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Agenda

• Linear regulator (LDO) overview

• LDO tips and tricks: 

o Noise

o Power-supply rejection ratio (PSRR)

o Thermal performance

o Transient performance near dropout

• Advanced LDO applications: 

o Parallel LDOs using ballast resistors

o Constant current regulation

o Multiple-input single-output (MISO) LDOs
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LDOs vs. switching converters

• Power converter types:

o Switching converters: switches 

are either on or turned off

o LDO: pass element is always 

on

• LDO

o Pros: cheap, simple, quiet

o Cons: efficiency, temperature
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What is the structure of an LDO?

Key LDO characteristics:

• Dropout voltage (VDO)

• Power dissipation (PD) and relationship to 

temperature rise of the LDO

• Noise

o Intrinsic noise (en) is dominated by the 

noise of the internal reference and error 

amplifier

o PSRR measures how much noise from the 

input couples into the output through the 

LDO

• Quiescent current (IQ)

• Stability

• Turnon time
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100 Hz-100 kHz

µVRMS

Noise fundamentals

• LDO noise measurements:

o Noise spectral density (µV/√Hz)

o Total (integrated) output noise (µVRMS)

oAn industry standard to compare 

different LDOs against one another

• Integrated output noise is typically 

measured from 10 Hz to 100 kHz

o 100 Hz to 100 kHz was also sometimes 

used in the past

o For accurate noise comparison, be sure 

the measurements are using the same 

frequency range
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What conditions do not affect intrinsic noise
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Output current (∆IOUT)* Input voltage (∆VIN) Output capacitance**

(∆COUT)

*For ultra-low-IQ devices, ILOAD 

may affect noise 

**Very high values of COUT may 

affect noise



What conditions affect intrinsic noise
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VOUT has no effect when placing an LDO in unity gain feedback



What conditions affect intrinsic noise
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Feedforward capacitor (∆CFF)
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CFF has no effect when placing an LDO in unity gain feedback

• CFF creates a short across RTOP in the mid-

band frequency

• The error amplifier operates closer to unity 

gain feedback within the mid-band 

frequency range



What conditions affect intrinsic noise
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Noise reduction (NR) 

capacitor (∆CNR)
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• The NR capacitor and internal NR resistor form a 

low-pass filter

• This low-pass filter removes noise from the 

reference voltage before the error amplifier



PSRR
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PSRR represents the ability of the LDO to filter input-

voltage changes

PSRR = 20 × log
VIN(AC)

VOUT(AC)

VIN(AC) VOUT(AC)

Region 1: PSRR of the reference and the resistor-

capacitor filter

Region 2: Open-loop gain of the error amplifier

Region 3: Parasitic capacitance of the field-effect 

transistor and the output capacitor and associated 

parasitic (capacitive divider)

• The smaller the parasitic capacitor, the less the VIN

AC-couples to VOUT

• The larger the COUT, the more noise shunted to GND

• Associated equivalent series inductance (ESL) can 

also impact PSRR performance
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What conditions do not affect PSRR
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Bias voltage (VBIAS) Output voltage (VOUT) Output capacitance (∆COUT)

Small impact at low frequencyNo impact if VBIAS is above 

the minimum value

Small impact at high frequency



What conditions affect PSRR
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How small is VIN-VOUT?

VOUT = 0.8 V
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• When the pass field-effect transistor (FET) is in the 

saturation region, you can maintain the necessary 

gain (large VDS)

• When the pass FET enters the linear region, you 

cannot maintain the necessary gain (small VDS)



What conditions affect PSRR

13

Output current (∆IOUT)
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• As the load increases, at some point the pass FET 

will enter the metal-oxide semiconductor triode 

region and the gain of the pass FET will be 

degraded for the same VDS



What conditions affect PSRR
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NR capacitor (∆CNR)
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• The PSRR of VREF itself affects the PSRR of the 

LDO

• Adding a low-pass filter increases the PSRR of 

VREF



What conditions affect PSRR
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• At higher frequencies, feedback and 

VOUT are effectively shorted by CFF, 

which prevents the gain of the error 

amplifier from increasing the reference 

noise



JEDEC thermal metrics

• TI LDO thermal metrics are 

modeled using the Joint Electron 

Device Engineering Council 

(JEDEC) high-K board in order to 

easily compare devices

• The most common thermal 

characteristic is the junction-to-

ambient (θJA) thermal resistance

• θJA is a measure of the thermal 

performance of an integrated 

circuit (IC) mounted on a printed 

circuit board (PCB)
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θJA: Understanding usage and limitations

• It is possible to reduce the θJA 25% to 50% 

through good layout practices

• Good layout practices:

o Maximize the number of thermal vias within 

the thermal pad to transfer heat away from 

the LDO

o Maximize the PCB copper around the device 

PD = VIN − VOUT × IOUT + IQ
PD≊ VIN − VOUT × IOUT
TJ = TA + θJA × PD

17

Temperature (°C)

93.5

79.8

66.1

52.4

38.7

25.0

JEDEC simulation

θJA = 34.7 °C/W

θJA = 68.5°C/W

EVM Measurement



Using Ψ𝐉𝐁 and Ψ𝐉𝐓 in-application

• JEDEC has defined ΨJB and ΨJT thermal 

metrics to provide a more accurate way to 

estimate the junction temperature from the 

measured case temperature (TC) on a 

PCB
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TJ = TC +ΨJT × PD

TJ = 59°C + 4.5 ൗ°C W × 1W = 63.5°C



Transient performance near dropout

• Transient performance is typically 

characterized with more headroom 

voltage than the dropout specification

• An LDO enters dropout when it can no 

longer regulate the output voltage

o Dropout is a DC specification

• The dropout of the TPS7A14 is typically 

45 mV at 1 A (25°C)
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• Benefits:

o Increased load current

o Reduced noise (√n)

o Improved PSRR for a given load current

o Improved thermal spreading

o Reduced headroom requirement (dropout)

o Reduced volume over other converters: COUT 

typically drives the maximum system height

• You must use a ballast resistor to connect 

each LDO’s output together

o Direct VOUT connection: Small differences in 

VOUT will result in one LDO turning on and 

trying to carry the load while the rest are turned 

off



Parallel LDOs: Fundamental equations and analysis

21

RB =
max
1<x<n

VEn − min
1<x<n

VEn

∆IMAX

ILOAD = 

n=1

n
VOUTn − VLOAD + VEn

RBn

VLOAD =
σn=1
n VOUTn + VEn

RBn
− ILOAD

σn=1
n 1

RBn

IOUTn =
VOUTn − VLOAD

RBn
+
VEn
RBn

If RB1 =…= RBn and VOUT1 = … = VOUTn:

IOUTn =
ILOAD − σn=1

n VEn
RB

n
+
VEn
RB

Increasing the ballast 

resistance reduces 

the current 

imbalance (∆IMAX) 

between LDOs

Decreasing the 

ballast resistance 

reduces the load 

regulation VLOAD_REG

RB1

VLOAD

VOUT1

VE1

IOUT1

LDO#1

RB2

VOUT2

VE2

IOUT2

LDO#2

RB3

VOUT3

VE3

IOUT3

LDO#3

RBn

VOUTn

VEn

IOUTn

LDO#n

ILOAD

 IMAX VLOAD_REG

Rb0

Maximum current 

imbalance between 

LDOs



Ballast resistor design

• Option 1: PCB trace

o Avoid microstrip analysis; use 

Institute of Printed Circuits (IPC) 

2221

o Include temperature rise of the PCB 

trace and TG of the PCB dielectric in 

the analysis

o Pros: Low production costs, high 

temperature, will not go out of stock 

or become obsolete

• Option 2: discrete resistor

o Typically 0603- or 0805-sized

o Review the data-sheet power 

derating curve

o Pros: Low tolerance, low parasitics, 

smallest footprint
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Effects of PCB impedance

• Ideally, the PCB resistance is 

significantly less than the ballast 

resistance

o PCB copper has a wide tolerance

• The PCB resistance (forward and 

return) is in series with the ballast 

resistance

• When RB < 50 mΩ, the PCB resistance 

can meaningfully change the design

o Conduct a post-route analysis to simulate 

the PCB resistance at hot temperatures

• You must assess two paths

23

RB

VOUT

VE

IOUT_1

LDO#1

RB

VOUT

VE

IOUT_2

LDO#2

RF1

RR2RR1

RF2

Load

RB

VOUT

VE

IOUT_1

LDO#1

RB

VOUT

VE

IOUT_2

LDO#2

RF1-2

RR1-2

(a) (b)



Parallel LDO calculator
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Step 3: Enter the 

system requirements

Step 1: Select the LDO 

using the drop-down 

box

Step 2: The data-

sheet parameters are 

automatically entered

Step 4: Select the 

ballast resistor

Step 5: Use this many 

LDOs to meet the 

system requirements

Parallel LDO calculator

https://www.ti.com/tool/PARALLEL-LDO-CALC
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PD = 6.75 W, 30 minutes

VIN – VOUT = 100 mV

VIN – VOUT = 200 mV

VIN – VOUT = 300 mV

VIN – VOUT = 300 mV

VIN – VOUT = 100 mV

Analysis

Measurement

VIN = 1.5 V, VLOAD = 1 V, ILOAD = 13.5 A

VLOAD = 748.5 mV

ILOAD = 10 A



Three parallel TPS7A57 LDO analysis and test data
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RNR/SS =
IOUTRB
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=
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Three TPS7A57 LDOs
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• Applications include noise-sensitive 

electronics typically driven by constant-

current drivers (laser diodes, LEDs)



MISO power supply

• Modern complex systems have many 

power supplies, both on the input to the 

system and internally

• Sometimes the required power to a 

load is higher than the available power 

from a single input rail

• MISO power supplies can take multiple 

input supplies and merge power to 

provide a load on a single output

VSOURCE (5W maximum) SISO Power Converter Load (7W)

VSOURCE (5W maximum)

VSOURCE (2W maximum)

VSOURCE (3W maximum)

MISO Power Converter Load (7W)
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MISO parallel LDO design process
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𝑅𝐵𝑛 =
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Calculate RBn for each LDO

Simulate in PSpice for TI
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• Maximum rail current

• Number of parallel LDOs required

Fabricate the design
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Parallel SISO LDOs vs. MISO LDOs
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MISO LDO Single-input single-output (SISO) LDO

VOUT = 748.5 mV

VLOAD = 0.75 V

PD each LDO = 1.55 W

VIN1 = 1.72 V, IOUT1 = 1.6 A

VIN2 = 1.25 V, IOUT2 = 3.1 A

VIN3 = 1.09 V, IOUT3 = 4.6 A

VLOAD = 0.75 V

PD each LDO = 1.55 W

VIN1 = VIN2 = VIN3 = 1.25 V 

ILOAD = 9.3 A



Summary

• Covered the basic characteristics of LDO noise, PSRR, thermal performance 

and operation near dropout

o Discussed what does and does not affect LDO noise and PSRR

• It is easy to configure LDOs to regulate current instead of voltage

• New resources allow you to quickly design with parallel LDOs using ballast 

resistors

o Parallel LDOs can increase the load current, reduce system noise, improve PSRR, 

improve thermal performance and reduce the required headroom

• Connecting different input voltages to each parallel LDO input creates a MISO 

converter

o Changing the ballast resistor adjusts the power sourced from each input supply
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Resources

• "Accurately measuring efficiency of ultralow Iq devices"

• "Overcoming Low-Iq Challenges in Low-Power Applications“

• "Optimizing feedforward compensation in linear regulators“

• "Simplifying Stability Checks“

• "Avoid Start-up Overshoot of LDO"

• "LDOs Ease the Stress of Start-Up"

• "Soft-start circuits for LDO linear regulators"

• “LDO Basics”

• “How to Measure LDO Noise”

• “LDO PSRR Measurement Simplified”
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https://www.ti.com/lit/an/slyt558/slyt558.pdf
https://www.ti.com/lit/wp/slyy203b/slyy203b.pdf
https://www.ti.com/lit/an/snva246/snva246.pdf
https://www.ti.com/lit/an/slva381b/slva381b.pdf
https://www.ti.com/lit/an/sbva060/sbva060.pdf
https://www.ti.com/lit/an/snva333a/snva333a.pdf
https://www.ti.com/lit/an/slyt096/slyt096.pdf
https://www.ti.com/lit/eb/slyy151a/slyy151a.pdf
https://www.ti.com/lit/ml/slyy076/slyy076.pdf
https://www.ti.com/lit/ml/slaa414a/slaa414a.pdf


Resources

• "Understanding power supply ripple rejection in linear regulators“

• “Pros and Cons of Using a Feedforward Capacitor with a Low-Dropout 

Regulator”

• “An Empirical Analysis of the Impact of Board Layout on LDO Thermal 

Performance”

• “Measuring the Thermal Impedance of LDOs in Situ”

• "Switch-mode power converter compensation made easy“

• “Comprehensive Analysis and Universal Equations for Parallel LDOs Using 

Ballast Resistors”

• “Parallel LDO Architecture Design Using Ballast Resistors”

• "Parallel LDO calculator"
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https://www.ti.com/lit/an/slyt202/slyt202.pdf
https://www.ti.com/lit/ml/sbva042/sbva042.pdf
https://www.ti.com/lit/ml/slvae85/slvae85.pdf
https://www.ti.com/lit/ml/slva422/slva422.pdf
https://www.ti.com/seclit/ml/slup340/slup340.pdf
https://www.ti.com/lit/wp/sbva093/sbva093.pdf
https://www.ti.com/lit/ml/sbva100/sbva100.pdf
https://www.ti.com/tool/PARALLEL-LDO-CALC


Resources

• “Scalable, High-Current, Low-Noise Parallel LDO Reference Design”

• “Semiconductor and IC Package Thermal Metrics”
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https://www.ti.com/tool/TIDA-050061
https://www.ti.com/lit/ml/spra953c/spra953c.pdf
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