
MMWAVE-SDK deep dive
Easy evaluation and development of mmWave
systems with software development kit

Nitin Sakhuja - Industrial mmWave Radar Applications

1

MMWAVE-SDK deep dive
TI's MMWAVE-SDK (MilliMeter Wave Software Development Kit) is a unified software platform for the TI mmWave

Sensing Portfolio, providing easy setup and fast out-of-the-box access to evaluation and development.

This training provides an overview of the MMWAVE-SDK 3.x architecture and the various building blocks such as

Data Processing Units (DPUs) and Data Processing Chains(DPCs). It also provides a deeper look into the

components with software execution flows accompanied with source code references from the MMWAVE-SDK Out

of Box Demo point cloud processing chain.

We also present some example applications where the Out of box point cloud detection chain is extended to

develop more complex mmWave applications such as Long Range People Detection and Tracking Demo, Traffic

Monitoring Demo and Area Scanner Demo.

2

What you’ll learn:
• TI MMWAVE-SDK architecture and it’s various building blocks such as DPCs and DPUs

• Understand DPM, DPC and DPU execution flows e.g. initialization and runtime operation using source code references

• Developing custom components to extend the out of box processing chain and available examples.

Agenda

• MMWAVE-SDK
– Architecture overview

– Data path design

• Data path deep dive
– Initialization

– Configuration

– Execution (Runtime view)

• DPUs and DPCs in MMWAVE-SDK 3.x
– DPUs: Range, Static-Clutter removal, Doppler, CFAR-CA and AoA

– DPCs: HWA and DSP based object detection chains

• Software development and debugging
– Development resources

– MMWAVE-SDK debugging

• Extending SDK architecture for advanced applications
– Considerations for developing custom DPUs and DPCs

– Custom DPUs and DPCs in Industrial Toolbox

– Demo: Long Range People Tracking and, Traffic Monitoring

– Demo: Area Scanner and, Automated Doors and Gates

3

MMWAVE-SDK - Architecture Overview

4

mmWave signal processing

5

RF Front-End ADC
ADC Data

xWR64xx

xWR68xx

Pre-

Processing
(Interference Mitigation)

1st Dim FFT

(Range)

2nd Dim FFT

(Velocity)

Detection

(CFAR)

3rd Dim FFT

(Angle Arrival)

Point Cloud
[Range, Velocity, Angle]

Clustering Tracking Object Classification
Objects

xWR64xx: Radar Accelerator used for this processing

xWR68xx/18xx: Radar Accelerator / C674x DSP used for this processing

Out-of-Box Demo

mmWave SDK contents
• Building blocks

– RTOS, Drivers, and RadarSS firmware
– Scalable data processing blocks and chains to work on HWA or DSP
– Layered / API based Radar analog front end (AFE) programming
– Pre-built software blocks and chains for basic FMCW Radar signal processing
– Catalog of mmWave signal processing algorithms optimized for C674x DSPs including

tracker
– Package for high-security (HS) devices to enable programming encryption keys and

encrypt/authenticate program binaries

• Demonstrations and examples
– TI RTOS based
– Out of box demo with easy configurability via TI Cloud-based or offline GUI
– Representation of point cloud and benchmarking data from demo via GUI

• Documentation
– Associated tools: Code Composer Studio, TI-RTOS, Uniflash
– Available at http://www.ti.com/tool/MMWAVE-SDK

http://www.ti.com/tool/CCSTUDIO
http://www.ti.com/tool/TI-RTOS
http://www.ti.com/tool/TI-RTOS
http://www.ti.com/tool/TI-RTOS
http://www.ti.com/tool/UNIFLASH
http://www.ti.com/tool/MMWAVE-SDK
http://www.ti.com/tool/MMWAVE-SDK
http://www.ti.com/tool/MMWAVE-SDK

mmWave SDK architecture

7

Datapath Processing Chain

TI mmWave Application Demo

Analog front-end Processor (DSP and R4) and peripherals
BSS

Firmware
Boot ROM

mmWave Link
mmWave

Library

RTOS Drivers + OSAL

IPC

mmWave

API

TI-RTOS OS, Drivers, Algorithms

mmWave APIs

Point Cloud

DataPath

Interface Range Doppler CFAR AoA

DataPath

EDMA
Datapath

Manager

Main highlights:

- Foundational components for SOC
enablement – RTOS, Drivers,
mmWaveLink, mmWaveLib

- RF Front-end completely abstracted
using mmWaveLink

- mmWave API simplifies device
integration of mmWaveLink

- Data path layer is an abstraction
over existing driver APIs in the data
flow

- Separation of data processing units
and chain from the application

- Simpler application that does the
instantiation of the Datapath layer

MMWAVE-SDK – Datapath Design

8

Datapath Layer Design

• DPM: Datapath manager
– Foundation layer that enables the "scalability" aspect of the

architecture.

• DPIF: Standard Interface points in the Detection chain are
defined

– Input ADC data, Radar Cube, Detection Matrix, Point cloud

• DPUs: Data Translating function(s) from one interface point
to the other are called “Data Processing Units”

– Range Processing (ADC data to Radar Cube)

– Doppler Processing (Radar Cube to Detection Matrix)

– CFAR and AoA (Detection Matrix to Point Cloud)

• DPC: Data Processing Chain
– Chain of “data processing units” is called a data processing Chain.

Ex: Detection DPC (ADC to Point Cloud).

– This conforms to the DPM dictated API definition

9

Datapath Processing Chain (DPC)

Range DPU
Doppler

DPU

CFAR

DPU
AoA DPU

DataPath Interface (DPIF) DataPath EDMA (DPEDMA)

DataPath Manager (DPM)

mmWave Application

StaticClutter

Removal DPU

Scalable SW Chain

10

TI mmWave Sensor Portfolio

Scalable Software Processing Chain

DPIF

DPUs

DPC

Typical call flow (1/2)

11

DPM MSS Application DPUs Drivers DPC

DPM Init
DPC Init

DPU#1 Init

DPU#2 Init

DPU#n Init

HWA/EDMA Init

DPM Ioctl

(Config#1)
DPC Ioctl (Config#1)

DPU#1 Config

DPU#2 Config

DPU#n Config

DPM Ioctl

(Config#2) DPC Ioctl (Config#2)
DPU#1 Config

DPU#2 Config

DPU#n Config

EDMA/HWA Config

EDMA/HWA Config

DPM Report Callback

(NOTIFY_DPC_IOCTL)

DPM Report Callback

(NOTIFY_DPC_IOCTL)

Config#1 and Config#2 are shown as

examples here on how a config can be

split into multiple shorrter structures as

needed by a DPC. It is not mandatory to

split into two. On the contrary, config can

be split into even more smaller structures.

Typical call flow (2/2)

12

DPM MSS Application DPUs Drivers DPC

DPM Start

DPC Start

DPU#1 Process

DPU#2 Process

DPU#n Process

H/W Frame

Event

H/W Chirp

Events

<point cloud results>

DPM Report

(NOTIFY_DPC

_STARTED)

DPM Stop

DPC Stop DPM Report

(NOTIFY_DPC

_STOPPED)

Data path deep dive

13

DPM: Datapath Manager

• Modular SW Architecture which provides an abstraction between
the “Datapath Processing Chain” and the customer application.

• Main task context which encapsulates the execution of
DPC and DPUs

• Application code instantiates DPM at start-up and registers
a DPC.

• Provides a well-defined API

• Exposed to the application to interface with the DPM

• Exposed to the “Data processing chain” developers to be
able to write their own code.

• Messaging mechanism

• Send/Receive Configuration

• Extends to Multiple-Thread/Core

• Synchronized execution (No critical section required)

• Response Mechanism with error code passing

• Reporting mechanism which allows applications to be notified
about the status of the DPM/Datapath Processing Chain.

14

Core Layer

Datapath
Chain

Management
Message

Application Developers

Data Processing Chain

Developers

Datapath Manager

DPM Initialization
• Application code creates

and initializes a DPM

instance using the DPM_init

function

• Application also creates a

DPM task

15

Source: MMWAVE-SDK HTML documentation

C:\ti\mmwave_sdk_03_xx_xx_xx\docs\mmwave_sdk_module_documentatio

n.html

DPM Initialization
• Application code creates and initializes a

DPM instance using the DPM_init function

• Application also creates a DPM task

16

1

2

3

Pointer to DPC

• DPC_xxx_init

• DPC_xxx_execute

• DPC_xxx_ioctl

• DPC_xxx_start

• DPC_xxx_injectData

• DPC_xxx_stop

• DPC_xxx_deinit

DPC_xxx_APIs

• DPC_xxx_cbChirpAvailable

• DPC_xxx_cbFrameStart

DPC_xxx_Callbacks

DPC: Data Processing Chain

17

• All external DPC APIs starts with DPC_. DPC

unique name follows next (follows coding

guidelines).

• DPC_ObjectDetection_Init

• External Mandatory APIs follows the prototype

defined by the “Datapath Manager”

• DPCs have flexibility in defining their own

content within the individual structure

• DPC that is split between MSS and DSS will

expose two set of APIs - one for MSS and one

for DSS. Depending on the functionality split

between the two domains, not all APIs need to

be implemented on the two domains

For more details, refer to docs

folder in each of the DPCs

DPC Initialization
• Application registers the DPC with

DPM during DPM creation.

• Application calls DPM init which
calls the DPC’s registered init
function

• Application calls DPM_ioctl with
different message types

• DPM_ioctl invokes the DPC’s
registered ioctl function with:
• Pre-start common config

message (common to all sub-
frames) and

• Sub-frame specific Pre-start
config messages.

• DPC handles the messages in the
ioctl function and performs the
corresponding configuration.

18

Source: MMWAVE-SDK HTML documentation

C:\ti\mmwave_sdk_03_xx_xx_xx\docs\mmwave_sdk_module_documentatio

n.html

DPC Initialization
• Application registers the DPC with DPM during

DPM creation.

• Application calls DPM init which calls the
DPC’s registered init function

• Application calls DPM_ioctl with different
message types

• DPM_ioctl internally invokes the DPC’s
registered ioctl function and passes the
message to it

• DPC handles the message in the ioctl function
and performs the corresponding configuration

• Refer to the call flow below

19

1

2

DPC Configuration
• Application registers the DPC with DPM during

DPM creation.

• Application calls DPM init which calls the
DPC’s registered init function

• Application calls DPM_ioctl with different
message types (i.e. commands)

• DPM_ioctl internally invokes the DPC’s
registered ioctl function and passes the
message to it

• DPC handles the message in the ioctl function
and performs the corresponding configuration

• Refer to the call flow below

20

DPC Configuration (continued)
• Application registers the DPC with DPM during

DPM creation.

• Application calls DPM init which calls the
DPC’s registered init function

• Application calls DPM_ioctl with different
message types

• DPM_ioctl internally invokes the DPC’s
registered ioctl function and passes the
message to it

• DPC handles the message in the ioctl function
and performs the corresponding configuration

• Refer to the call flow below

21

5

6

DPU: Data Processing Units

22

•DPU_xxx_InitParams_t

•errCode

•Handle

DPU_xxx_init

•DPU_Handle

•DPU_xxx_Config_t

•H/W Resources (EDMA, HWA, I/O buffer pointers, Scratch buffer pointers)

•Frame/Sub-frame DPU Static Config (Ex: Num ADC Samples, Chirps/Frame, ADCBuf Config, Data Interface Desc)

•Frame/Sub-frame DPU Dynamic Config (Ex: DC Range Calibration)

•errCode

DPU_xxx_config

•DPU_Handle

•DPU_xxx_OutParams_t

•DPU_xxx_Stats_t

•DPU optional specific Params (Ex: isLastChirp)

•errCode

DPU_xxx_process

•DPU_Handle

•cmd

•args

•argSize

•errCode

DPU_xxx_control

•DPU_handle

•errCode

DPU_xxx_deinit

• All external DPU APIs start with the prefix DPU_. DPU unique
name follows next..Ex: DPU_RangeProcHWA_init

• Standard external APIs:

• Init: one time initialization of DPU
• Config: complete configuration of the DPU: hardware

resources, static and dynamic (if supported by DPU)
• static config: config that is static during ongoing

frames
• dynamic config: config that can be changed from

frame to frame but only when process is not
ongoing - ideally interframe time after DPC has
exported the results for the frame

• Process: the actual processing function of the DPU
• Control: ioctl interface that allows higher layer to switch

dynamic configuration during interframe time
• De-init: de-initialization of DPU

• All memory allocations for I/O buffers and scratch buffers are

outside the DPU since mmWave applications rely on memory
overlay technique for optimization and that is best handled at
application level

• All H/W resources must be allocated by application and passed to

the DPU. This helps in keeping DPU platform agnostic as well as
allows application to share the resources across DPU when DPU
processing doesn't overlap in time.

• DPUs are OS agnostic and use OSAL APIs for needed OS

services.

For more details, refer to docs folder in

each of the DPUs

DPU Initialization
Recall from DPC Configuration…

• Application calls DPM init which calls the

DPC’s registered init function

• DPC_init calls the various DPU init functions

in sequence, to create separate DPU

instances for the number of sub-frames

configured.

• Refer to the call flow below

23

DPU Configuration
Recall from DPC Configuration…

• Application calls DPM_ioctl with different message types

• DPM_ioctl internally invokes the DPC’s registered ioctl
function and passes the message to it

• DPC performs DPU configuration when handling the
PRE_START_CFG command
• The PRE_START_CFG handler calls wrapper functions

for each DPU, e.g. DPC_ObjDet_rangeConfig

• The wrapper allocates the resources required for the DPU
and calls the corresponding DPU config function e.g.
DPU_RangeProcHWA_config.

• Refer to the call flow below

24

DPIF: Datapath Interface

25

• Property

• numADCSamples

• RX interleaved/non-interleaved

• Complex/Real

• Buffer Pointer

Input ADC data

• Property

• Layout – RADAR CUBE RANGE DOPPLER RX TX (1)

• Buffer Pointer

Radar Cube

• Property

• Layout – DET MATRIX RANGE DOPPLER (1)

• Buffer Pointer

Detection Matrix

• Property

• Format – XYZV, RAEV

• Float

Point cloud

• Property

• snr

• noiseVal

Point Cloud SideInfo

Datapath Execution – Runtime View
• At sensor start: Application calls DPM_start

which calls the DPC’s pre-registered start
function DPC_ObjectDetection_start.
• The mmw demo does this in the sensorStart

CLI command handler function.

• At every frame interrupt: The DPC’s pre-
registered frame start call back function,
DPC_ObjectDetection_frameStart is invoked.
• Recall from DPC_init: The DPC’s

frameStart callback is registered with the
DPM during DPC initialization

• This invokes the DPC’s registered execute
function, e.g. DPC_ObjectDetection_execute
• Under the hood: The Frame Start handler

calls DPM_notifyExecute which posts the
semaphore for DPM_execute

• DPM_execute then calls the DPC’s pre-
registered execute function.

• DPC_ObjectDetection_execute performs the
frame processing and populates the output in
DPC_ObjectDetection_ExecuteResult
structure and returns.

• Application reads the output structure and
sends it over UART. This completes the frame
processing.

26

Datapath Execution – Runtime View
• At sensor start: Application calls DPM_start

which calls the DPC’s pre-registered start
function DPC_ObjectDetection_start.
• The mmw demo does this in the sensorStart

CLI command handler function.

• At every frame interrupt: The DPC’s pre-
registered frame start call back function,
DPC_ObjectDetection_frameStart is invoked.
• Recall from DPC_init: The DPC’s

frameStart callback is registered with the
DPM during DPC initialization

• This invokes the DPC’s registered execute
function, e.g. DPC_ObjectDetection_execute
• Under the hood: The Frame Start handler

calls DPM_notifyExecute which posts the
semaphore for DPM_execute

• DPM_execute then calls the DPC’s pre-
registered execute function.

• DPC_ObjectDetection_execute performs the
frame processing and populates the output in
DPC_ObjectDetection_ExecuteResult
structure and returns.

• Application reads the output structure and
sends it over UART. This completes the frame
processing.

27

Datapath Execution – Runtime View
• At sensor start: Application calls DPM_start

which calls the DPC’s pre-registered start
function DPC_ObjectDetection_start.
• The mmw demo does this in the sensorStart

CLI command handler function.

• At every frame interrupt: The DPC’s pre-
registered frame start call back function,
DPC_ObjectDetection_frameStart is invoked.
• Recall from DPC_init: The DPC’s

frameStart callback is registered with the
DPM during DPC initialization

• This invokes the DPC’s registered execute
function, e.g. DPC_ObjectDetection_execute
• Under the hood: The Frame Start handler

calls DPM_notifyExecute which posts the
semaphore for DPM_execute

• DPM_execute then calls the DPC’s pre-
registered execute function.

• DPC_ObjectDetection_execute performs the
frame processing and populates the output in
DPC_ObjectDetection_ExecuteResult
structure and returns.

• Application reads the output structure and
sends it over UART. This completes the frame
processing.

28

Datapath Execution – Runtime View
• At sensor start: Application calls DPM_start

which calls the DPC’s pre-registered start
function DPC_ObjectDetection_start.
• The mmw demo does this in the sensorStart

CLI command handler function.

• At every frame interrupt: The DPC’s pre-
registered frame start call back function,
DPC_ObjectDetection_frameStart is invoked.
• Recall from DPC_init: The DPC’s

frameStart callback is registered with the
DPM during DPC initialization

• This invokes the DPC’s registered execute
function, e.g. DPC_ObjectDetection_execute
• Under the hood: The Frame Start handler

calls DPM_notifyExecute which posts the
semaphore for DPM_execute

• DPM_execute then calls the DPC’s pre-
registered execute function.

• DPC_ObjectDetection_execute performs the
frame processing and populates the output in
DPC_ObjectDetection_ExecuteResult
structure and returns.

• Application reads the output structure and
sends it over UART. This completes the frame
processing.

29

Datapath Execution – Runtime View
• At sensor start: Application calls DPM_start

which calls the DPC’s pre-registered start
function DPC_ObjectDetection_start.
• The mmw demo does this in the sensorStart

CLI command handler function.

• At every frame interrupt: The DPC’s pre-
registered frame start call back function,
DPC_ObjectDetection_frameStart is invoked.
• Recall from DPC_init: The DPC’s

frameStart callback is registered with the
DPM during DPC initialization

• This invokes the DPC’s registered execute
function, e.g. DPC_ObjectDetection_execute
• Under the hood: The Frame Start handler

calls DPM_notifyExecute which posts the
semaphore for DPM_execute

• DPM_execute then calls the DPC’s pre-
registered execute function.

• DPC_ObjectDetection_execute performs the
frame processing and populates the output in
DPC_ObjectDetection_ExecuteResult
structure and returns.

• Application reads the output structure and
sends it over UART. This completes the frame
processing.

30

DPUs and DPCs in SDK 3.x

31

RangeProc DPU

• Purpose: (1D FFT+ DC Range Calib)
processing during active frame.

– Takes ADCBuf as input
• interleaved or nonInterleaved

format
• Single chirp or multichirp (DSP

mode only)
• Either direct access (HWA mode

only) or via EDMA

– Produces RadarCube in L3 in user
requested format (fixed set of formats
described in data interface).

– Performs FFT using HWA or DSP
based on configuration.

– Performs DC range calibration either
inline (DSP mode) or at the end of all
chirps (HWA mode).

• Supported architecture
– R4F, C674x

– Different files for HWA based and
S/W based implementation

32

Static Clutter DPU

• Purpose: (Clutter

Removal) processing

during inter frame.

– Takes non-transposed

formatted 1DOUT

Radarcube as input

– Updates the RadarCube

in L3 (keeping the same

format)

– S/W based only

• Supported architecture

– R4F, C674x

33

Doppler DPU

• Purpose: (2D FFT + Energy
Sum) processing during inter
frame.
– Takes non-transposed

formatted 1DOUT
Radarcube as input

– Produces Detection Matrix
in L3 in fixed format

– Performs FFT and Energy
Sum using H/W(HWA)
• S/W(DSP) based

implementation would be
added in the SDK in
future.

• Supported architecture
– R4F, C674x

34

CFAR-CA DPU

• Purpose: (CFAR-CA +peak
grouping) processing during inter
frame.

– User can choose between various
CFAR-CA implementation: CFAR-CA,
CFAR-CASO, CFAR-CAGO

– Fixed Point implementation

– 2 pass implementation: first pass
(optional) in Doppler direction and
then second pass in Range direction

– Performs CFAR and PeakGrouping
using H/W(HWA)

• S/W(DSP) based implementation
would be added in SDK in future

– Takes Detection Matrix as input

– Produces bitmask of peaks and SNR
information for AoA.

• Supported architecture
– R4F, C674x

35

AoA DPU

• Purpose: (Range/Phase/Doppler
compensation + Near field correction +
Max Velocity enhancement + AoA +
FoV filter) processing during inter
frame.

– Takes non-transposed formatted 1DOUT
Radarcube, detection matrix and peak
bitmask as input

– Produces Point Cloud

– Performs any FFT ops using H/W(HWA)
• S/W(DSP) based implementation will

be added in SDK in future

– All other processing operations are done
using S/W.

• For R4F based implementation, near
field and max velocity algos will not
be offered

– All the processing ops other than AoA
FFT is optional and driven by user input

• Supported architecture
– R4F, C674x

36

R4F

xWR64xx OOB Demo Chain (DPC)

• Detection Processing Chain (DPC) for xWR64xx Out of Box demo.

• Demonstrates Radar Signal Processing using Cortex R4F + HWA

• Also runs on xWR68xx (C674x DSP not used)

37

× × × ×

× Denotes Unused

Datapath

xWR68xx OOB Demo Chain (DPC)
• Detection Processing Chain (DPC) for xWR68xx Out of Box demo.

• Demonstrates Radar Signal Processing using Cortex R4F + HWA + C674x DSP

• DSP provides higher performance and frees up R4F for other processing (e.g. Object Tracking)

38

R4F DSP

×
× × ×

× Denotes Unused

Datapath

68xx OOB Demo - Application View

39

mmWave Device

mmWave application (MSS)

Object Detection DPC

RadarSS Firmware

mmWave

Front End

mmWave API DPM

Input/output over UART to external

TLV format

External Processor/Controlling entity

CLI
mmWave Sensor Data

(point cloud)

Software Development and Debugging

40

Software Development Resources
• Software Development Resources: The following resources are key to learning about software

development for TI processors.

• BIOS users guide: Installed as part of MMWAVE-SDK, it is available in the TI install directory e.g.
C:\ti\bios_6_73_01_01\docs\Bios_User_Guide.pdf.

• This is the one of the best resources for learning about SYSBIOS and software development for TI
processors.

• Linker command files: Understanding these is fundamental to developing applications for TI RTOS
(SYSBIOS). Refer to the following resources:

• TI Linker Command File Primer

• Advanced Linker Techniques for Convenient and Efficient Memory Usage

• Other helpful resources

• Getting Started with Code Composer Studio v7

• Debugging Common Application Issues with TI-RTOS

• TI-RTOS Workshop

• Introduction to C6000 Architecture

• C6000 Cache - Overview (7 of 15)

• Using C6000 EDMA3 - Part 1 (13 of 15)

41

https://www.ti.com/tool/MMWAVE-SDK
https://www.ti.com/tool/MMWAVE-SDK
https://www.ti.com/tool/MMWAVE-SDK
https://www.ti.com/tool/SYSBIOS
http://software-dl.ti.com/ccs/esd/documents/sdto_cgt_Linker-Command-File-Primer.html
http://www.ti.com/lit/an/spraa46a/spraa46a.pdf
https://training.ti.com/introduction-c6000-architecture-1-15
https://training.ti.com/getting-started-code-composer-studio-v7
https://training.ti.com/debugging-common-application-issues-ti-rtos
https://training.ti.com/debugging-common-application-issues-ti-rtos
https://training.ti.com/debugging-common-application-issues-ti-rtos
https://training.ti.com/getting-started-ti-rtos-workshop-agenda
https://training.ti.com/getting-started-ti-rtos-workshop-agenda
https://training.ti.com/getting-started-ti-rtos-workshop-agenda
https://training.ti.com/introduction-c6000-architecture-1-15
https://training.ti.com/introduction-c6000-architecture-1-15
https://training.ti.com/introduction-c6000-architecture-1-15
https://training.ti.com/introduction-c6000-architecture-1-15
https://training.ti.com/introduction-c6000-architecture-1-15
https://training.ti.com/introduction-c6000-architecture-1-15
https://training.ti.com/introduction-c6000-architecture-1-15
https://training.ti.com/using-c6000-edma3-part-1-13-15
https://training.ti.com/using-c6000-edma3-part-1-13-15
https://training.ti.com/using-c6000-edma3-part-1-13-15
https://training.ti.com/using-c6000-edma3-part-1-13-15

MMWAVE-SDK Debugging
• Pre-requisites: The user should

be familiar with general CCS debugging
techniques e.g. running code in CCS,
putting breakpoints, observing the
values of variables and memories etc.
Following resources can be used to
ramp-up on these topics if needed.

• Getting Started with Code
Composer Studio v7

• Debugging Common Application
Issues with TI-RTOS

• In addition to the above, the user
must be familiar with basic
procedures for running an
MMWAVE application in CCS
debug mode. This is explained in
the mmWave Industrial Toolbox at
the following page:
• Using CCS Debug for

Development

42

https://training.ti.com/getting-started-code-composer-studio-v7
https://training.ti.com/getting-started-code-composer-studio-v7
https://training.ti.com/debugging-common-application-issues-ti-rtos
https://training.ti.com/debugging-common-application-issues-ti-rtos
https://training.ti.com/debugging-common-application-issues-ti-rtos
https://training.ti.com/debugging-common-application-issues-ti-rtos
http://dev.ti.com/tirex/explore/node?node=AJoMGA2ID9pCPWEKPi16wg__VLyFKFf__LATEST
http://dev.ti.com/tirex/explore/node?node=AJoMGA2ID9pCPWEKPi16wg__VLyFKFf__LATEST
http://dev.ti.com/tirex/explore/node?node=AJoMGA2ID9pCPWEKPi16wg__VLyFKFf__LATEST
http://dev.ti.com/tirex/explore/content/mmwave_industrial_toolbox_4_4_1/labs/common/docs/software_setup/using_ccs_debug.html
http://dev.ti.com/tirex/explore/content/mmwave_industrial_toolbox_4_4_1/labs/common/docs/software_setup/using_ccs_debug.html
http://dev.ti.com/tirex/explore/content/mmwave_industrial_toolbox_4_4_1/labs/common/docs/software_setup/using_ccs_debug.html

MMWAVE-SDK Debugging
• Rebuilding SDK code for debug:

• All MMWAVE-SDK code (drivers, OOB demo application and
DPU libs) is built with –O3 optimization, which does not allow
single step debugging in the corresponding components.

• In order to enable step debugging in CCS, the –O3
optimization options needs to be removed (or changed to a
lower level)
• Remove the –O3 flag in the SDK common makefile from

R4F_CFLAGS and/or C674_CFLAGS directives to
change build options for ARM and/or DSP code.

• Re-build the demo and the desired pre-compiled libs
(e.g. drivers, DPUs) separately with the non-optimized
configuration to enable debugging.

• A note about DPUs: All DPUs are linked with the application
as pre-compiled libs, so just re-building the application/demo
code does not re-build the DPU libs automatically. Any DPUs
that need to be debugged, should be re-built first with the new
build options and then the applications code re-compiled to
link with the new DPU lib(s). This applies to the SDK drivers
as well.

• Removing optimization may increase the memory requirements
and/or break real-time behavior.

43

SDK Compile flags for Cortex R4F core

SDK Compile flags for C674x DSP core

MMWAVE-SDK Debugging
• Disabling Real time asserts:

• If the DPC cannot complete the frame

(or sub-frame) processing within the

real-time deadline, it raises as assert

causing the application to exit

• When step debugging a distributed

DPC which runs on both R4F and DSP

cores (e.g. in the 68xx point cloud

detection chain), this assert should be

disabled on both cores in DPC code as

shown otherwise application would

crash as shown in this CCS console

log.

• NOTE: Make sure to re-enable the

frame timing assert when running the

DPC in non debug mode.

44

Understanding Error Codes: Datapath Errors
• When demo runs into error conditions, an

error code is generated and printed out on
CCS console

• The error code is a negative integer e.g. shown in the picture.

• Can be from various sources such as Drivers, Control modules,
DPC, DPU or demo (i.e. application)

• Error code defined as: (Module error code base minus Module
specific error code)
• The module error code base values are defined in

packages\ti\common\mmwave_error.h.

• The base error codes for DPC and DPU are define in
packages\ti\datapath\dpif\dp_error.h

• Individual DPU specific error codes defined in the DPU header files

• Example: Parsing the error -30430 shown here

• The error code is from module with error base "-
30000", which indicates it is DPU error

• Referring to dp_error.h, base "-30400" is from AOA
Proc.

• Then find the error code in aoaprocdsp.h for error(-30)
which is DPU_AOAPROCDSP_ESCRATCHSIZE

• NOTE: In SDK demos, these error codes are not sent out on
UART so the demo must be run in CCS debug mode to get
the error code

• Refer to SDK module documentation at the following location
(in the SDK install directory) for more details:
• file:///C:/ti/mmwave_sdk_03_05_00_04/packages/ti/demo/xwr68xx/mmw/docs

/doxygen/html/index.html#mmwave_error

45

Datapath Errors

-30000 = DPU Error base

-30430 = -30000 -400 -30

-400 = AOA Proc Error base

-30 = Insufficient Memory Error

file:///C:/ti/mmwave_sdk_03_05_00_04/packages/ti/datapath/dpc/dpu/dopplerproc/docs/doxygen/html/dp__error_8h.html
file:///C:/ti/mmwave_sdk_03_05_00_04/packages/ti/demo/xwr68xx/mmw/docs/doxygen/html/index.html#mmwave_error
file:///C:/ti/mmwave_sdk_03_05_00_04/packages/ti/demo/xwr68xx/mmw/docs/doxygen/html/index.html#mmwave_error

Understanding Error Codes: mmWave Errors
• Besides Datapath errors, there is another class

of errors known as mmWave module errors.

• These represent errors returned by the RF
Front-End e.g. incorrect profile configuration.

• Defined as a combination of mmWave error,
Susbsystem error and error level as shown.
• mmwave errors defined

in packages\ti\control\mmwave\mmwave.h

• Subsystem errors defined in
packages\ti\control\mmwavelink for
mmwavelink.h

• Error level represents WARNING or ERROR.

• Example: The error shown in the log here
indicates
• The error is from module(-3100 i.e. mmwave) with

error -8 (MMWAVE_EPROFILECFG)

• The Subsystem (mmwavelink) error is 36 which is
defined as
RL_RET_CODE_PF_START_FREQ_INVAL_IN in
mmwavelink.h, which indicates invalid start
frequency specified in ProfileCfg API.

mmWave Link errors

Extending SDK architecture for advanced
applications

47

Developing a Custom Radar Processing Chain
Key considerations for developing a custom mmWave processing chain with
SDK 3.x architecture

• Understand the data processing chain for the target application and model it in terms of DPC and DPUs

• Re-use the SDK Out of Box Detection Processing OR develop a new Detection Chain

– SDK Out of box DPC is a Range-Doppler based processing chain.
– Lower angular resolution as compared to Range-Azimuth (Capon Beamforming) chain

• SDK Detection Chain re-used for Long Range People Detection and Area Scanner Demos
• But a Higher resolution Capon Beamforming Detection Chain was developed for Indoor People Counting Demos

– Range Processing is still re-used irrespective of the rest of the Detection Processing

• Additional processing requirements beyond the OOB point cloud detection
– Can the additional processing be added to an existing DPU or do we need to create a new DPU

• Object Tracking - new DPU
• Static Object Detection - new DPU
• 2D AoA (Angle of Arrival) using DSP – Enhancement to existing AoA DPU

• Enhancements needed at the DPC and Application level e.g.

– Tracking
– Beam-steering
– Static object detection

• Memory and MIPS requirements for the additional processing

Examples of Custom DPUs and DPCs
New DPUs and DPCs developed in mmWave
Industrial Toolbox
• TrackerProc DPU and ObjectDetectionAndTracking DPC

– 2D/3D Object tracking using SDK 3.3 Out of Box detection chain

– Used in the following demos
• Long Range People detection
• Traffic Monitoring
• Area Scanner
• Automated Doors and Gates

• TrackerProcCapon DPU and Capon3D DPC
– 2D/3D Object Tracking using Capon beamforming detection chain

– Used in the following demos
• 3D People Counting Demo – Side Mount
• 3D People Counting Demo – Overhead Mount
• Sense and Direct HVAC Control Demo

• StaticDetProc DPU and StaticObjeDet DPC
– 2D/3D Object tracking using SDK 3.3 Out of Box detection chain with added

Static detection capability

– Used in the following demos
• Area Scanner
• Automated Doors and Gates

• Available in Industrial Toolbox 4.x download under
C:\ti\mmwave_industrial_toolbox_4_x_x\labs\common

Area Scanner and Automated Doors
• Custom processing chain developed for Area Scanner and Automated Doors Demos.

• Based on xWR68xx OOB Range-Doppler Detection Chain with addition of 2D AoA using DSP

• Adds Object Tracking and Static Detection Capabilities

http://dev.ti.com/tirex/explore/node?node=AJB5KNPj7oxrAxFIuIkhqA__VLyFKFf__LATEST
http://dev.ti.com/tirex/explore/node?node=AIpcYR0KCNPXZRF8U9IYYw__VLyFKFf__LATEST
http://dev.ti.com/tirex/explore/node?node=AJB5KNPj7oxrAxFIuIkhqA__VLyFKFf__LATEST
http://dev.ti.com/tirex/explore/node?node=AIpcYR0KCNPXZRF8U9IYYw__VLyFKFf__LATEST

Demo: Long Range Outdoor People
Detection and Tracking

51

100m People Detection and Tracking

52

• Features

– SDK 3.3 Range Doppler Detection Chain with Object tracking on R4F

– Tracker DPU developed on top of SDK 3.x

– Runs on IWR6843ISK ES2.0 and IWR1843BOOST

– Supports 2D and 3D tracking

– People tracking tested upto 100m with IWR6843ISK ES2.0 (3TX SIMO)

– Re-used for Traffic Monitoring Demo on IWR1843/6843

– Supports ISK, ODS and AOP antennas (for Indoor applications such as Area

Scanner with Static Detection)

• DSP based AoA DPU modified to add 2D DoA for ODS/AOP

– Built on SDK 3.x OOB Demo

• Advanced features included for free e.g. Run time CFAR tuning, FoV

filtering, ADC data streaming over LVDS.

Sub frame based TX Beam Steering

Overview

3D Long Range Tracker Chain

53

DSP R4F

3D Tracker DPU

+ 2D DOA support

+ Spherical output

Tracking on R4F

Tracking on DSP

Point Cloud +

Tracker output

Uses SDK gTrack Lib

×
× × ×

R4F

×

× Denotes Unused

Datapath

Denotes new or

modified components

SLYP721

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD
PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable
standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you
permission to use these resources only for development of an application that uses the TI products described in the resource. Other
reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third
party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims,
damages, costs, losses, and liabilities arising out of your use of these resources.
TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on
ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable
warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2020, Texas Instruments Incorporated

http://www.ti.com/legal/termsofsale.html
http://www.ti.com

