R5

MOVA #23456h,R5 ; 23456h -> R5
SWPBX.W R5 ; 05634h -> R5

Figure 1-55. Swap Bytes SWPBX.A Register Mode

Figure 1-56. Swap Bytes SWPBX.A In Memory

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU391F

15 8 7 0

15 8 7 0

Low Byte

Low ByteHigh Byte

High Byte

Before SWPBX

After SWPBX

15 8 7 0

15 8 7 0

Low Byte

Low ByteHigh Byte

High Byte

Before SWPBX

After SWPBX

X

0

19

19

16

16

Instruction Set Description www.ti.com

138 SLAU391F–August 2012–Revised March 2018
Submit Documentation Feedback

Copyright © 2012–2018, Texas Instruments Incorporated

CPUX

Chapter Excerpt from SLAU208

Figure 1-57. Swap Bytes SWPBX[.W] Register Mode

Figure 1-58. Swap Bytes SWPBX[.W] In Memory

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU391F

15 8 7 6 0

S

15 8 7 6 019 16

S

19 16

SXTX[.W] Rdst

SXTX[.W] dst

15 8 7 6 019 162031

0 0...... S

19 16

15 8 7 6 019 16

S

19 16

SXTX.A Rdst

SXTX.A dst

www.ti.com Instruction Set Description

139SLAU391F–August 2012–Revised March 2018
Submit Documentation Feedback

Copyright © 2012–2018, Texas Instruments Incorporated

CPUX

Chapter Excerpt from SLAU208

1.6.3.35 SXTX

SXTX.A Extend sign of lower byte to address-word
SXTX.[W] Extend sign of lower byte to word
Syntax SXTX.A dst

SXTX dst or SXTX.W dst

Operation dst.7 → dst.15:8, Rdst.7 → Rdst.19:8 (Register mode)
Description Register mode: The sign of the low byte of the operand (Rdst.7) is extended into the bits

Rdst.19:8.
Other modes: SXTX.A: the sign of the low byte of the operand (dst.7) is extended into
dst.19:8. The bits dst.31:20 are cleared.
SXTX[.W]: the sign of the low byte of the operand (dst.7) is extended into dst.15:8.

Status Bits N: Set if result is negative, reset otherwise
Z: Set if result is zero, reset otherwise
C: Set if result is not zero, reset otherwise (C = .not.Z)
V: Reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example The signed 8-bit data in EDE.7:0 is sign extended to 20 bits: EDE.19:8. Bits 31:20

located in EDE+2 are cleared.

SXTX.A &EDE ; Sign extended EDE -> EDE+2/EDE

Figure 1-59. Sign Extend SXTX.A

Figure 1-60. Sign Extend SXTX[.W]

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU391F

Instruction Set Description www.ti.com

140 SLAU391F–August 2012–Revised March 2018
Submit Documentation Feedback

Copyright © 2012–2018, Texas Instruments Incorporated

CPUX

Chapter Excerpt from SLAU208

1.6.3.36 TSTX

* TSTX.A Test destination address-word
* TSTX.[W] Test destination word
* TSTX.B Test destination byte
Syntax TSTX.A dst

TSTX dst or TSTX.W dst

TSTX.B dst

Operation dst + 0FFFFFh + 1
dst + 0FFFFh + 1
dst + 0FFh + 1

Emulation CMPX.A #0,dst

CMPX #0,dst

CMPX.B #0,dst

Description The destination operand is compared with zero. The status bits are set according to the
result. The destination is not affected.

Status Bits N: Set if destination is negative, reset if positive
Z: Set if destination contains zero, reset otherwise
C: Set
V: Reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example RAM byte LEO is tested; PC is pointing to upper memory. If it is negative, continue at

LEONEG; if it is positive but not zero, continue at LEOPOS.

TSTX.B LEO ; Test LEO
JN LEONEG ; LEO is negative
JZ LEOZERO ; LEO is zero

LEOPOS ; LEO is positive but not zero
LEONEG ; LEO is negative
LEOZERO ; LEO is zero

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU391F

www.ti.com Instruction Set Description

141SLAU391F–August 2012–Revised March 2018
Submit Documentation Feedback

Copyright © 2012–2018, Texas Instruments Incorporated

CPUX

Chapter Excerpt from SLAU208

1.6.3.37 XORX

XORX.A Exclusive OR source address-word with destination address-word
XORX.[W] Exclusive OR source word with destination word
XORX.B Exclusive OR source byte with destination byte
Syntax XORX.A src,dst

XORX src,dst or XORX.W src,dst

XORX.B src,dst

Operation src .xor. dst → dst
Description The source and destination operands are exclusively ORed. The result is placed into

the destination. The source operand is not affected. The previous contents of the
destination are lost. Both operands may be located in the full address space.

Status Bits N: Set if result is negative (MSB = 1), reset if positive (MSB = 0)
Z: Set if result is zero, reset otherwise
C: Set if result is not zero, reset otherwise (carry = .not. Zero)
V: Set if both operands are negative (before execution), reset otherwise

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example Toggle bits in address-word CNTR (20-bit data) with information in address-word TONI

(20-bit address)

XORX.A TONI,&CNTR ; Toggle bits in CNTR

Example A table word pointed to by R5 (20-bit address) is used to toggle bits in R6.

XORX.W @R5,R6 ; Toggle bits in R6. R6.19:16 = 0

Example Reset to zero those bits in the low byte of R7 that are different from the bits in byte EDE
(20-bit address)

XORX.B EDE,R7 ; Set different bits to 1 in R7
INV.B R7 ; Invert low byte of R7. R7.19:8 = 0.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU391F

Instruction Set Description www.ti.com

142 SLAU391F–August 2012–Revised March 2018
Submit Documentation Feedback

Copyright © 2012–2018, Texas Instruments Incorporated

CPUX

Chapter Excerpt from SLAU208

1.6.4 Address Instructions
MSP430X address instructions are instructions that support 20-bit operands but have restricted
addressing modes. The addressing modes are restricted to the Register mode and the Immediate mode,
except for the MOVA instruction. Restricting the addressing modes removes the need for the additional
extension-word op-code improving code density and execution time. The MSP430X address instructions
are listed and described in the following pages.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU391F

www.ti.com Instruction Set Description

143SLAU391F–August 2012–Revised March 2018
Submit Documentation Feedback

Copyright © 2012–2018, Texas Instruments Incorporated

CPUX

Chapter Excerpt from SLAU208

1.6.4.1 ADDA

ADDA Add 20-bit source to a 20-bit destination register
Syntax ADDA Rsrc,Rdst

ADDA #imm20,Rdst

Operation src + Rdst → Rdst
Description The 20-bit source operand is added to the 20-bit destination CPU register. The previous

contents of the destination are lost. The source operand is not affected.
Status Bits N: Set if result is negative (Rdst.19 = 1), reset if positive (Rdst.19 = 0)

Z: Set if result is zero, reset otherwise
C: Set if there is a carry from the 20-bit result, reset otherwise
V: Set if the result of two positive operands is negative, or if the result of two negative

numbers is positive, reset otherwise
Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example R5 is increased by 0A4320h. The jump to TONI is performed if a carry occurs.

ADDA #0A4320h,R5 ; Add A4320h to 20-bit R5
JC TONI ; Jump on carry
... ; No carry occurred

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU391F

Instruction Set Description www.ti.com

144 SLAU391F–August 2012–Revised March 2018
Submit Documentation Feedback

Copyright © 2012–2018, Texas Instruments Incorporated

CPUX

Chapter Excerpt from SLAU208

1.6.4.2 BRA

* BRA Branch to destination
Syntax BRA dst

Operation dst → PC
Emulation MOVA dst,PC

Description An unconditional branch is taken to a 20-bit address anywhere in the full address
space. All seven source addressing modes can be used. The branch instruction is an
address-word instruction. If the destination address is contained in a memory location
X, it is contained in two ascending words: X (LSBs) and (X + 2) (MSBs).

Status Bits N: Not affected
Z: Not affected
C: Not affected
V: Not affected

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Examples Examples for all addressing modes are given.

Immediate mode: Branch to label EDE located anywhere in the 20-bit address space or
branch directly to address.

BRA #EDE ; MOVA #imm20,PC
BRA #01AA04h

Symbolic mode: Branch to the 20-bit address contained in addresses EXEC (LSBs) and
EXEC+2 (MSBs). EXEC is located at the address (PC + X) where X is within ±32 K.
Indirect addressing.

BRA EXEC ; MOVA z16(PC),PC

Note: If the 16-bit index is not sufficient, a 20-bit index may be used with the following
instruction.

MOVX.A EXEC,PC ; 1M byte range with 20-bit index

Absolute mode: Branch to the 20-bit address contained in absolute addresses EXEC
(LSBs) and EXEC+2 (MSBs). Indirect addressing.

BRA &EXEC ; MOVA &abs20,PC

Register mode: Branch to the 20-bit address contained in register R5. Indirect R5.

BRA R5 ; MOVA R5,PC

Indirect mode: Branch to the 20-bit address contained in the word pointed to by register
R5 (LSBs). The MSBs have the address (R5 + 2). Indirect, indirect R5.

BRA @R5 ; MOVA @R5,PC

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU391F

www.ti.com Instruction Set Description

145SLAU391F–August 2012–Revised March 2018
Submit Documentation Feedback

Copyright © 2012–2018, Texas Instruments Incorporated

CPUX

Chapter Excerpt from SLAU208

Indirect, Auto-Increment mode: Branch to the 20-bit address contained in the words
pointed to by register R5 and increment the address in R5 afterwards by 4. The next
time the software flow uses R5 as a pointer, it can alter the program execution due to
access to the next address in the table pointed to by R5. Indirect, indirect R5.

BRA @R5+ ; MOVA @R5+,PC. R5 + 4

Indexed mode: Branch to the 20-bit address contained in the address pointed to by
register (R5 + X) (for example, a table with addresses starting at X). (R5 + X) points to
the LSBs, (R5 + X + 2) points to the MSBs of the address. X is within R5 ± 32 K.
Indirect, indirect (R5 + X).

BRA X(R5) ; MOVA z16(R5),PC

Note: If the 16-bit index is not sufficient, a 20-bit index X may be used with the following
instruction:

MOVX.A X(R5),PC ; 1M byte range with 20-bit index

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU391F

Instruction Set Description www.ti.com

146 SLAU391F–August 2012–Revised March 2018
Submit Documentation Feedback

Copyright © 2012–2018, Texas Instruments Incorporated

CPUX

Chapter Excerpt from SLAU208

1.6.4.3 CALLA

CALLA Call a subroutine
Syntax CALLA dst

Operation dst → tmp 20-bit dst is evaluated and stored
SP – 2 → SP
PC.19:16 → @SP updated PC with return address to TOS (MSBs)
SP – 2 → SP
PC.15:0 → @SP updated PC to TOS (LSBs)
tmp → PC saved 20-bit dst to PC

Description A subroutine call is made to a 20-bit address anywhere in the full address space. All
seven source addressing modes can be used. The call instruction is an address-word
instruction. If the destination address is contained in a memory location X, it is
contained in two ascending words, X (LSBs) and (X + 2) (MSBs). Two words on the
stack are needed for the return address. The return is made with the instruction RETA.

Status Bits N: Not affected
Z: Not affected
C: Not affected
V: Not affected

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Examples Examples for all addressing modes are given.

Immediate mode: Call a subroutine at label EXEC or call directly an address.

CALLA #EXEC ; Start address EXEC
CALLA #01AA04h ; Start address 01AA04h

Symbolic mode: Call a subroutine at the 20-bit address contained in addresses EXEC
(LSBs) and EXEC+2 (MSBs). EXEC is located at the address (PC + X) where X is
within ±32 K. Indirect addressing.

CALLA EXEC ; Start address at @EXEC. z16(PC)

Absolute mode: Call a subroutine at the 20-bit address contained in absolute addresses
EXEC (LSBs) and EXEC+2 (MSBs). Indirect addressing.

CALLA &EXEC ; Start address at @EXEC

Register mode: Call a subroutine at the 20-bit address contained in register R5. Indirect
R5.

CALLA R5 ; Start address at @R5

Indirect mode: Call a subroutine at the 20-bit address contained in the word pointed to
by register R5 (LSBs). The MSBs have the address (R5 + 2). Indirect, indirect R5.

CALLA @R5 ; Start address at @R5

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU391F

www.ti.com Instruction Set Description

147SLAU391F–August 2012–Revised March 2018
Submit Documentation Feedback

Copyright © 2012–2018, Texas Instruments Incorporated

CPUX

Chapter Excerpt from SLAU208

Indirect, Auto-Increment mode: Call a subroutine at the 20-bit address contained in the
words pointed to by register R5 and increment the 20-bit address in R5 afterwards by 4.
The next time the software flow uses R5 as a pointer, it can alter the program execution
due to access to the next word address in the table pointed to by R5. Indirect, indirect
R5.

CALLA @R5+ ; Start address at @R5. R5 + 4

Indexed mode: Call a subroutine at the 20-bit address contained in the address pointed
to by register (R5 + X); for example, a table with addresses starting at X. (R5 + X)
points to the LSBs, (R5 + X + 2) points to the MSBs of the word address. X is within R5
± 32 K. Indirect, indirect (R5 + X).

CALLA X(R5) ; Start address at @(R5+X). z16(R5)

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU391F

Instruction Set Description www.ti.com

148 SLAU391F–August 2012–Revised March 2018
Submit Documentation Feedback

Copyright © 2012–2018, Texas Instruments Incorporated

CPUX

Chapter Excerpt from SLAU208

1.6.4.4 CLRA

* CLRA Clear 20-bit destination register
Syntax CLRA Rdst

Operation 0 → Rdst
Emulation MOVA #0,Rdst

Description The destination register is cleared.
Status Bits Status bits are not affected.
Example The 20-bit value in R10 is cleared.

CLRA R10 ; 0 -> R10

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU391F

www.ti.com Instruction Set Description

149SLAU391F–August 2012–Revised March 2018
Submit Documentation Feedback

Copyright © 2012–2018, Texas Instruments Incorporated

CPUX

Chapter Excerpt from SLAU208

1.6.4.5 CMPA

CMPA Compare the 20-bit source with a 20-bit destination register
Syntax CMPA Rsrc,Rdst

CMPA #imm20,Rdst

Operation (.not. src) + 1 + Rdst or Rdst – src
Description The 20-bit source operand is subtracted from the 20-bit destination CPU register. This

is made by adding the 1s complement of the source + 1 to the destination register. The
result affects only the status bits.

Status Bits N: Set if result is negative (src > dst), reset if positive (src ≤ dst)
Z: Set if result is zero (src = dst), reset otherwise (src ≠ dst)
C: Set if there is a carry from the MSB, reset otherwise
V: Set if the subtraction of a negative source operand from a positive destination

operand delivers a negative result, or if the subtraction of a positive source
operand from a negative destination operand delivers a positive result, reset
otherwise (no overflow)

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example A 20-bit immediate operand and R6 are compared. If they are equal, the program

continues at label EQUAL.

CMPA #12345h,R6 ; Compare R6 with 12345h
JEQ EQUAL ; R6 = 12345h
... ; Not equal

Example The 20-bit values in R5 and R6 are compared. If R5 is greater than (signed) or equal to
R6, the program continues at label GRE.

CMPA R6,R5 ; Compare R6 with R5 (R5 - R6)
JGE GRE ; R5 >= R6
... ; R5 < R6

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU391F

Instruction Set Description www.ti.com

150 SLAU391F–August 2012–Revised March 2018
Submit Documentation Feedback

Copyright © 2012–2018, Texas Instruments Incorporated

CPUX

Chapter Excerpt from SLAU208

1.6.4.6 DECDA

* DECDA Double-decrement 20-bit destination register
Syntax DECDA Rdst

Operation Rdst – 2 → Rdst
Emulation SUBA #2,Rdst

Description The destination register is decremented by two. The original contents are lost.
Status Bits N: Set if result is negative, reset if positive

Z: Set if Rdst contained 2, reset otherwise
C: Reset if Rdst contained 0 or 1, set otherwise
V: Set if an arithmetic overflow occurs, otherwise reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example The 20-bit value in R5 is decremented by 2.

DECDA R5 ; Decrement R5 by two

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU391F

www.ti.com Instruction Set Description

151SLAU391F–August 2012–Revised March 2018
Submit Documentation Feedback

Copyright © 2012–2018, Texas Instruments Incorporated

CPUX

Chapter Excerpt from SLAU208

1.6.4.7 INCDA

* INCDA Double-increment 20-bit destination register
Syntax INCDA Rdst

Operation Rdst + 2 → Rdst
Emulation ADDA #2,Rdst

Description The destination register is incremented by two. The original contents are lost.
Status Bits N: Set if result is negative, reset if positive

Z: Set if Rdst contained 0FFFFEh, reset otherwise
Set if Rdst contained 0FFFEh, reset otherwise
Set if Rdst contained 0FEh, reset otherwise

C: Set if Rdst contained 0FFFFEh or 0FFFFFh, reset otherwise
Set if Rdst contained 0FFFEh or 0FFFFh, reset otherwise
Set if Rdst contained 0FEh or 0FFh, reset otherwise

V: Set if Rdst contained 07FFFEh or 07FFFFh, reset otherwise
Set if Rdst contained 07FFEh or 07FFFh, reset otherwise
Set if Rdst contained 07Eh or 07Fh, reset otherwise

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example The 20-bit value in R5 is incremented by two.

INCDA R5 ; Increment R5 by two

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU391F

Instruction Set Description www.ti.com

152 SLAU391F–August 2012–Revised March 2018
Submit Documentation Feedback

Copyright © 2012–2018, Texas Instruments Incorporated

CPUX

Chapter Excerpt from SLAU208

1.6.4.8 MOVA

MOVA Move the 20-bit source to the 20-bit destination
Syntax MOVA Rsrc,Rdst

MOVA #imm20,Rdst

MOVA z16(Rsrc),Rdst

MOVA EDE,Rdst

MOVA &abs20,Rdst

MOVA @Rsrc,Rdst

MOVA @Rsrc+,Rdst

MOVA Rsrc,z16(Rdst)

MOVA Rsrc,&abs20

Operation src → Rdst
Rsrc → dst

Description The 20-bit source operand is moved to the 20-bit destination. The source operand is not
affected. The previous content of the destination is lost.

Status Bits N: Not affected
Z: Not affected
C: Not affected
V: Not affected

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Examples Copy 20-bit value in R9 to R8

MOVA R9,R8 ; R9 -> R8

Write 20-bit immediate value 12345h to R12

MOVA #12345h,R12 ; 12345h -> R12

Copy 20-bit value addressed by (R9 + 100h) to R8. Source operand in addresses (R9 +
100h) LSBs and (R9 + 102h) MSBs.

MOVA 100h(R9),R8 ; Index: + 32 K. 2 words transferred

Move 20-bit value in 20-bit absolute addresses EDE (LSBs) and EDE+2 (MSBs) to R12

MOVA &EDE,R12 ; &EDE -> R12. 2 words transferred

Move 20-bit value in 20-bit addresses EDE (LSBs) and EDE+2 (MSBs) to R12. PC
index ± 32 K.

MOVA EDE,R12 ; EDE -> R12. 2 words transferred

Copy 20-bit value R9 points to (20 bit address) to R8. Source operand in addresses
@R9 LSBs and @(R9 + 2) MSBs.

MOVA @R9,R8 ; @R9 -> R8. 2 words transferred

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU391F

www.ti.com Instruction Set Description

153SLAU391F–August 2012–Revised March 2018
Submit Documentation Feedback

Copyright © 2012–2018, Texas Instruments Incorporated

CPUX

Chapter Excerpt from SLAU208

Copy 20-bit value R9 points to (20 bit address) to R8. R9 is incremented by four
afterwards. Source operand in addresses @R9 LSBs and @(R9 + 2) MSBs.

MOVA @R9+,R8 ; @R9 -> R8. R9 + 4. 2 words transferred.

Copy 20-bit value in R8 to destination addressed by (R9 + 100h). Destination operand
in addresses @(R9 + 100h) LSBs and @(R9 + 102h) MSBs.

MOVA R8,100h(R9) ; Index: +- 32 K. 2 words transferred

Move 20-bit value in R13 to 20-bit absolute addresses EDE (LSBs) and EDE+2 (MSBs)

MOVA R13,&EDE ; R13 -> EDE. 2 words transferred

Move 20-bit value in R13 to 20-bit addresses EDE (LSBs) and EDE+2 (MSBs). PC
index ± 32 K.

MOVA R13,EDE ; R13 -> EDE. 2 words transferred

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU391F

Instruction Set Description www.ti.com

154 SLAU391F–August 2012–Revised March 2018
Submit Documentation Feedback

Copyright © 2012–2018, Texas Instruments Incorporated

CPUX

Chapter Excerpt from SLAU208

1.6.4.9 RETA

* RETA Return from subroutine
Syntax RETA

Operation @SP → PC.15:0 LSBs (15:0) of saved PC to PC.15:0
SP + 2 → SP
@SP → PC.19:16 MSBs (19:16) of saved PC to PC.19:16
SP + 2 → SP

Emulation MOVA @SP+,PC

Description The 20-bit return address information, pushed onto the stack by a CALLA instruction, is
restored to the PC. The program continues at the address following the subroutine call.
The SR bits SR.11:0 are not affected. This allows the transfer of information with these
bits.

Status Bits N: Not affected
Z: Not affected
C: Not affected
V: Not affected

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example Call a subroutine SUBR from anywhere in the 20-bit address space and return to the

address after the CALLA

CALLA #SUBR ; Call subroutine starting at SUBR
... ; Return by RETA to here

SUBR PUSHM.A #2,R14 ; Save R14 and R13 (20 bit data)
... ; Subroutine code
POPM.A #2,R14 ; Restore R13 and R14 (20 bit data)
RETA ; Return (to full address space)

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU391F

www.ti.com Instruction Set Description

155SLAU391F–August 2012–Revised March 2018
Submit Documentation Feedback

Copyright © 2012–2018, Texas Instruments Incorporated

CPUX

Chapter Excerpt from SLAU208

1.6.4.10 SUBA

SUBA Subtract 20-bit source from 20-bit destination register
Syntax SUBA Rsrc,Rdst

SUBA #imm20,Rdst

Operation (.not.src) + 1 + Rdst → Rdst or Rdst – src → Rdst
Description The 20-bit source operand is subtracted from the 20-bit destination register. This is

made by adding the 1s complement of the source + 1 to the destination. The result is
written to the destination register, the source is not affected.

Status Bits N: Set if result is negative (src > dst), reset if positive (src ≤ dst)
Z: Set if result is zero (src = dst), reset otherwise (src ≠ dst)
C: Set if there is a carry from the MSB (Rdst.19), reset otherwise
V: Set if the subtraction of a negative source operand from a positive destination

operand delivers a negative result, or if the subtraction of a positive source
operand from a negative destination operand delivers a positive result, reset
otherwise (no overflow)

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example The 20-bit value in R5 is subtracted from R6. If a carry occurs, the program continues at

label TONI.

SUBA R5,R6 ; R6 - R5 -> R6
JC TONI ; Carry occurred
... ; No carry

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU391F

Instruction Set Description www.ti.com

156 SLAU391F–August 2012–Revised March 2018
Submit Documentation Feedback

Copyright © 2012–2018, Texas Instruments Incorporated

CPUX

Chapter Excerpt from SLAU208

1.6.4.11 TSTA

* TSTA Test 20-bit destination register
Syntax TSTA Rdst

Operation dst + 0FFFFFh + 1
dst + 0FFFFh + 1
dst + 0FFh + 1

Emulation CMPA #0,Rdst

Description The destination register is compared with zero. The status bits are set according to the
result. The destination register is not affected.

Status Bits N: Set if destination register is negative, reset if positive
Z: Set if destination register contains zero, reset otherwise
C: Set
V: Reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example The 20-bit value in R7 is tested. If it is negative, continue at R7NEG; if it is positive but

not zero, continue at R7POS.

TSTA R7 ; Test R7
JN R7NEG ; R7 is negative
JZ R7ZERO ; R7 is zero

R7POS ; R7 is positive but not zero
R7NEG ; R7 is negative
R7ZERO ; R7 is zero

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU391F

IMPORTANT NOTICE FOR TI DESIGN INFORMATION AND RESOURCES

Texas Instruments Incorporated (‘TI”) technical, application or other design advice, services or information, including, but not limited to,
reference designs and materials relating to evaluation modules, (collectively, “TI Resources”) are intended to assist designers who are
developing applications that incorporate TI products; by downloading, accessing or using any particular TI Resource in any way, you
(individually or, if you are acting on behalf of a company, your company) agree to use it solely for this purpose and subject to the terms of
this Notice.
TI’s provision of TI Resources does not expand or otherwise alter TI’s applicable published warranties or warranty disclaimers for TI
products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections,
enhancements, improvements and other changes to its TI Resources.
You understand and agree that you remain responsible for using your independent analysis, evaluation and judgment in designing your
applications and that you have full and exclusive responsibility to assure the safety of your applications and compliance of your applications
(and of all TI products used in or for your applications) with all applicable regulations, laws and other applicable requirements. You
represent that, with respect to your applications, you have all the necessary expertise to create and implement safeguards that (1)
anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that
might cause harm and take appropriate actions. You agree that prior to using or distributing any applications that include TI products, you
will thoroughly test such applications and the functionality of such TI products as used in such applications. TI has not conducted any
testing other than that specifically described in the published documentation for a particular TI Resource.
You are authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include
the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO
ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY
RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information
regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or
endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the
third party, or a license from TI under the patents or other intellectual property of TI.
TI RESOURCES ARE PROVIDED “AS IS” AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR
REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING TI RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO
ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL
PROPERTY RIGHTS.
TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY YOU AGAINST ANY CLAIM, INCLUDING BUT NOT
LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF
DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL,
COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR
ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.
You agree to fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of your non-
compliance with the terms and provisions of this Notice.
This Notice applies to TI Resources. Additional terms apply to the use and purchase of certain types of materials, TI products and services.
These include; without limitation, TI’s standard terms for semiconductor products http://www.ti.com/sc/docs/stdterms.htm), evaluation
modules, and samples (http://www.ti.com/sc/docs/sampterms.htm).

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2018, Texas Instruments Incorporated

http://www.ti.com/sc/docs/stdterms.htm
http://www.ti.com/lit/pdf/SSZZ027
http://www.ti.com/lit/pdf/SSZZ027
http://www.ti.com/sc/docs/sampterms.htm

	1 CPUX
	1.1 MSP430X CPU (CPUX) Introduction
	1.2 Interrupts
	1.3 CPU Registers
	1.3.1 Program Counter (PC)
	1.3.2 Stack Pointer (SP)
	1.3.3 Status Register (SR)
	1.3.4 Constant Generator Registers (CG1 and CG2)
	1.3.4.1 Constant Generator – Expanded Instruction Set

	1.3.5 General-Purpose Registers (R4 to R15)

	1.4 Addressing Modes
	1.4.1 Register Mode
	1.4.2 Indexed Mode
	1.4.2.1 MSP430 Instruction With Indexed Mode in Lower 64KB Memory
	1.4.2.2 MSP430 Instruction With Indexed Mode in Upper Memory
	1.4.2.3 MSP430X Instruction With Indexed Mode
	1.4.2.4 MSP430X Address Instructions With Indexed Mode

	1.4.3 Symbolic Mode
	1.4.3.1 Symbolic Mode in Lower 64KB
	1.4.3.2 MSP430 Instruction With Symbolic Mode in Upper Memory
	1.4.3.3 MSP430X Instruction With Symbolic Mode

	1.4.4 Absolute Mode
	1.4.4.1 Absolute Mode in Lower 64KB
	1.4.4.2 MSP430X Instruction With Absolute Mode

	1.4.5 Indirect Register Mode
	1.4.6 Indirect Autoincrement Mode
	1.4.7 Immediate Mode
	1.4.7.1 MSP430 Instructions With Immediate Mode
	1.4.7.2 MSP430X Instructions With Immediate Mode

	1.5 MSP430 and MSP430X Instructions
	1.5.1 MSP430 Instructions
	1.5.1.1 MSP430 Double-Operand (Format I) Instructions
	1.5.1.2 MSP430 Single-Operand (Format II) Instructions
	1.5.1.3 Jump Instructions
	1.5.1.4 Emulated Instructions
	1.5.1.5 MSP430 Instruction Execution
	1.5.1.5.1 Instruction Cycles and Length for Interrupt, Reset, and Subroutines
	1.5.1.5.2 Format II (Single-Operand) Instruction Cycles and Lengths
	1.5.1.5.3 Jump Instructions Cycles and Lengths
	1.5.1.5.4 Format I (Double-Operand) Instruction Cycles and Lengths

	1.5.2 MSP430X Extended Instructions
	1.5.2.1 Register Mode Extension Word
	1.5.2.2 Non-Register Mode Extension Word
	1.5.2.3 Extended Double-Operand (Format I) Instructions
	1.5.2.4 Extended Single-Operand (Format II) Instructions
	1.5.2.4.1 Extended Format II Instruction Format Exceptions

	1.5.2.5 Extended Emulated Instructions
	1.5.2.6 MSP430X Address Instructions
	1.5.2.7 MSP430X Instruction Execution
	1.5.2.7.1 MSP430X Format II (Single-Operand) Instruction Cycles and Lengths
	1.5.2.7.2 MSP430X Format I (Double-Operand) Instruction Cycles and Lengths
	1.5.2.7.3 MSP430X Address Instruction Cycles and Lengths

	1.6 Instruction Set Description
	1.6.1 Extended Instruction Binary Descriptions
	1.6.2 MSP430 Instructions
	1.6.2.1 ADC
	1.6.2.2 ADD
	1.6.2.3 ADDC
	1.6.2.4 AND
	1.6.2.5 BIC
	1.6.2.6 BIS
	1.6.2.7 BIT
	1.6.2.8 BR, BRANCH
	1.6.2.9 CALL
	1.6.2.10 CLR
	1.6.2.11 CLRC
	1.6.2.12 CLRN
	1.6.2.13 CLRZ
	1.6.2.14 CMP
	1.6.2.15 DADC
	1.6.2.16 DADD
	1.6.2.17 DEC
	1.6.2.18 DECD
	1.6.2.19 DINT
	1.6.2.20 EINT
	1.6.2.21 INC
	1.6.2.22 INCD
	1.6.2.23 INV
	1.6.2.24 JC, JHS
	1.6.2.25 JEQ, JZ
	1.6.2.26 JGE
	1.6.2.27 JL
	1.6.2.28 JMP
	1.6.2.29 JN
	1.6.2.30 JNC, JLO
	1.6.2.31 JNZ, JNE
	1.6.2.32 MOV
	1.6.2.33 NOP
	1.6.2.34 POP
	1.6.2.35 PUSH
	1.6.2.36 RET
	1.6.2.37 RETI
	1.6.2.38 RLA
	1.6.2.39 RLC
	1.6.2.40 RRA
	1.6.2.41 RRC
	1.6.2.42 SBC
	1.6.2.43 SETC
	1.6.2.44 SETN
	1.6.2.45 SETZ
	1.6.2.46 SUB
	1.6.2.47 SUBC
	1.6.2.48 SWPB
	1.6.2.49 SXT
	1.6.2.50 TST
	1.6.2.51 XOR

	1.6.3 Extended Instructions
	1.6.3.1 ADCX
	1.6.3.2 ADDX
	1.6.3.3 ADDCX
	1.6.3.4 ANDX
	1.6.3.5 BICX
	1.6.3.6 BISX
	1.6.3.7 BITX
	1.6.3.8 CLRX
	1.6.3.9 CMPX
	1.6.3.10 DADCX
	1.6.3.11 DADDX
	1.6.3.12 DECX
	1.6.3.13 DECDX
	1.6.3.14 INCX
	1.6.3.15 INCDX
	1.6.3.16 INVX
	1.6.3.17 MOVX
	1.6.3.18 POPM
	1.6.3.19 PUSHM
	1.6.3.20 POPX
	1.6.3.21 PUSHX
	1.6.3.22 RLAM
	1.6.3.23 RLAX
	1.6.3.24 RLCX
	1.6.3.25 RRAM
	1.6.3.26 RRAX
	1.6.3.27 RRCM
	1.6.3.28 RRCX
	1.6.3.29 RRUM
	1.6.3.30 RRUX
	1.6.3.31 SBCX
	1.6.3.32 SUBX
	1.6.3.33 SUBCX
	1.6.3.34 SWPBX
	1.6.3.35 SXTX
	1.6.3.36 TSTX
	1.6.3.37 XORX

	1.6.4 Address Instructions
	1.6.4.1 ADDA
	1.6.4.2 BRA
	1.6.4.3 CALLA
	1.6.4.4 CLRA
	1.6.4.5 CMPA
	1.6.4.6 DECDA
	1.6.4.7 INCDA
	1.6.4.8 MOVA
	1.6.4.9 RETA
	1.6.4.10 SUBA
	1.6.4.11 TSTA

	Important Notice

