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• Background and motivation

• Transinductor voltage regulator (TLVR) topology introduction

• Practical considerations

• Conclusion

2



Voltage regulator design challenges
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• Silicon technology continues to 

shrink (but this is slowing)

3-nm digital → lower

• Application-specific integrated circuit 

(ASIC) operating voltages remain

0.7 V to 1.0 V (up to 1.8 V)

• High-core-count designs and chiplet 

revolution driving rapid increase in 

operating currents

>1,000-A designs

• Extreme load transient requirements 

1,000 A/µs, ±3% 

Chiplets enable rapid 

ASIC development 

Voltage 

regulator
12 V-48 V Vcore



Motivation for TLVR: Improving transient response
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Motivation for TLVR: Improving transient response
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Buck converter vs. TLVR topology
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+
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-

Multiphase buck TLVR

Compensating 

inductor (Lc)

Coupled 

inductor

• Buck-derived topology optimized 

for fast transient response

• TLVR is a new twist on the coupled-

inductor buck converter

• When it makes sense: 

• High phase count (>six phases)

• High di/dt load transient

• Moderate voltage ripple



Traditional coupled inductor

Traditional coupled inductor (two phase)

𝐼𝐿1 𝐼𝐿2

Φ1 Φ2

Coupling allows high steady state inductance (low ripple) and 

low transient inductance (fast transient)

• Multiple windings share a single core 

• Typical coupling coefficient: ≊0.5 to 0.7 

• Higher power density 

• Customized design for phase count/layouts

Difficult to extend to higher phases 

𝐼𝐿1

• Challenge: Symmetry is required for equal coupling 

among phases

• Challenge: Complex geometry required to maintain 

symmetry at higher phase counts
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Two-phase 

coupled inductor

Source: Eaton

Phase 

2

Phase 

1



Indirect-coupled inductor
Indirect-coupled inductor (two phase)

Lc inductor controls 

phase-to-phase 

coupling “α”
𝐼𝐿1

𝐼𝐿2

TLVR: Indirect-coupling and compensating inductor (Lc)

Llkg

• Phases are coupled symmetrically without a sharing core 

• Simple core geometry, scalable solution

• Challenging to control coupling

𝐼𝐿1

𝐼𝐿2
𝐼𝐿𝑐

𝐿𝑐

Llkg
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Secondary winding
Primary winding

TLVR inductor 

construction

Source: Eaton

Primary side

(connect to power stage) 
Secondary loop

(provides coupling)



TLVR topology overview
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TLVR operating principle: Steady state
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TLVR steady-state operation (four-phase example, no overlap)
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TLVR operating principle: Transient step-up
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NON phases are on, NOFF phases are off 

Controller turns on multiple phases in response.

Multiphase buck TLVR

↑Slope (buck) =
ΔVL1
L

+
ΔVL2
L

+ ⋯

↑Slope (buck) ≈ Non

Vin − Vout
L

− Noff

Vout
L

↑Slope (TLVR) =
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TLVR operating principle: Transient step-down

12

Vin

Vin

+

Lc

-

1:1

1:1

Lm

Lm

IPRI

IPRI

ILC

x
x

x

IPRI1

IPRI4

x x

ΔQ =

1
2
⋅ Istep

2

↓ Slope
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Controller turns off all phases in response

Multiphase buck TLVR

ILOAD

ISUM

↓ Slope (buck) =
ΔVL1
L

+
ΔVL2
L

+ ⋯

↓ Slope buck ≈ −Ntotal

Vout
L

Isum(buck) = IL1 + IL2 +⋯

↓ Slope (TLVR) =
ΔVL1
Lm

+
𝚫𝐕𝐋𝐜
𝐋𝐜

+
ΔVL2
Lm

+
𝚫𝐕𝐋𝐜
𝐋𝐜

+⋯

Isum(TLVR) = ILm1 + 𝐈𝐋𝐜 + ILm2 + 𝐈𝐋𝐜 +⋯

↓ Slope TLVR ≈ ↓ Slope buck − 𝐍𝐭𝐨𝐭𝐚𝐥
𝐍𝐭𝐨𝐭𝐚𝐥 × 𝐕𝐎𝐔𝐓

𝐋𝐜

ILOAD

ISUM

Lm4

Lm1
ΔQ

ILC

Isum TLVR = Ipri1 + Ipri2 +⋯

SW4

SW1

↓slope



Side-by-side comparison: Load step-up
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Type
equation
here.

Multiphase buck TLVR

PWM1-

PWM4

PWM1-

PWM4

IL1 to IL4

IOUT

ISUM

VOUT

(20 mV/div)

ΔQbuck ≫ ΔQTLVR

• VIN = 12 V

• VOUT = 0.8 V

• Fsw = 600 kHz, four phases

• IOUT = 25 A-325 A, instantaneous

• Buck: L buck = 150 nH

• TLVR: Lm = 150 nH, Lc = 180 nH

• COUT = 5 mF

Ipri1 to Ipri4

IOUT

ISUM

VOUT

(20mV/div)

ILc

ΔVLc

Many
pulses

tresponse ≊3μs

tresponse≊1 μs

Pulse overlap causes high Lc voltage

1 µs/div

1 µs/div

ΔVbuck ≫ ΔVTLVR Lc switches at Ntotal × fsw



Side-by-side comparison: Load step-down
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Multiphase buck TLVR

PWM1-

PWM4

IOUT

ISUM

VOUT

(100 mV/div)

5 µs/div

PWM1-

PWM4

IOUT

ISUM

VOUT

(100 mV/div)

ILc

ΔVLc

• VIN = 12 V

• VOUT = 0.8 V

• Fsw = 600 kHz, four phases

• IOUT = 25 A-325 A, instantaneous

• Buck: L_buck = 150 nH

• TLVR: Lm = 150 nH, Lc = 180 nH

• COUT = 5 mF

ΔQbuck ≫ ΔQTLVR

tresponse ≊10 μs

ΔVbuck ≫ ΔVTLVR

tresponse≊2.5 μs

5 µs/div

Long low voltage on Lc

IL1 to IL4

Ipri1 to Ipri4



DC load line further reduces output capacitance
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DC load-line (DCLL) behavior is identical between buck and TLVR designs

𝐑𝐋𝐋 = 𝟎𝐦𝛀

ΔVDC

VOUT > Vnom (light load)

Vout < Vnom (heavy load)

Vnom = VOUT

ΔVunder

ΔVover

𝐑𝐋𝐋 ≠ 𝟎𝐦𝛀

RDCLL =
ΔVDC
ΔIstep

Cout(min, step up) =
ΔQunder

ΔVunder
=

ΔQunder

ΔVac + RLL × Istep

Cout(min, step down) =
ΔQover

ΔVover
=

ΔQover

ΔVac + RLL × Istep

ΔVover

ΔVAC = ΔVunder

ΔVAC

ΔVAC

Capacitor savings

Reduced output power

Pout = Iout × Vout − RLL × Iout



Lc as an AC inductor – ILC during a transient
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High-frequency transient (65 kHz)

ISUM
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Low-frequency transient (<1 kHz)
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VR vs. TLVR efficiency comparison (LBUCK = LM = LC)
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Vin

Vin

Vin

Phase on
High side: on

Low side: off

Phase off

High side: off

Low side: on

Phase Hi-Z

High side: off

Low side: off

ΔVLc = Non × VIN − VOUT + Noff × −VOUT + NHiZ × (Vdiode)

ILC Pcond,HiZ ≈ 𝐼𝑟𝑚𝑠(𝐿𝑐) × Vdiode

8 phases, CSD95560 (90-A smart power 

stage) 

VIN = 12 V → VOUT = 1.8 V

fsw = 900 kHz

Min 2 phases, dual-side layout, TLVR 

Lm = Lc = 100 nH

0 when DPS is off

Pcond,HiZ ≪ Pswitching

Efficiency comparison (including power delivery network [PDN]) vs. dynamic 

phase shedding (DPS)

IOUT (A)

E
ff

ic
ie

n
c

y
 %

DPS enabled

DPS disabled

Phase number increases 

from two to eight

PDN conduction losses are included



Example side-by-side design
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More transient margin with 45% reduction 

in output capacitance required

Parameter TLVR Multiphase buck

Controller/SPS TPS53689, CSD95440

VIN 12 V

VOUT 1.8 V

Number of phases 8 phases

Switching frequency 900 kHz

Load step 60 A-430 A, 1,000 A/µs, 1 kHz-1 MHz

Load line 0.5 mΩ

Lm/Lbuck 150 nH 70 nH

Lc 100 nH –

Cbulk (polymer) 0 × 470 µF 5 × 470 µF

Multilayer ceramic 

capacitors

80 × 22 µF 0402 80 × 22 µF 0402

56 × 47 µF 0603 45 × 47 µF 0805

0 × 100 µF 0805 15 × 100 µF 0805

8 × 0.1 µF 0402 8 × 0.1 µF 0402

Total Cout 4.4 mF 7.7 mF

TLVR design

Worst-case overshoot

VMAX = 1.839 V

190 kHz, 10% duty

Multiphase buck 

Worst-case overshoot

VMAX = 1.846 V

330 kHz, 20% duty



Practical considerations
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Lc inductor selection
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VLC max = Non step × VIN − Ntotal × VOUT

• Typically select Lc between Lm and 1.25 × Lm

• Minimal root-mean-square current (RMS) 

required 

• High saturation current required

• Voltage across Lc can be ≫ VIN

Irms(Lc) ≊
ΔILc

12

Isat ≫ tresp ×
Non step × VIN − Ntotal × VOUT

Lc

Example Lc selection

Parameter Value

VIN 12 V

VOUT 0.8 V

Fsw 600 kHz

Ntotal 8 phases

Lm 150 nH

Lc 180 nH

Load transient 50-500 A, 1,000 A/µs

ΔILc 5.0 A 

FLC 4.8 MHz

IRMS(Lc) 2.8 A

Margin for ISAT 25%

ISAT(min) 75 A

ΔVLc(max) 30 V (NOVERLAP = 3)



Output-ripple cancellation

VIN = 12 V, Fs = 700 kHz, Lm = 150 nH,

Lc = 120 nH, LVR = Leq = 125 nH, eight 

phases

1
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V
 /
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V

Example: 
TLVR vs. multiphase buck IOUT ripple vs. duty cycle

TLVR

Buck VR

I S
U

M
R

ip
p

le
 (

A
)

Output-voltage ripple (simple model)

ZPCB ZPKG

ZPCB ZPKG

Load

Isum

Isum = ILm1 + ILc + ILm2 + ILc +⋯

0 ×
360∘

N
phase shift 1 ×

360∘

N
phase shift

Same Lc current gets added at 

every phase-shift offset
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Reduced ripple voltage: Interleaved TLVR 
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PWM1

PWM3

PWM2
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Typically approximately 1/5 times output-

voltage ripple for 12-V → 1-V TLVR design

ILC2

ILC1

I2I1

Lc1 Lc2

• For high-phase-count (>12 phase) designs, creating 

two (or more) Lc loops achieves interleaving

• May also be advantageous for layout and 

electromagnetic interference (EMI) concerns 

(reduced Lc frequency, reduced maximum Lc voltage)

Lc loops are driven 

180 degrees out of 

phase



Typical power-stage layout
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Lc

L1 L3 L5 L7 L2 L4 L6 L8L9

⚠

Lc pad is 

high voltage 

(>50 V)

L10

Option for 

reduced 

EMI 1/2

Lc on each 

end

1/2 

Lc

• Interleaving phase fire order reduces crosstalk 

and reduces input capacitor stress

• Lc current still carries high current in 

a transient

• Recommend ≊50 mils 

Ph 1 Ph 3 Ph 5 Ph 7 Ph 9 Ph 2 Ph 4 Ph 6 Ph 8 Ph 10



Printed circuit board layout: Multiside power delivery
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Example:

• 32-phase design

• Two Lc interleaved design

Recommendations:

• Symmetrical power train and Lc layout

• Decoupling and current-resistance (IR) drop 

on input traces 

• PWM pin trace capacitance

• Controller PWM drive strength

• Current-sense trace capacitance

• Low-pass filter effect for current monitor 

(Imon) signals

Signal routing

LOAD

Signal routing
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Controller



TLVR-optimized controllers and power stages
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TLVR-optimized power stages

Emulated Measured

Steady-state current-sense waveform

High bandwidth, real current information reporting

TLVR-optimized controllers

PWM-based Lc current emulation (patent pending)

Load transient detection based on PWM timing

Part number Current rating Package/features

CSD95440 80-A peak, 40 ARMS 5 mm × 6 mm (voltage Imon)

CSD95510 90-A peak, 50 ARMS 4 mm × 6 mm (voltage Imon)

CSD95560 90-A peak, 50 ARMS 4 mm × 6 mm (current Imon)

CSD95520 60-A peak, 30 ARMS 4 mm × 5 mm (voltage Imon)

CSD95570 60-A peak, 30 ARMS 4 mm × 5 mm (current Imon)

Part number Phases Package/features

TPS53685 8 5 mm × 5 mm AMD interface

TPS536C5 12 6 mm × 6 mm AMD interface

TPS53689T 8 5 mm × 5 mm Intel interface

TPS536C9T 12 6 mm × 6 mm Intel interface



Conclusion
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Summary

• Introduced the TLVR topology

– Buck-derived topology similar to coupled inductors for high-phase-count designs

– Better modularity and reuse for TLVR, since inductors do not share a core

– Significant output capacitor savings given coupled-inductor behavior

• Practical considerations for TLVR designs

– TLVR designs typically have higher ripple current and voltage vs. buck

– Interleaving for high-phase-count designs

– Printed circuit board layout for TLVR designs is similar to buck, with Lc loop added

• TLVR-optimized components

– High-bandwidth and system-level optimizations needed to optimize for TLVR designs
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