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Agenda
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• Flyback converters

o Basics

o Secondary-side regulation (SSR) vs. primary-side regulation (PSR)

• PSR

o Detailed look at auxiliary winding waveforms

o Three different flavors of PSR

o The problem statement

• Design example using the LM5156-Q1 boost controller

o Outlining input data and feasibility check

o Resolving feedback

o Further optimizations (artificial load, current sensing, snubbers)

• Conclusion and additional materials
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Flyback converter

Turnon

• Switch conducts; primary current (IPRI) stores 

the energy in the coupled inductor

• Secondary-side rectifier is reverse-polarized 

(secondary voltage [VSEC] < 0)

• Coupled inductor stores the energy

Turnoff

• Switch opens; magnetized coupled inductor 

changes the polarity (VSEC > 0)

• Secondary current (ISEC) flows though the 

secondary winding and energizes the load
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PSR sensing

• Sensing across the auxiliary 

winding (A)

• Sensing the reflected voltage 

on the switch node (B)

SSR sensing

• Using a resistor divider (C)

(nonisolated topologies)

• Using an optocoupler (D)
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5

• 431-type shunt regulator senses the 

output and adjusts the current through 

the optocoupler

Source: Vishay, Application Note 45

• Current-transfer ratio (CTR) of the  

optocoupler changes with:

o Time 

o Temperature 

o Current
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Closing the loop: PSR

• Auxiliary winding is referenced to the 

primary side

• Voltage tracks the isolated output

• The controller senses the voltage 

across the auxiliary winding

• Continuous switching of PSR flybacks

is crucial, as it ensures that the 

auxiliary winding voltage accurately 

represents the output
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SSR vs. PSR
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Parameter SSR with an optocoupler PSR

Light-load behavior Good light-load regulation Requires minimal load

Feedback Complex feedback network using 431-type 

regulator and optocoupler 

Sampled reflected output voltage

Initial output-voltage accuracy Excellent Average

Load regulation Very good load regulation (<1%) Average load regulation (>1%)

Reliability Optocoupler aging factor affects reliability Excellent

Transient response Limited by optocoupler bandwidth Mostly limited by the switching frequency

Cost Average Improved because of the optocoupler 

removal

Self-biasing Requires auxiliary winding Leverages auxiliary winding for both bias 

and feedback
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9

• Ideal sampling point 

is when ISEC drops to 

zero



IOUT

 waveforms are not in  scale
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Quasi-resonant PSR controller example

Auxiliary winding waveforms during load transient
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• Current increase at t1 causes 

output voltage (VOUT) drop

• Controller finds current demand 

increase (A) within one switching 

cycle (TS)

• Controller increases on-time (tON)

• Switching frequency (fSW) 

decreases

• VOUT returns to desired level after 

several cycles

• At t2 the process repeats with 

inverse logic (B)



Universal pulse-width 

modulation or boost 

controllers (LM5156) 

regulate a filtered auxiliary 

winding voltage with 

additional rectification
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Three flavors of PSR
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Problem statement

• VAUX waveform is composite and carries a lot of information

• VAUX provides accurate VOUT information only once per period when ISE drops to 

zero

• PSR regulators feedback use sample and hold

• Standard boost controllers expect continuous feedback voltage
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Expected Feedback Voltage Waveform

Auxiliary Winding Waveform

?

How do you convert the auxiliary winding waveform?



Step-by-step design example

Isolated gate-driver bias supply with the LM5156-Q1 boost flyback controller

1317 x 44 x 14mm (W x L x H)



Suggested PSR flyback design flow
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Outline all input 

parameters
Start

VIN, VOUT, IOUT, fSW,

possible deratting, 

mode of operation, 

proffered controller

Transformer design

LPR, LSE, NPR, NSE, 

consider auxiliary 

winding for bias 

and feedback LAUX, 

NAUX

Extra 

considerations

Calculate flyback 

parameters

IPR, ISE, VSW, tON, 

tOFF, duty cycle

Feasibility 

check

Passive parts 

selection

Field-effect 

transistor, 

input/output 

capacitance, 

rectifier

Resolving the 

feedback

Self-bias and 

minimal load

Current-sense 

resistor 

compensation

Snubber design

Tuning

Testing

Design

• Transformer? 

• Duty cycle?

• Minimal load?

Compromises

OK

Simulate the 

envelope detector 

and check for the 

transient response

Design self-bias 

path and solve the 

minimal load 

requirement

Determine initial 

compensation for 

the current-sense 

resistor and adjust 

during testing

Primary- and 

secondary-side 

snubbers; adjust 

during testing



Define converter parameters
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• Isolated gate-driver bias supply powered from the 12-V vehicle battery

Parameter Specification

Input voltage (VIN) 6 VDC-42 VDC (52-V transient)

Output voltage (VOUT) +15 V, –9 V (VOUT = 24 V)

Output current (IOUT) 180 mA

Switching frequency (fSW) 400 kHz

Mode of operation Discontinuous conduction mode (DCM)

Primary-to-secondary isolation Basic, 2.5 kV

Controller LM5156-Q1



Identify corner cases
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• No frequency fallback or boundary conduction mode (BCM) is possible. A 

conventional controller either:

o Operates with constant fSW

o Enters pulse-skipping mode when VOUT exceeds the regulated level

• Transformer turns ratio and inductance have to allow for DCM at fSW

• Worst-case scenarios – extreme duty cycles:

o VIN(MIN) and IOUT(MAX) result in a maximal duty cycle

o VIN(MAX) and IOUT(MIN) result in a minimal duty cycle

•  h  P     S  g  D   g   ™   f             v  p  c      gg          f      

LPRI = 4 µH, LSEC = 16 µH, turns ratio NP:NS = 1:2



Parameter Minimum duty 

condition

Maximum duty 

condition

LM5156-Q1

device data sheet specification

On-time 0.13 µs 1.57 µs Minimum 130 ns (Figure 8-12)

Off-time 0.43 µs 0.76 µs

Duty cycle 5.10% 62.86% Maximum 92.8% (Figure 8-16)

Zero time 1.94 µs 0.16 µs

Maximum primary 

current (IPR)

1.33 A 2.36 A

Maximum secondary 

current (ISE)

0.66 A 1.18 A

Required minimum load 

(IL(MIN))

60 mA

Feasibility check for worst-case scenarios
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Alternatively, the controller enters 

pulse-skipping mode 

Power Stage Designer software finds the minimal load for VIN = 42 V

https://www.ti.com/tool/POWERSTAGE-DESIGNER


First design review
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Designer decision: Does this solution still satisfy expectations?

• Magnetics supplier confirms that the transformer design is reasonable

• The LM5156-Q1 can support required duty cycles even at fSW = 400 kHz

• The converter requires a ≊60-mA artificial load at VIN = 42 V for constant fSW, 

which negatively impacts efficiency at light loads (≊5 mA at VIN = 12 V)

• Allowing the controller to enter pulse-skipping mode is a good compromise 

between:

• Reducing the artificial load, thus increasing efficiency

• Reducing the transient response in pulse-skipping mode
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Resolving the feedback

• Use diode as a half-wave rectifier (peak detector)

• Detector (filter) must be able to track the output transient
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• Set the auxiliary winding turns ratio 

such that the rectified voltage allows 

for self-biasing (such as 15 V)

VVCC ≊ VOUT ×
NA

NS

• Calculate the resistor divider to match 

the feedback voltage (VFB)

VFB = VOUT ×
NA

NS

RFB2

RFB1 + RFB2
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Resolving the feedback

• A passive, second-order filter is 

recommended to filter out the VAUX

envelope

• Capacitors CFB1 and CFB2 define the 

filter time constant (τ)

• Use a simulation tool to find out 

optimal CFB1 and CFB2 values
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Three steps

1. Generate desired VOUT transient 

response

2. Approximate the VAUX

3. Adjust the rectifier-filter transient 

response using CFB1 and CFB2
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Simulated filter (peak detector) response
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Check that VFB is able to track VOUT

VFB lagging 

behind VOUT

VFB tracks VOUT

without 

excessive ripple

τ is optimalτ is too long



IOUT

VAUX

100 mA/DIV

5 V/DIV

1 ms/DIV

2 µs/DIV

IOUT 100 mA/DIV

VOUT 1 V/DIV

1 ms/DIV

Load regulation 

effect

VOUT transient response and VAUX feedback
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VOUT transient response for IOUT from 

45 mA to 135 mA

VAUX transient response for IOUT from 

45 mA to 135 mA
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Biasing scheme to improve light-load efficiency

• The feedback and self-power have 

different requirements

• Self-power (bias) from the auxiliary 

winding requires large bulk 

capacitance to keep the voltage rail 

stable

• The feedback path requires a fast 

transient response to quickly track 

the VOUT

• Two separate paths offer the best 

performance without compromises
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Region where the contro ller 

adjusts the duty cycle

Pulse-
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and 

zener 

clamping
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Solving the minimal load

• There are two options:

o Resistors as a dummy load

o Zener diodes
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•  h  c          c  ’  f   h       c  tON

• VOUT increases, Zener diodes sink current

• Pulse-skipping occurs



Zener diodes and their accuracy

• Zener diodes are inexpensive 

but not very accurate

• Diodes with approximately: 

o VZ < 4.7 V have a negative 

temperature coefficient

o VZ > 4.7 V have a positive 

temperature coefficient

• Out-of-the-box accuracy varies
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Parameter MMSZ10T1G 

(VZ = 10 V)

MMSZ16T1G

(VZ = 16 V)

Lowest Zener voltage 8.9 V 14.6 V

Highest Zener voltage 11.4 V 17.7



VCS

VCS
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Compensating the current-sense resistor

• Ringing on the current-sense resistor 

may cause false overcurrent events

• Compensation network is necessary

27

CC × RC

=
LS

RS
(The example uses a 0.33Ω 0603 shunt resistor) 



NP NS1

NS2

NA

NS=NS1+NS2

+15 V

-9 V

R=33 Ω     

C=100 pF / 100 V 

/ 0805 / COG

D= Fast 100 V / 200 mA

R=2.7 kΩ 0805

C=10 nF / 100 V / 0805 / COG

Snubber circuits
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• Snubber circuits reduce ringing that:

o Causes electromagnetic 

interference (EMI)

o Stress the power transistor during 

the turnoff transient

• The ringing also negatively affects the 

auxiliary waveform and affects 

feedback

• Ringing is proportional with IOUT



VAUX

VAUX

10 V/DIV

300 ns/DIV

VΔ=3.3 V

(with snubbers)

VΔ=4.49 V

(no snubber)

Ideal sampling 

point

Detected 

voltage

VAUX waveforms with and without snubber circuits
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VAUX waveforms for IOUT = 180 mA



Snubber 

circuits improve 

load regulation
1.98 V3.46 V

Snubber circuit effect on load regulation
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Conclusion
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• PSR flybacks are popular for low-cost isolated DC/DC converters

• A PSR flyback with a conventional boost controller requires these considerations for 

feedback:

o Identify the minimum and maximum duty cycle for the given operating conditions

o Design the VAUX envelope detector (filter) such that it tracks the VOUT

o Minimize ringing using snubbers

o Split the self-bias and feedback paths to enable a fast transient response

o Add a compensation network to the current-sensing resistor

o Design the compensation with the envelope detector in mind, accounting for a 

higher phase margin

o Verify the transient response for the minimal, maximal and nominal input voltage



Resources and more reading

UCC28700-Q1 Datasheet, chapter 7.4.1

• How the discriminator and sampler circuit works

LM5180-Q1 Datasheet, chapter 7.3.2

• How the frequency fallback, BCM and PSR work

Power Stage Designer software

• Essential tool for initial component selection

Under the Hood of Flyback SMPS Designs (SLUP261)

• In-detail description of flyback converters

TI Drive (access code rn4N8w;r )

• Design resources for this presentation

PSPICE-FOR-TI

• PSpice® for TI design and simulation tool
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access code rn4N8w;r 

https://www.ti.com/product/UCC28700-Q1
https://www.ti.com/lit/ds/symlink/lm5180-q1.pdf
https://www.ti.com/tool/POWERSTAGE-DESIGNER
https://www.ti.com/seclit/ml/slup261/slup261.pdf
https://tidrive.ext.ti.com/u/lDfTury3072GN9Ox/e2e399e9-a5ad-49dc-8b0e-8f665bf7cd1a?l
https://www.ti.com/tool/PSPICE-FOR-TI


SLUP425
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