
1SLAU459F–June 2012–Revised March 2018
Submit Documentation Feedback

Copyright © 2012–2018, Texas Instruments Incorporated

Memory Integrity Detection (MID)

Chapter 1
SLAU459F–June 2012–Revised March 2018

Memory Integrity Detection (MID)

NOTE: This chapter is an excerpt from the MSP430x5xx and MSP430x6xx Family User's Guide.
The most recent version of the full user's guide is available from
http://www.ti.com/lit/pdf/slau208.

Memory Integrity Detection (MID) is a program and data protection mechanism that is available on several
device families (for example, MSP430F6659). It provides a high level of operation safety for fault-critical
application areas. This chapter explains how to use the firmware for the level of operational safety and
overall fault response that suits different applications.

Topic ... Page

1.1 MID Overview .. 2
1.2 Flash Memory With MID Support.. 3
1.3 MID Parity Check Logic .. 3
1.4 Detecting Unprogrammed Memory Accesses .. 3
1.5 MID ROM... 4
1.6 MID Support Software Function ... 4
1.7 User's UNMI Interrupt Handler ... 8

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU459F
http://www.ti.com/lit/pdf/slau208

Timing
Generator

Programming
Voltage

Generator

Control Registers Address and Data Latch

Parity Generator
and Parity Check

Flash
Memory

Array

(plain
data)

M
ID

 P
a
ri
ty

 I
n
fo

rm
a
ti
o
n

(h
o
ri
z
o
n
ta

l
P

a
ri
ty

 B
it
s
)

MAB

MDB

MID Add-on

MID ROM

(Preprogrammed
MID support software

allows control of
MID hardware)

MSP430 Flash
Memory Controller

MID Overview www.ti.com

2 SLAU459F–June 2012–Revised March 2018
Submit Documentation Feedback

Copyright © 2012–2018, Texas Instruments Incorporated

Memory Integrity Detection (MID)

1.1 MID Overview
The MID is an add-on to the MSP430 flash memory controller. MID provides additional functionality over
the regular flash operation methods as described in the Flash Memory Controller chapter.

The main purpose of the MID function is to help gain higher reliability of flash content and overall system
integrity in harsh environments and in applications requiring such features. The additional level of security
is reached by calculating parity information.

The complete MID solution consists of the blocks Parity Generator and Parity Check and MID ROM. The
Parity Generator and Parity Check provides all of the necessary logic elements needed to identify bit
errors in the whole memory array. The on-chip MID ROM contains the MID Support Software, and this
software performs all the necessary tasks to operate MID. The built-in MID functions provide all
functionality to use the MID features.

Figure 1-1. Block Diagram of MID Implementation

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU459F
Bad link
Bad link: #SLAU208FL1105

MSP430
Flash

Memory

Main
Memory

Information
Memory

Banks

Bank 0

Bank 1

Bank 2

Bank 3

Segments

...

Info A

Bootloader
(BSL)

¬ CW0.15

Enable bits
(see Note 1)

¬ CW0.14
¬ CW0.13
¬ CW0.12
¬ CW0.11
¬ CW0.10
¬ CW0.9
¬ CW0.8
¬ CW0.7
¬ CW0.6
¬ CW0.5
¬ CW0.4
¬ CW0.3
¬ CW0.2
¬ CW0.1
¬ CW0.0

¬ CW1.4

¬ CW1.5

¬ CW1.6

¬ CW1.7

¬ CW1.3

¬ CW1.2

¬ CW1.1

¬ CW1.0

...

...

...

MID Flash
Memory
Blocks

Info B

Info C

Info D

BSL 3

BSL 2

BSL 1

BSL 0

Info A

Info B

Info C

Info D

BSL 3

BSL 2

BSL 1

BSL 0

www.ti.com Flash Memory With MID Support

3SLAU459F–June 2012–Revised March 2018
Submit Documentation Feedback

Copyright © 2012–2018, Texas Instruments Incorporated

Memory Integrity Detection (MID)

1.2 Flash Memory With MID Support
The MSP430 flash memory is partitioned into different memory areas—main and information memory,
banks, segments, and memory blocks—where MID protection can be enabled. Figure 1-2 shows an
example for a typical MSP430 flash segmentation including the MID feature.

(1) The cw0.x and cw1.x bits are used to enable MID functionality for the individual memory ranges. Further
information can be found in Section 1.6.1.

Figure 1-2. Overview of MSP430 Flash Memory Segmentation

The whole flash memory array consist of MID supported flash memory blocks. For a device with 512KB of
flash main memory, each MID flash memory block has a size of 32KB (main memory divided by 16). Each
row consists of one word of plain data (16 bits) and a horizontal parity bit (H-parity bit).

Erased segments show all ones in the data array field and horizontal parity. Writing to flash memory (with
MID after reset) automatically writes the horizontal parity bits along with the data bits. Writing to the plain
data field can, of course, be interrupted and continued in any order. Adding content after the horizontal
parity has been written is impractical, as the horizontal parity information changes as well. The whole
segment (not just a single MID memory block) would need to be erased before it can be written again. The
shown method is excellent for data content of static nature like code, tables, and so on. For data
acquisition into flash, other methods (for example, majority vote) are more suitable; but complete blocks of
acquisition data can be protected with this method again.

1.3 MID Parity Check Logic
Any access to MID enabled flash memory causes a verification of its horizontal parity in the background. It
does not matter if code or data is read from the flash memory. If a parity error is detected, the bus error
event "parity error" is triggered and calls the user NMI exception handler. The application software can
then react on the failure by, for example, showing an error message on the application's display.

1.4 Detecting Unprogrammed Memory Accesses
All bits are set after erasing the flash memory; this also includes the horizontal parity bit. If an erased
memory range is accessed, the MID causes a NMI interrupt, because of a detected parity failure. Only
programmed addresses are accessible without a MID failure interrupt; that is especially the case for the
content 0xFFFF. If memory content should be 0xFFFF, it must be programmed. This ensures that the
horizontal parity bit is cleared (0).

Enabling the MID functionality for nonprogrammed memory ranges allows detecting memory accesses to
these nonprogrammed addresses.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU459F

MID ROM www.ti.com

4 SLAU459F–June 2012–Revised March 2018
Submit Documentation Feedback

Copyright © 2012–2018, Texas Instruments Incorporated

Memory Integrity Detection (MID)

1.5 MID ROM
The MID ROM is 1KB of read-only memory. The on-chip MID ROM is factory programmed with MID
support software. These software functions are used to enable or disable the MID module. The start
address of the MID ROM depends on the MSP430 device; see the device-specific data sheet for
specifications.

1.6 MID Support Software Function
The MID is disabled by default after power-up of the device. To use the MID feature, it must be enabled
within the application software. Enabling is done by calling the MidInit() function with parameters that
define which MID memory blocks should be enabled or disabled.

Table 1-1 list all existing MID functions. These functions are stored in the MID ROM; its start address is
defined in the device-specific data sheet.

Table 1-1. Overview of MID Support Software Functions

Function Address
Offset

Description

Revision
0x00 Content of address: 2843h
0x02 Content of address: 80xyh, xy is the revision word

MidEnable 0x04 Initialization and enabling of MID
MidDisable 0x08 MID is disabled
MidGetErrAdr 0x0C Returns the error location
MidCheckMem 0x10 Memory check is performed
MidSetRaw 0x14 Writing a data word and parity bit into a defined address
MidGetParity 0x18 Read out horizontal parity bit
MidCalcVParity 0x1C Calculating vertical parity
Reserved 0x20
Reserved 0x24
Reserved 0x28
Reserved 0x2C

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU459F

www.ti.com MID Support Software Function

5SLAU459F–June 2012–Revised March 2018
Submit Documentation Feedback

Copyright © 2012–2018, Texas Instruments Incorporated

Memory Integrity Detection (MID)

1.6.1 MidEnable() Function
Function
void MidEnable(unsigned short cw0,unsigned short cw1);

Function Description
This function initializes and enables MID. The argument cw0 and cw1 allow an explicit control what MID
flash memory blocks are to be protected. MID feature is disabled after a power-up or BOR. MidEnable()
function is expected to be called early after application start. Calling it again later reconfigures the settings.

Parameters

Name Type Description

cw0 unsigned short
R12.W

Configuration word 0. It is used to activate the MID feature for certain memory
ranges. The main memory is divided into 16 blocks. The LSB bit of cw0 activates
the lowest address range (see Figure 1-3).

cw1 unsigned short
R13.W

Configuration word 1. This bit is used the same as cw0, the only difference is
that BAL and Info memory are used instead of main memory (see Figure 1-4).

Figure 1-3. cw0 Parameter
15 14 13 12 11 10 9 8

cw0.15 cw0.14 cw0.13 cw0.12 cw0.11 cw0.10 cw0.9 cw0.8

7 6 5 4 3 2 1 0
cw0.7 cw0.6 cw0.5 cw0.4 cw0.3 cw0.2 cw0.1 cw0.0

Bit Field Description
15-0 cw0.x Main memory is split into MID flash memory blocks. Each MID flash memory block has a size of

main memory divided by 16 (for example, for a 512KB main memory, the MID memory block size
is 32KB). The cw0.x bits allow to enable MID support for the different flash memory blocks. For
example, cw0.0 activates the lowest flash memory block, and cw0.15 activates the highest flash
memory block.
0 = MID support is deactivated
1 = MID support is active

Figure 1-4. cw1 Parameter
15 14 13 12 11 10 9 8

Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved

7 6 5 4 3 2 1 0
cw1.7 cw1.6 cw1.5 cw1.4 cw1.3 cw1.2 cw1.1 cw1.0

Bit Field Description
15-8 Reserved These bits are reserved. It is strongly recommended to reset (0) these bits.
7 cw1.7 Enables or disables MID for the flash information memory segment D.

0 = MID support is deactivated
1 = MID support is active

6 cw1.6 Enables or disables MID for the flash information memory segment C.
0 = MID support is deactivated
1 = MID support is active

5 cw1.5 Enables or disables MID for the flash information memory segment B.
0 = MID support is deactivated
1 = MID support is active

4 cw1.4 Enables or disables MID for the flash information memory segment A.
0 = MID support is deactivated
1 = MID support is active

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU459F

MID Support Software Function www.ti.com

6 SLAU459F–June 2012–Revised March 2018
Submit Documentation Feedback

Copyright © 2012–2018, Texas Instruments Incorporated

Memory Integrity Detection (MID)

Bit Field Description
3 cw1.3 Enables or disables MID for the BSL memory 3.

0 = MID support is deactivated
1 = MID support is active

2 cw1.2 Enables or disables MID for the BSL memory 2.
0 = MID support is deactivated
1 = MID support is active

1 cw1.1 Enables or disables MID for the BSL memory 1.
0 = MID support is deactivated
1 = MID support is active

0 cw1.0 Enables or disables MID for the BSL memory 0.
0 = MID support is deactivated
1 = MID support is active

1.6.2 MidDisable() Function
Function
void MidDisable(void);

Function Description
This function clears the cw0 and cw1 parameters that were set during MidEnable() function call and it
disables the MID hardware.

1.6.3 MidGetErrAdr() Function
Function
unsigned short * MidGetErrAdr(void);

Function Description
This function returns the error location is there was a memory integrity failure. If there is no valid failure
address or error location, the function returns the value F'FFFFh.

Note that the MidGetErrAdr() function returns only the correct error address when this function is called
prior to a read access of SYSBERRIV register. The code example in Section 1.7 shows where the
MidGetErrAdr() function call should be placed.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU459F

www.ti.com MID Support Software Function

7SLAU459F–June 2012–Revised March 2018
Submit Documentation Feedback

Copyright © 2012–2018, Texas Instruments Incorporated

Memory Integrity Detection (MID)

1.6.4 MidCheckMem() Function
Function
void MidCheckMem(unsigned short * startAdr, unsigned short * endAdr);

Function Description
This function allows doing a memory integrity check. First, the MidEnable function should be called. This
function enables MID and it defines the memory blocks that should be protected. After that the
MidCheckMem function can be called. Its parameter list defines an address range that is accessed with
wordwise reads. An UNMI interrupt (MID interrupt) is generated in case a parity error occurs and the read
address is enabled for MID protection.

Parameters

Name Type Description

startAdr unsigned short
*R12.W

Start address for the memory integrity check. The startAdr must be an even
number.

endAdr unsigned short
R13.W

End address for the memory integrity check. The endAdr must be an even
number. The address defined with endAdr is included in the memory integrity
check.

1.6.5 MidSetRaw() Function
Function
void MidSetRaw(unsigned short data, unsigned short parity, unsigned short * adr,

unsigned short flashKey);

Function Description
This function writes one word (data) and a separately definable parity bit (parity) to an MID memory
address (adr). The Flash memory key is needed to allow access to flash control registers; this parameter
is passed through the argument flashKey (see the follwoing example).

Parameters

Name Type Description

data unsigned short
R12.W Data to be written

parity unsigned short
R13.W If parity = 0, the parity bit 0 is written. If parity <> 0, the parity bit 1 is written.

adr unsigned short
*R14.A Destination address where raw information is written

flashKey unsigned short
R15.W

Flash memory key. This is needed to allow the MidSetRaw function access to the
flash control registers. The passing parameter is usually defined in the standard
MSP430 header files; therefore, "FWKEY" can be used here.

Example
#include <msp430f6659.h>
const unsigned short FlashAdr=0xFF00; // Flash memory address will be reprogrammed
void main(void)
{ static unsigned short Data; // variable for data the will be read

static unsigned short Parity; // H-parity bit that will be read
WDTCTL=WTDPW+WDTHOLD; // disable Watchdog
Data=0x5A5A; // data that will be written into flash memory
Parity=0; // parity bit that will be written
MIDSetRaw(Data,Parity,&FlashAdr,FWKEY); // write data and parity bit
while(1);

}

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU459F

MID Support Software Function www.ti.com

8 SLAU459F–June 2012–Revised March 2018
Submit Documentation Feedback

Copyright © 2012–2018, Texas Instruments Incorporated

Memory Integrity Detection (MID)

1.6.6 MidGetParity() Function
Function
unsigned short MidGetParity(unsigned short * adr);

Function Description
This function returns the parity bit of the appropriate address. Reading the parity bit works only when MID
was enabled before calling MidGetParity() function and the appropriate MID memory block is enabled.

Parameters

Name Type Description

adr unsigned short
*R12.A Defines the address where the parity bit should be read.

1.6.7 MidCalcVParity() Function
Function
unsigned short MidCalcVParity(unsigned short * startAdr, unsigned short * endAdr);

Function Description
This function allows to calculate a vertical parity for a defined memory range.

Parameters

Name Type Description

startAdr unsigned short
*R12.A

Defines the start address for calculating vertical parity. The startAdr must be an
even number.

endAdr unsigned short
*R13.A

End address for calculating vertical parity. The endAdr must be an even number.
The address defined with endAdr is included in the vertical parity calculation.

1.7 User's UNMI Interrupt Handler
If an error is detected, the on-chip MID generates an UNMI interrupt. The application software must
manage error handling.

UNMI handler framework for MID error handling:
__interrupt void unmi_isr(void)
{ switch(__even_in_range(SYSUNIV, 0x08))

{
case 0x00: break;
case 0x02: break; // NMIIFG
case 0x04: break; // OFIFG
case 0x06: break; // ACCVIFG
case 0x08: // BUSIFG

// If needed, obtain the flash error location here.
ErrorLocation = MidGetErrAdr();

switch(__even_in_range(SYSBERRIV, 0x08))
{ case 0x00: break; // no bus error

case 0x02: break; // USB bus error
case 0x04: break; // reserved
case 0x06: // MID error
<place your MID error handler code here>

break;
case 0x08: break;
default: break;

}
break;

default: break;
}

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU459F

IMPORTANT NOTICE FOR TI DESIGN INFORMATION AND RESOURCES

Texas Instruments Incorporated (‘TI”) technical, application or other design advice, services or information, including, but not limited to,
reference designs and materials relating to evaluation modules, (collectively, “TI Resources”) are intended to assist designers who are
developing applications that incorporate TI products; by downloading, accessing or using any particular TI Resource in any way, you
(individually or, if you are acting on behalf of a company, your company) agree to use it solely for this purpose and subject to the terms of
this Notice.
TI’s provision of TI Resources does not expand or otherwise alter TI’s applicable published warranties or warranty disclaimers for TI
products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections,
enhancements, improvements and other changes to its TI Resources.
You understand and agree that you remain responsible for using your independent analysis, evaluation and judgment in designing your
applications and that you have full and exclusive responsibility to assure the safety of your applications and compliance of your applications
(and of all TI products used in or for your applications) with all applicable regulations, laws and other applicable requirements. You
represent that, with respect to your applications, you have all the necessary expertise to create and implement safeguards that (1)
anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that
might cause harm and take appropriate actions. You agree that prior to using or distributing any applications that include TI products, you
will thoroughly test such applications and the functionality of such TI products as used in such applications. TI has not conducted any
testing other than that specifically described in the published documentation for a particular TI Resource.
You are authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include
the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO
ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY
RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information
regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or
endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the
third party, or a license from TI under the patents or other intellectual property of TI.
TI RESOURCES ARE PROVIDED “AS IS” AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR
REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING TI RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO
ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL
PROPERTY RIGHTS.
TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY YOU AGAINST ANY CLAIM, INCLUDING BUT NOT
LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF
DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL,
COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR
ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.
You agree to fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of your non-
compliance with the terms and provisions of this Notice.
This Notice applies to TI Resources. Additional terms apply to the use and purchase of certain types of materials, TI products and services.
These include; without limitation, TI’s standard terms for semiconductor products http://www.ti.com/sc/docs/stdterms.htm), evaluation
modules, and samples (http://www.ti.com/sc/docs/sampterms.htm).

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2018, Texas Instruments Incorporated

http://www.ti.com/sc/docs/stdterms.htm
http://www.ti.com/lit/pdf/SSZZ027
http://www.ti.com/lit/pdf/SSZZ027
http://www.ti.com/sc/docs/sampterms.htm

	1 Memory Integrity Detection (MID)
	1.1 MID Overview
	1.2 Flash Memory With MID Support
	1.3 MID Parity Check Logic
	1.4 Detecting Unprogrammed Memory Accesses
	1.5 MID ROM
	1.6 MID Support Software Function
	1.6.1 MidEnable() Function
	1.6.2 MidDisable() Function
	1.6.3 MidGetErrAdr() Function
	1.6.4 MidCheckMem() Function
	1.6.5 MidSetRaw() Function
	1.6.6 MidGetParity() Function
	1.6.7 MidCalcVParity() Function

	1.7 User's UNMI Interrupt Handler

	Important Notice

