‘9 TEXAS Application Report
INSTRUMENTS SPRA999A1 — May 2006

Creating a Second-Level Bootloader for FLASH
Bootloading on TMS320C6000 Platform With
Code Composer Studio

Kimberly Daniel Digital Signal Processing Solutions
Shivashankar Gangadhar

George Mock

Alan Campbell

ABSTRACT

In many DSP applications there is a need to copy code and/or data from one location to
another at boot. C6000 DSPs offer three types of boot configurations: no boot process, ROM
boot process, and host boot process. The most commonly selected boot configuration is the
ROM boot process. When ROM boot is selected as the boot configuration, 1K byte (on
C621x/C671x/C64x™) of code will automatically be copied from CE1 to address 0 by the
EDMA following the release of /RESET while the CPU is stalled.

DSP applications are not limited to 1K byte of code. In the event the application size exceeds
1K byte, a custom boot routine will need to be developed to copy the additional sections of
code not copied by the ROM boot. The custom boot routine is referred to as the second level
bootload, or the secondary bootloader. This application note describes how to create a
secondary bootloader by converting a RAM-based application to a flash-based application.
This was done by migrating a C6000 DSP-based DSP/BIOS application developed on the
Code Composer Studio development environment to an actual embedded product. This
application note will use DSP/BIOS Reference Framework Level 3 (RF3) example to illustrate
flash booting on a dsk6713 board. The appendix of this application note also provides an
example of a secondary bootloader for a non-BIOS application. Code for both the DSP/BIOS
and non-BIOS examples are available for download with this application note.

This application report contains project code that can be downloaded from this link.
http://www.=s.ti.com/sc/psheets/spra999al/spraa999al.zip

Contents

1 INtrodUCHION . 2
1.1 Second-Level Bootload Considerationsttt 4
1.2 COFF Section Placementot et et e 5
1.3 Building and Linking the Application i e e e e e e e 5
1.4 Writing the Custom Boot Codeot i e e e e e 6
1.5 Burning the Application into Flash e 6

2 Bootloading a DSP/BIOS Application 6
2.1 DSP/BIOS Memory Configuration for ROM Bootingc.oiiiiinennn.. 6

Trademarks are the property of their respective owners.

{'.?‘ TEXAS

SPRA999A1 INSTRUMENTS

2.1.1 Defining Memory SEgMENtSttt et et et e e 6

2.1.2 Memory (COFF) Section Placement 7

2.2 Building the Application e 9

2.21 BUIld OplioNS 9

2.2.2 Linker Command File e 10

2.3 Writing the Secondary Bootloader i e 10

2.3.1 TheSectionCopy Table e e 13

2.4 Programming Flash 15

2.4.1 Hex Conversion Utility i e 16

242 FlashBurn Utility e e e 17

3 Linker Copy Tables e 18

4 Tips for DebUGQINg ..o 19

D RE EIBNCES . . 20

APPENAIX A 21

A.1 CB20x/CB70X BOOtloader 21

A.2 Bootloading a Non-BIOS Application e 21

A.2.1 Defining Memory SEgMENTSt 21

A.2.2 Memory (COFF) Section Placement i, 22

A.2.3 Creating the Section Copy Table e 22
Appendix B Example of Linker Table Directive Usage ciiiiiiiiiiinnnnnn. 24

B.1 INtrodUCHiON e 24

B.2 Usethe Table DireCtiVe e e 24

B.3 Notes on Runningthe Example i 25

List of Figures

Figure 1. Start-Up Sequence of Application which Uses Secondary Bootloader 4
Figure 2. Load/Run Address Specification Using DSP/BIOS GCONF Interface 9
Figure 3. BOOt COOEot e e e e e 11
Figure 4. Flash Programming SEQUENCE ittt e 15
Figure 5. Hex Command File 16
Figure 6. Hex Command File using the —boot Option i 17
Figure A-1. Non-BIOS Memory Segment Definition i 22
Figure A-2. Non-BIOS Memory Section Placement i 22
Figure B-1. Existing Load/run Mechanism in DSP/BIOS Present in

Code Composer StUdio 2.21 e 24

List of Tables

Table 1. Memory Section Definitions e 7
Table 2. DSP/BIOS Sections and Suggested Memory Placement 8
Table 3. Copy Table Format e e e e 14
Table 4. Hex Utility BOOt OptioNSot e e e e e e 16

2 Creating a Second-Level Bootloader for FLASH Bootloading on TMS320C6000 Platform With Code Composer Studio

{'f TeExAS
INSTRUMENTS SPRA999A1

1

Introduction

In many DSP applications there is a heed to copy code and/or data from one location to another
at boot. C6000 DSPs offer three types of boot configurations: no boot process, ROM boot
process, and host boot process. The boot process that is selected is determined by the
configuration of the BOOTMODE pins. Refer to the device specific data sheet to learn about the
boot modes supported by a particular device and configuring the device for a particular boot
mode.

The most commonly selected boot configuration is the ROM boot process (also referred to as
the on-chip bootloader in this document). When selected, the ROM boot process copies a fixed
amount of memory located at the beginning of the external ROM to address 0 using the
DMA/EDMA controller. The transfer is automatically completed as a single frame block transfer
from ROM to address 0. This transfer occurs when the device is released from external reset
while the CPU is internally stalled. Upon completion of the block transfer the CPU is released
from the stalled state and starts executing from address 0.

The ROM boot process differs between specific C6000 devices.
e 620x/670x DMA copies 64K bytes from CEL1 to address O
e 621x/671x/64x EDMA copies 1K bytes from beginning of CE1 to address 0.

Application size determines whether the on-chip bootload facility is sufficient or whether there is
a need for a secondary bootloader. If the application size is less than the size copied by the
ROM boot, then a secondary bootloader (custom boot code) is not required. Typically,
621x/671x/64x applications need a secondary bootloader because the application size is greater
than the 1K bytes of memory copied by the on-chip bootloader.

In the applications that require a secondary bootloader, this custom boot code usually resides at
the beginning of ROM memory so that it can be automatically transferred by the on-chip
bootloader to internal memory, address 0. Once the transfer is complete, the CPU begins
executing from address 0 and therefore runs the custom boot code. The secondary bootloader
then copies the rest of the application into RAM. Figure 1 shows the sequence of events that
occur when the application is bootloaded using a secondary bootloader.

Creating a Second-Level Bootloader for FLASH Bootloading on TMS320C6000 Platform With Code Composer Studio 3

{'f TExAs
SPRA999A1 INSTRUMENTS

Device Reset
ROM boot process copies a fixed amount of memory
from the beginning of CE1 space to address 0
(the memory copied is the secondary bootloader)

v
CPU Reset

Secondary bootloader copies the complete application
to its runtime memory location. At completion, the
secondary bootloader code branches to _c_int00

v

_c_int00
C Runtime environment
initialization BIOS _init (DSP/BIOS
scheduler initialization)

DSP/BIOS Scheduler

Figure 1. Start-Up Sequence of Application which Uses Secondary Bootloader

1.1 Second-Level Bootload Considerations

As discussed above, ROM booting is the preferred boot method for many of the C6000
applications. If the ROM boot mode is selected and a secondary bootloader is required, then
several things must be considered:

e COFF section placement

e Building the application

e Writing the custom boot code (secondary bootloader)
e Burning the application into flash

4 Creating a Second-Level Bootloader for FLASH Bootloading on TMS320C6000 Platform With Code Composer Studio

{'f TeExAS
INSTRUMENTS SPRA999A1

1.2

1.3

COFF Section Placement

A COFF section is a block of code or data that occupies contiguous space in the memory map.
COFF sections are of three types, namely code, initialized data, and uninitialized data. Each
COFF section has a load and a run attribute. The load attribute of a section tells the loader or
Flash Burn Utility where to place the section following the project build. The run attribute of a
section specifies where the section will execute from when the device comes out of RESET.
Therefore, if different load and run addresses are specified for a section, the section must be
copied from the load address to the run address by the secondary bootloader.

Consider the example below:

.text: LOAD = FLASH, RUN = IRAM

In the above case, .text is placed in flash and then copied to IRAM by the secondary bootloader
during boot. All references to the .text section in the program application refer to its run address
of IRAM. Each section with a load address in flash ROM forms part of the load image. For ROM
booting, the load image consists of sections of code and initialized data.

Determination of the run address of a section is based on how frequently the CPU accesses that
particular section. If a section is accessed only once by the CPU then typically it will not have a
run address in RAM. This will save RAM space for other purposes. For example, the .cinit
section which is accessed only once during boot, typically will have a load as well as a run
address in flash. Sections that need faster access by the CPU will have a run address in RAM.
The secondary bootloader is responsible for copying all the sections from their load space to
their run space if a particular section has different load and run addresses. All the un-initialized
data sections are placed in RAM and these sections will have the same load and run address.

Refer to the TMS320C6000 Assembly Language Tools User’s Guide (SPRU186) for more
details on COFF section description and load run specification. Table 2 gives a list of DSP/BIOS
sections and suggested memory placement.

Building and Linking the Application

After the project build, the linker will generate a map file that contains the section link information
that can be used to determine the location in memory where each section was placed. The map
file contains information such as the size of the section, the load address, and the run address.
An excerpt from a map file will look similar to the following:

.bios

90005600 00001f00 RUN ADDR = 800063e0

90005600 00000700 biosi.a62 : swi.o62 (.bios)
90005d00 00000540 1lnkrtdx.a62 : rtdx.o62 (.bios)
90006240 00000400 biosi.a62 : hwi disp asm.o (.bios)
90006640 00000300 : prd.o62 (.bios)

90006940 00000280 : rta.o62 (.bios)

This says that the .bios section is 0x00001f00 bytes long, has a load address of 0x90005600,
and a run address of 0x800063e0. This information is needed to create the custom boot code.
The map file also contains detailed information about memory sections, sub-sections, and
symbols.

Creating a Second-Level Bootloader for FLASH Bootloading on TMS320C6000 Platform With Code Composer Studio 5

{'f TExAs
SPRA999A1 INSTRUMENTS

1.4 Writing the Custom Boot Code

Once the project has been built and linked, the custom boot code should be written. The custom
boot routine is typically written in assembly language because the C environment is not
initialized at boot-time. The following is a list of tasks usually performed by the custom boot
code:

1. Configure the PLL. This step is recommended for C6x devices that have a software
programmable PLL in order to improve boot performance.

Configure the EMIF to access external memory.

3. Copy the initialized sections from the ROM to the memory location specified by the
section’s run address.

4. Call _c_int00().

Once the custom boot code is complete, it should be included in the project and the project
should be re-built. Section 2.3.1 contains sample secondary boot code.

1.5 Burning the Application into Flash

Applications built in Code Composer Studio will be of COFF format (.out). Flash burn utilities
(ROM programmers) typically accept the file in ASCIl hexadecimal format, therefore the
application COFF format output executables need to be converted into .hex format using a hex
conversion utility before burning the flash. This can be accomplished by using the hex
conversion utility that is provided with Code Composer Studio.

2 Bootloading a DSP/BIOS Application

The bootloading process involved for a DSP/BIOS application can be broadly separated into the
following steps:

1. DSP/BIOS memory configuration for ROM booting
2. Building the application
3. Writing the custom boot code

4. Burning the application into flash
This application note provides a sample project that includes the necessary changes to RF3 to
ROM boot on the DSK6713. The appendix of this application note also provides an example of a

secondary bootloader for a non-BIOS application. The code for both the DSP/BIOS and
non-BIOS examples are available for download with this application note.

2.1 DSP/BIOS Memory Configuration for ROM Booting

211 Defining Memory Segments

Additional memory segments, such as FLASH_BOOT and FLASH_REST below, should be
defined to specify two locations in ROM. These memory segments are required to distinguish
between the memory sections that will automatically be copied by the on-chip bootloader into
RAM following reset and those sections that must be copied by the secondary bootloader.

6 Creating a Second-Level Bootloader for FLASH Bootloading on TMS320C6000 Platform With Code Composer Studio

{'f TeExAS
INSTRUMENTS SPRA999A1

2.1.2

To create additional memory segments, open the DSP/BIOS configuration (.cdb) file, right-click
on the MEM - Memory Section Manager object, and choose Insert MEM. For example, on the
6713 DSK, create these additional segments:

FLASH BOOT: origin

FLASH REST: origin
BOOT_RAM: origin

0x90000000, length
0x90000400, length
0x0, length = 0x400

0x400
0x1FCO00

The FLASH_BOOT segment holds the secondary bootloader code. On device reset, contents of
the FLASH_BOOT segment are copied into the BOOT_RAM segment by the on-chip boot
facility. When creating the BOOT_RAM section for the 2nd level bootloader code, ensure that
the box labeled “create a heap in this memory,” is unchecked and space attribute is code/data.
FLASH_REST is used to store all other memory sections apart from the secondary bootloader
code, which have a load address in flash. Complete memory sections defined using GCONF will
look like Table 1.

Table 1. Memory Section Definitions

Segment Name Base Length
. FLASH_BOOT 0x90000000 0x400
Flash memory split
Into two segments 1 o Agy REST 0x90000400 0x1fc00
BOOT_RAM 0x0 0x400
Internal SRAM (L2)
split into two segments IRAM 0x400 0xfc00
SDRAM 0x80000000 0x1000000

Memory (COFF) Section Placement

As explained in the section 1.2, all the code and initialized data sections should have load
addresses in Flash and depending on the application requirement these sections could have run
address in RAM. For uninitialized data sections the only significant address in the run address in
RAM.

Table 2 provides a list of the DSP/BIOS sections, as well as the compiler sections, and
suggested memory placement.

Creating a Second-Level Bootloader for FLASH Bootloading on TMS320C6000 Platform With Code Composer Studio 7

SPRA999A1

{'f TExAs
INSTRUMENTS

Table 2. DSP/BIOS Sections and Suggested Memory Placement

Section Name Section

Description

Suggested Placement

.args Uninitialized data
.stack Uninitialized data
.bios Code

.sysinit Code

.gblinit Initialized data
.trcdata Initialized data
.Sysdata Uninitialized data
.hwi_vec Code

.rtdx_text Code

All other BIOS Uninitialized data
sections

Argument buffer

Stack space

DSP/BIOS code

Init code, run only during startup
Init table, used only during startup

Trace mask selection, must have a run
address in RAM

Kernel data
Interrupt vector table
Code

Object memory, etc.

LOAD, RUN = RAM
LOAD, RUN = RAM
LOAD = ROM, RUN = RAM
LOAD, RUN = ROM
LOAD, RUN= ROM

LOAD =ROM, RUN = RAM

LOAD, RUN = RAM
LOAD = ROM, RUN= RAM
LOAD=ROM, RUN=RAM

LOAD, RUN = RAM

Compiler Sections

.const Initialized data
text Code

.data .cio. Uninitialized data
.Cinit, .pinit, Initialized data
.switch

.bss, .far Uninitialized data

Constant data
Program code
Miscellaneous data sections

C variable initialization tables

C variables

LOAD, RUN=ROM
LOAD = ROM, RUN = RAM
LOAD, RUN = RAM

LOAD, RUN=ROM

LOAD, RUN=RAM

Based on the above table the user can decide on load/run specifications for each section and
configure them through the DSP/BIOS memory manager. Also, under the Memory Section
Manager, turn off Reuse startup code space. This checkbox will be highlighted if .sysinit section
is placed in data segment. Since the .sysinit section will be placed in flash memory, this memory
cannot be reused at run time for data storage.

After deciding upon the sections that require different load/run specifications, open the
DSP/BIOS configuration cdb and choose the Memory Section Manager. Under the Memory
Section Manager Load Address Tab, check the box that specifies separate load addresses and
choose the FLASH_REST memory section as the load address for all of the memory sections
with a load address in ROM. Figure 2 shows the way this is done using GCONF interface in

Code Composer Studio.

Creating a Second-Level Bootloader for FLASH Bootloading on TMS320C6000 Platform With Code Composer Studio

{'f TeExAS
INSTRUMENTS SPRA999A1

2.2
221

MEM - Memory Section Manager Properties ﬂ

Generall BIOS Datal BIOS Eu:u:lel Compiler Sections Load Address |

¥ Specify Separate Load Addreszes

Load Addresz - BIOS Code Section [biog]: SORAM j
. - SDRAM
Load Address - Startup Code Section [zpzinit]: FLASH BOOT

Load Address - DSPABIOS Imit Tables [gblinit]:

Load Address - TRC Initial Walue [tedata) | SDRAM d
Load Address - Text Section [text]: ISDH.-’-‘-.M j
Load Address - Switch Jump T ables [switch] | SDRAM |
Load fddress - Data Initialization Section [.cinit]: | SDRAM R4
Load Address - C Function |nitialization T able [pinit]: ISDH.-’-‘-.M j
Load Address - Constant Section [const); ISDH.-’-‘-.M j
Load Address - Function Stub kermon [il ISDH.-’-‘-.M j
Load &ddress -Interrupt Service Table bMemary [i vec): ISDH.-’-‘-.M j
Load &ddress - RTDX Text Seament [.rtds_text]: | SDRAM |

(] I Cancel | Apply | Help |

Figure 2. Load/Run Address Specification Using DSP/BIOS GCONF Interface

In addition to the memory sections described above, a new memory section .boot_load is
created which holds the secondary bootloader code. This section is needed to ensure the
custom boot code is placed properly in the FLASH_BOOT segment. To create the .boot_load
section, a new linker command file must be created. This procedure is described in section 2.2.

.boot_load: {} load = FLASH BOOT, run = BOOT RAM

This code will give the section .boot_load a load address in FLASH_BOOT and a run address in
BOOT_RAM. On device reset the custom boot code is copied from FLASH_BOOT to
BOOT_RAM automatically by the on-chip boot facility. If multiple sections are placed in
FLASH_BOOT, make sure the line linking the section for the secondary boot code appears
before the lines for the other sections. This ensures the secondary boot code will be linked to the
first address in ROM.

Building the Application
Build Options

Applications should be built with the run time auto initialization model. From the Code Composer
Studio menu bar, select Project — Build Options and click the linker tab. Choose auto init model
as Run-time Autoinitialization (—c), this will ensure that global variables are initialized at run time
on startup using cinit records.

Creating a Second-Level Bootloader for FLASH Bootloading on TMS320C6000 Platform With Code Composer Studio 9

{'f TExAs
SPRA999A1 INSTRUMENTS

The secondary bootloader code obtains the information regarding the sections to be copied from
load address to run address through a set of table entries. These table entries can be created by
looking at the map file. To configure the linker to generate a map file, select Project — Build
Options — Linker tab from the Code Composer Studio menu bar.

2.2.2 Linker Command File

In order to link the new memory section .boot_load, which holds the secondary bootloader code,
a new linker command file must be created. An excerpt from the new linker command file is
shown below. The new linker command file includes the BIOS generated linker command file.

-1 app.cmd /*DSP/BIOS generated cmd file from cdb*/
SECTIONS ({

.boot load : LOAD = FLASH BOOT, RUN = BOOT RAM
}

2.3 Writing the Secondary Bootloader

The secondary bootloader (custom boot code) becomes necessary when the amount of memory
copied by the built in bootload mechanism is not sufficient for big applications. On the C6713
DSK, the external memory interface (EMIF) needs to be correctly programmed to enable access
to external memory. Once this is done, the custom boot code should copy initialized data
sections from their load addresses to their run addresses, and then branch to _c_int00, the
usual program entry point.

Figure 3 provides sample code that uses the CPU instructions to copy certain sections into
RAM. The source address, destination address, and size of all sections to copy are stored in the
copy table. Also refer to boot_C671x.s62 in app.pjt, which has this sample code. The
boot_C671x.s62 code is generic for any C671x device. A device-specific .asm file,
c6713_emif.s62, is included in the project to define the addresses and values of the EMIF
registers specifically for the C6713 DSK.

10 Creating a Second-Level Bootloader for FLASH Bootloading on TMS320C6000 Platform With Code Composer Studio

{'f TeExAS
INSTRUMENTS

SPRA999A1

.title ”Flash bootup utility”
.option D,T

.length 102
.width 140

; global EMIF symbols defined for the c671x family
.include boot_c671x.h62

.sect ”.boot load”
.global boot

boot
7**
;* DEBUG LOOP - COMMENT OUT B FOR NORMAL OPERATION

IEE SRR EESEEEEEEEEEEE]

_myloop: ; [!B1l] B _myloop
nop 5
_myloopend: nop

;**
;* CONFIGURE EMIF
;**
;**
; *EMIF GCTL = EMIF GCTL V;
;**
mvkl EMIF GCTL,A4
|| mvkl EMIF GCTL V,B4
mvkh EMIF GCTL, A4
|| mvkh EMIF GCTL V,B4
stw B4, *A4
;**

*EMIF CEO = EMIF CEO V
;**
mvkl EMIF CEO,A4
|| mvkl EMIF CEO V,B4
mvkh EMIF CEO,2A4
|| mvkh EMIF CEO_V,B4
stw B4, *A4

Figure 3. Boot Code

Creating a Second-Level Bootloader for FLASH Bootloading on TMS320C6000 Platform With Code Composer Studio 11

SPRA999A1

%‘ TExAs
INSTRUMENTS

;**

; *EMIF CEl = EMIF CEl1 V (setup for 8-bit async)
;**
mvkl EMIF CE1,A4
|| mvkl EMIF CE1 V,B4
mvkh EMIF CE1,A4
|| mvkh EMIF CE1 V,B4
stw B4, *A4

;**

; *EMIF CE2 = EMIF CE2 V (setup for 32-bit async)
;**
mvkl EMIF CE2,A4
|| mvkl EMIF CE2 V,B4
mvkh EMIF CE2,A4
|| mvkh EMIF CE2 V,B4
stw B4, *A4
;**
; *EMIF CE3 = EMIF CE3 V (setup for 32-bit async)
;**
mvkl EMIF CE3,A4
mvkl EMIF CE3 V,B4 ;
mvkh EMIF CE3,A4
|| mvkh EMIF CE3 V,B4
stw B4,*A4

;**

; *EMIF SDRAMCTL = EMIF SDRAMCTL V
;**
mvkl EMIF SDRAMCTL,A4
mvkl EMIF SDRAMCTL V,B4 ;
mvkh EMIF SDRAMCTL, A4
|| mvkh EMIF SDRAMCTL V,B4
stw B4, *A4

;**

; *EMIF SDRAMTIM = EMIF SDRAMTIM V
;**
mvkl EMIF SDRAMTIM, A4
mvkl EMIF SDRAMTIM V,B4 ;
mvkh EMIF SDRAMTIM, A4
|| mvkh EMIF_SDRAMTIM V,B4
stw B4, *Ad

Figure 3. Boot Code (Continued)

12 Creating a Second-Level Bootloader for FLASH Bootloading on TMS320C6000 Platform With Code Composer Studio

{'f TeExAS
INSTRUMENTS SPRA999A1

;**

; *EMIF SDRAMEXT = EMIF SDRAMEXT V
;**
mvkl EMIF SDRAMEXT, A4
mvkl EMIF SDRAMEXT V,B4 ;
mvkh EMIF SDRAMEXT, A4
|| mvkh EMIF SDRAMEXT V,B4
stw B4, *A4

;**

; copy sections
;**
mvkl COPY TABLE, a3 ; load table pointer
mvkh COPY TABLE, a3

ldw *al3++, bl ; Load entry point
copy_section top:
1ldw *al3++, bo ; byte count
ldw *al3++, a4 ; ram start address
nop 3
[!b0] b copy done ; have we copied all sections?
nop 5
copy_ loop:
1db *a3++, b5
sub b0,1,b0 ; decrement counter
[bo] D copy_ loop ; setup branch if not done
[!b0] b copy_section top
zero al

[Ib0] and 3,a3,al
stb b5, *ad++
['b0] and -4,a3,a5b ; round address up to next multiple of 4
[al] add 4,a5,a3 ; round address up to next multiple of 4
;**
; jump to entry point
;**
copy_done:
b .82 bl
nop 5

Figure 3. Boot Code (Continued)

2.3.1 The Section Copy Table

The secondary bootloader copies the contents of memory sections from its load address to its
run address using a section copy table. Table 3 shows the typical copy table format. The copy
table contains entries for all the memaory sections that need to be copied from their load address
to their run address. Each table entry contains information describing the size of the section of
memory, the destination address or address from where the section will execute, and the source
address or the address where the section was loaded.

There are a number of ways to create the section copy table:
e Inspecting the map file

e Using the —boot option in the hex conversion utility

e Using linker options (LOAD_START, RUN_START, SIZE)

The following sections discuss two ways (inspecting the map file and using the hex conversion
utility) to create the section copy table for a DSP/BIOS application. The third method, using the
linker options mentioned above, would require significant modifications to the BIOS-generated
linker command file. Hence this option is not presently recommended with BIOS applications
and is discussed in the appendix of this document for a non-BIOS application.

Creating a Second-Level Bootloader for FLASH Bootloading on TMS320C6000 Platform With Code Composer Studio 13

{'f TExAs
SPRA999A1 INSTRUMENTS

Table 3. Copy Table Format

Size of memory sectionl
Destination address for sectionl
Source address for section 1
Size of memory section2
Destination address for section2
0 ; End of Table

0 ; End of Table

0 ; End of Table

2.3.1.1 Creating the Section Copy Table By Inspecting the Map File

Each copy table entry can be determined by inspecting the map file. If this method is chosen to
create the copy table, then the appropriate value of the size of the section, the destination
address of the section, and the source address of the section must be manually filled in for that
entry. This also means that each time the project is compiled, the map file must be inspected
again and the copy table updated with any changes. A copy table entry corresponding to the
map file shown in section 1.3 is shown below. The copy table is inserted at the end of the
custom boot code.

COPY_TABLE:
;1size
; ;destination (run address)
; ;source (load address)
;ibios
.word 0x00001£f00
.word 0x800063e0
.word 0x90005600

2.3.1.2 Creating the Section Copy Table Using the Hex Conversion Utility

As described above, the second-level bootloader uses a copy table to transfer sections of
memory from its load address to its run address. Manually filling in the copy table entries by
inspecting the map file is a tedious activity and prone to error. The hex conversion utility (hex6x
v4.3.3 and later) provided with Code Composer Studio provides a more convenient method for
creating the section copy table by automatically building the copy table when the appropriate
options are specified in the hex conversion utility command file. The Code Composer Studio
project described above must be updated to use the hex conversion utility to generate the copy
table and the changes necessary are described in the following paragraphs.

The hex conversion utility will take care of placing the memory sections in the appropriate

locations in ROM so it is no longer necessary to create additional memory segments such as
FLASH_BOOT and FLASH_REST or to specify separate load addresses.

14 Creating a Second-Level Bootloader for FLASH Bootloading on TMS320C6000 Platform With Code Composer Studio

{'f TeExAS
INSTRUMENTS SPRA999A1

Therefore, the first step in converting the project to use the hex conversion utility to build the
copy table is to update the BIOS generated configuration (*.cdb) file. The FLASH_BOOT section
and FLASH_REST section should be removed by opening the DSP/BIOS configuration (.cdb)
file, right-clicking on the MEM - Memory Section Manager object, and then choosing Delete.
Also, the Memory Section Manager properties should be updated by selecting the Load Address
tab and then removing the check from the Specify Separate Load Addresses box.

Furthermore, the second step in updating the project is changing the user defined linker
command file. The user defined linker command file should be updated to contain the following
section definition.

-1 app.cmd /*DSP/BIOS generated cmd file from cdb*/

SECTIONS {
.boot_load :> BOOT_RAM

}

The next step is to update the custom boot code by removing the copy table from the end of the
file. This piece of code is no longer needed because the copy table will automatically be
generated by the hex conversion utility. Also, the location of the copy table must be defined in
the custom boot code. This is done with the following piece of code.

;Address of the generated copy table

COPY_TABLE .equ 0x90000400

Finally, the —boot, —bootorg, and —bootsection options should be added to the hex conversion
utility command file. This is described in section 2.4.1.

2.3.1.3 Creating the Section Copy Table With the Linker Table Directive

2.4

The linker bundled with Code Composer Studio 3.00 introduces a new feature for creating copy
tables that is simpler and more flexible than the methods mentioned in the previous two
sections. The new feature is called the table directive. The table directive is described in section
3. An example using the table directive is described in Appendix B.

Programming Flash

Code Composer Studio comes with several utilities that help with flashing applications into
ROM. For C6x architectures a flash programmer and a hex conversion utility are provided. Flash
programmers work only with the hex format hence the .out (COFF format) obtained from Code
Composer Studio must be converted to .hex through the hex conversion utility.

The following procedure describes how to create an application to program into flash:
1. Build the project to generate the .out file

2. Use the hex conversion utility to create a .hex file from the .out file

3. Program the flash with the .hex file

Hex.cmd
app.out Hex Conversion Utility
Built from) > (hex6x.exe) g Flafs!ﬁsgxg rgrglr:?gm?urm
Code Composer Studio app.hex :

Figure 4. Flash Programming Sequence

Creating a Second-Level Bootloader for FLASH Bootloading on TMS320C6000 Platform With Code Composer Studio 15

{'f TExAs
SPRA999A1 INSTRUMENTS

24.1 Hex Conversion Utility

The hex conversion utility accepts a COFF object (.out) file as an input and converts this file into
ASCII hexadecimal format. The Hex6x utility is part of the code generation tools shipped with
Code Composer Studio. The Hex6x utility operates using command files. Command files are
ASCII files that contain information defining options and filenames, ROM directives, and
SECTIONS directive.

Figure 5 shows an example hex command file that can be used when the copy table is created
by either inspecting the map file or using the linker options. In the command file, the user must
specify the input .out file, the format for the output .hex file, the type and size of the ROM on the
board, and which sections to be placed in ROM (includes all those that were given a load
address in ROM).

/*

**% ======== app hex.cmd ========

** hex6x command file

*

/

“.Debug\app.out /* input COFF file */
-map .\Hex\apphex.map /* generate hex.map map file */
-a /* ASCII HEX format */
-image /* set image mode */
—-zZero /* reset address origin to 0 */
—-memwidth 8 /* 8-bit wide ROM */
ROMS

FLASH: org = 0x90000000, len = 0x40000,romwidth = 8, files = {.\Hex\app.hex}
SECTIONS /* list of COFF sections to be ROMed */

.boot code
.bios
.sysinit
.gblinit
.trcdata
.rtdx text
.text
.cinit
.pinit
.const
.switch
.hwi_vec

Figure 5. Hex Command File

As described above, the hex conversion utility automatically builds the copy table when the
appropriate options are specified in the hex command file. Table 4 lists the conversion utility
options that are available to be added to the hex command file to automatically generate the
copy table.

Table 4. Hex Utility Boot Options

Option Description

—boot Converts all initialized sections into bootable form
—bootorg Specifies the address of the copy table

—-bootsection Specifies the section containing the custom boot code

16 Creating a Second-Level Bootloader for FLASH Bootloading on TMS320C6000 Platform With Code Composer Studio

{'f TeExAS
INSTRUMENTS SPRA999A1

Figure 6 displays an example hex command file implementing the hex utility boot options. Since
the —boot option was selected, the SECTIONS directive was not included. When the —boot
option is selected, all initialized sections will be assigned a load address in flash and therefore
the SECTIONS directive is not required. The —bootorg option specifies that the copy table will
reside at address 0x90000400 and the —bootsection option specifies the address in ROM
(0x90000000) that will contain the custom boot code.

" . \Debug\app.out” /* input COFF file */
-a /* create ASCII image */
-image /* Create a memory image (no discontinuities) */
-zero /* reset address origin to 0 for outputfile(s)*/
-memwidth 8 /* Width of ROM/Flash memory */
-map .\Hex\apphex.map /* create a hex map file */
-boot /* create a boot table for all initialized sects*/
-bootorg 0x90000400 /* address of the boot/copy-table */
-bootsection .boot load 0x90000000 /* section containing our asm boot routine */
ROMS
{

FLASH: org = 0x90000000, len = 0x0040000, romwidth = 8, files = {.\Hex\app.hex}
}

Figure 6. Hex Command File using the —boot Option

Refer to the TMS320C6000 Assembly Language Tools User’s Guide (SPRU186) for more
details on the hex conversion utility.

2.4.2 Flash Burn Utility

Once the .hex file is generated, use a flash programming utility to write the hex image to the
board’s ROM. A GUI based Flash Burn Utility is available and is present under the Tools menu
in Code Composer Studio. If this tool is not available as part of the Code Composer Studio
installation, visit the Tl web site to download this utility through update advisor.

Make sure Code Composer Studio is not running before running the Flash Burn Utility, reset the
board, and then execute the flash programming utility. It takes a few seconds to download the
program into flash. The code accompanying this application note includes a *.cdd file that is
used by the Flash Burn Utility. The File To Burn and FBTC Program File fields in the .cdd file
need to be updated to point to the appropriate directories where the files are located.

After flashing the application, setup the device boot pins for the correct boot mode and switch on
the board. At power on, figure 1 shows the sequence of events that take place. Note that after
the custom boot code completes, control branches to _c_int00 and then, initialization for the C
environment and BIOS starts.

All the steps that were followed to program the flash are summarized below.

Creating a Second-Level Bootloader for FLASH Bootloading on TMS320C6000 Platform With Code Composer Studio 17

{'f TExAs
SPRA999A1 INSTRUMENTS

Flash/Boot Procedure
1. DSP/BIOS memory configuration for flash booting

— Create the necessary memory segments

— Configure the memory sections with the proper load/run address
2. Write the secondary bootloader

— Create the user linker command file

— Create the copy table by either:
Building the project and extracting the section’s load/run address and size from the map
file or
Using the hex conversion utility

— Build the project to create the final app.out

3. Convert COFF format (.out) to hex file for flash programmer
— Create the hex.cmd file with the proper options
— Run hex6x to create the .hex file

— Program the flash using the Flash Burn Utility

3 Linker Copy Tables
This application note discusses the methods available for creating the copy table prior to the
release of Code Composer Studio 3.00:
e Using addresses listed in the map file is described in section 2.3.1.1
e Using the hex conversion utility is described in section 2.3.1.2
e Using the linker directives LOAD_START, RUN_START and SIZE is described in Appendix A
The linker bundled with Code Composer Studio 3.00 introduces a new feature for creating and

managing copy tables that is both easier to use and more flexible. The feature is the table
directive. Consider this simple example:
.text load

.data load
.binit load

FLASH REST, run RAM, table (BINIT)
FLASH REST, run RAM, table(BINIT)
FLASH REST /* allocate the copy table */

The table directive instructs the linker to create a copy table for that section. The BINIT
argument to the table directive instructs the linker to observe special conventions for boot
loading. These special conventions are as follows:

e The symbol associated with the start of the boot time copy table is binit__ (three
underscores, binit, two underscores).

e The copy tables are placed in the input section named .binit.

18 Creating a Second-Level Bootloader for FLASH Bootloading on TMS320C6000 Platform With Code Composer Studio

{'f TeExAS
INSTRUMENTS SPRA999A1

Note the last statement in the above example collects the .binit input sections together into an
output section also named .binit, and allocates that output section to the FLASH_REST memory
range.

If the copy tables were written in assembly, it would be similar to the following:

.sect 7. binit” ; name the section
.global binit ; name of table is global

binit ; base address of the copy table
.short 12 ; size of one copy table record
.short 2 ; how many copy table records

; copy table record for .text section

.word text load address
.word text run address ; linker fills in these values
.word text length

; copy table record for .data section

.word data load address
.word data run address ; linker fills in these values
.word data length

The general technique is to apply table(BINIT) to each section that is copied from FLASH to
on-chip memory at boot time. Each instance of the table directive adds another record to the
BINIT copy table.

The code in the second level boot load routine must process the copy table according to the
format described above.

The remaining steps in the process such as converting the COFF file to ASCII hex format, and
burning the FLASH memory, are the same as that described in Appendix A.

Appendix B walks through using the table directive to boot the RF3 example application from
FLASH on the DSK6713.

For those who use code generation tools such as the linker outside of Code Composer Studio,
the linker table directive is introduced in C6000 Code Generation Tools version 5.00.

Note the table directive can also be used to manage overlays. For more information consult the
TMS320C6000 Assembly Language Tools User’s Guide (SPRU186, revision N or higher), or the
application note Advanced Linker Techniques for Convenient and Efficient Memory Usage
(SPRAA46).

4 Tips for Debugging

To debug a flashed application, insert an infinite loop in the boot code so that after boot, the PC
will be at the beginning of the program. Load the application symbol information using Code
Composer Studio. Symbol information is loaded using File—Load symbol menu. Once the
symbol information is loaded, the user can use the Code Composer Studio debugger facilities to
debug the application.

The following are some pointers to ensure proper functioning of flashed application:
e Ensure proper selection of boot modes with the correct selection of boot pins.

Creating a Second-Level Bootloader for FLASH Bootloading on TMS320C6000 Platform With Code Composer Studio 19

{'.?‘ TEXAS

SPRA999A1 INSTRUMENTS

Make sure the endianness of built application matches to endianness provided while
creating the hex image.

Program EMIF on boot up, to correctly access the external memory on the board.

Whenever the project is rebuilt with changes make sure the copy table is updated by looking
at the map file.

Make sure cache coherency is maintained if the application environment enables cache.
Use hardware breakpoints to put breakpoints in flash memory.

If loading application code into external memory, verify proper configuration of the EMIF to
that CE space.

If using a gel file during application development, confirm that the tasks performed in the gel
file are included in the tasks performed in the application for the stand alone system.

5 References

©No gk wDdNPRE

TMS320C6000 Tools: Vector Table and Boot ROM Creation (SPRA544)
TMS320C6000 EMIF to External Flash Memory (SPRA568)
TMS320C6000 Peripherals Overview Reference Guide (SPRU190)
TMS320C6000 Assembly Language Tools User’s Guide (SPRU186)
DSP/BIOS Sizing Guidelines for the TMS320C62x DSP (SPRA667)

A DSK Flash Memory Programmer (SPRA804A)

C6000 Boot Mode and Emulation Reset (SPRA978)

TMS320C6000 DSP Integration Workshop (IW6000)
http://focus.ti.com/docs/training/traininghomepage.jhtml

20 Creating a Second-Level Bootloader for FLASH Bootloading on TMS320C6000 Platform With Code Composer Studio

{'f TeExAS
INSTRUMENTS SPRA999A

Appendix A

A.1 C620x/C670x Bootloader

The C620x/C670x on-chip bootloader copies 64K bytes of data from CE1 space to IPRAM. In
this case if the application size is less than 64K byte, then the application can boot without a
secondary bootloader.

In C620x/670x architecture, IPRAM holds only the program data therefore the bootloader should
not copy data or initialized data sections into IPRAM. This constraint means that any of the
initialized data like .cinit, .const should work from the flash (external) memory unless the user
writes a secondary bootloader to copy the needed initialized sections to IDRAM.

A.2 Bootloading a Non-BIOS Application

The bootloading process for a non-BIOS application includes the same steps described in
section 2 for a DSP/BIOS application. These steps are as follows:

1. Configuring memory for flash booting
2. Building the application

3. Writing custom boot code

4. Flashing the application

Although the bootloading process for a non-BIOS application includes the same steps as the
bootloading process for a DSP/BIOS application, the method of implementing each step differs.
The major difference is in the method used to configure the memory which includes defining
memory segments and memory (COFF) section placement. Slight changes must also be made
to the custom boot code described above. In addition to these changes, another method of
creating the copy table is supported for non—-BIOS applications. Section A.2.1 to Section A.2.3
detail how to complete these tasks for a non-BIOS application. The non—-BIOS secondary boot
loader code is included in the Blink D5K6713.pjt file and is available for download with this
application note.

A.2.1 Defining Memory Segments

As in a DSP/BIOS application, for a non-BIOS application, additional memory segments should
be defined to specify two locations in ROM if the hex conversion utility is not being used to
create the copy table. These memory segments are required to distinguish between the memory
sections that will automatically be copied by the on-chip bootloader into RAM following reset and
those sections that must be copied by the secondary bootloader.

To create memory sections in a non-BIOS application, the linker command file must be updated.
Figure A-1 displays an excerpt from a linker command file that creates the following memory
segments.

FLASH BOOT: origin = 0x90000000, length=0x0400
FLASH REST: origin=0x90000400, length=0x0001£fc00
BOOT RAM:: origin=0x0, length=0x0400

IRAM: origin=0x0400, length=0xfc00

SDRAM: origin=0x80000000, length=0x10000000

Creating a Second-Level Bootloader for FLASH Bootloading on TMS320C6000 Platform With Code Composer Studio 21

{'f TExAs
SPRA999A INSTRUMENTS

MEMORY

{

/*the FLASH BOOT and FLASH REST sections are not needed if the hex converter */
/*is used to create the copy tablex*/

FLASH_BOOT: o = 0x90000000 1 = 0x00000400 /* Flash - for custom boot code */
FLASH REST: o = 0x90000400 1 = 0x0001FC00 /* Flash - for application code */
BOOT_RAM o = 0x00000000 1 = 0x00000400 /* L2- for custom boot code*/
IRAM: o = 0x00000400 1 = 0x0000fc00 /* L2- for non-custom boot code*/
SDRAM : o = 0x80000000 1 = 0x10000000 /* EMIF - CEl - SDRAM x/

Figure A-1. Non-BIOS Memory Segment Definition

A.2.2 Memory (COFF) Section Placement

For a non-BIOS application, only the memory sections listed under compiler sections in Table 1
are relevant. The memory placement suggested in table 1 for the compiler sections still apply.
Based on the information in Table 1 the user can decide on load/run specifications for each
section and configure them in the linker command file. In addition to the compiler sections, the
load/run addresses for the user defined memory section .boot_load should also be configured in
the linker command file. Figure A-2 displays an excerpt from a linker command file that
configures the load/run address of each section mentioned above. Note that when a section is
not copied by the secondary bootloader, only its run address must be specified in the linker
command file.

SECTIONS

/*When using the hex converter to generate the copy table, the load
address as well as the LOAD_START, RUN_START, AND SIZE linker options
do not need to be specified. Only the run address must be specified */

.boot load : LOAD = FLASH BOOT, RUN = BOOT RAM

.text : LOAD = FLASH REST, RUN = IRAM
LOAD START(text 1d start),
RUN_START(text rn start),
SIZE(text size)
/*LOAD START, RUN_START, AND SIZE are only required when using the linker
options to generate the copy table */

.const > FLASH_REST
.cinit > FLASH_REST
.pinit > FLASH REST
.switch > FLASH REST
.data > IRAM
.cio > IRAM
.bss > IRAM
.far > IRAM

Figure A-2. Non-BIOS Memory Section Placement

A.2.3 Creating the Section Copy Table

Similar to a DSP/BIOS application, a secondary bootloader for a non-BIOS application also uses
a section copy table to copy memory sections from their load address to their run address. For a
non-BIOS application there are three ways to create the section copy table.

e Inspecting the map file

22 Creating a Second-Level Bootloader for FLASH Bootloading on TMS320C6000 Platform With Code Composer Studio

{'f TeExAS
INSTRUMENTS SPRA999A

e Using the —boot option in the hex conversion utility
e Using linker options (LOAD_START, RUN_START, SIZE)

The first two methods, inspecting the map file and using the hex conversion utility, were
discussed above and the steps described to implement these methods still apply for a non-BIOS
application. The most convenient of the three methods is using the hex conversion utility. The
following paragraphs describe the third method, using the linker options.

Code Composer Studio 2.2 and later offers linker options that increase the ease in which the
copy table can be created, removing the necessity to inspect the map file. The linker options
used to accomplish this task are LOAD_START, RUN_START, and SIZE.

To utilize these linker options we must make modifications to the project described above. First,
the user-defined linker command file must be updated to include LOAD_START, RUN_START,
and SIZE directives. A sample of a linker command file with these updates is shown in

Figure A-2. Each memory section to be copied by the secondary bootloader from its load
address to its run address is defined here with a LOAD_START, RUN_START, and SIZE
directive. After evaluating each of these commands, the specified symbol will contain the
section’s load address, the section’s run, and the size of the section respectively. For example,
in the linker command file shown in Figure A-2, text Id_start will contain the .text section’s load
address, _text_rn_start will contain the .text section’s run address, and so forth.

Once the user-defined linker command file has been updated, the custom boot code must be
updated as well. Each of the symbols defined in the linker command file must also be defined as
global variables in the custom boot code. An example of this is shown below for the .text section.

.global test size
.global _text rn start
.global _text 1d start

Finally, these symbols should be added to the copy table. The copy table example shown in
section 2.3.1.1 can now be updated with the following code.

COPY_ TABLE:
;;size
; ;destination (run address)
; ;source (load address)
.text
.word _text_size
.word _text_rn_start
.word _text 1d start

Figure 5 displays the hex command file that should be used with this method of creating the
copy table. Please note when selecting this method for creating the copy table, the copy routine
as well as the final branch statement must be updated. All of the changes described here are
included in BlinkD5K6713.pjt.

Creating a Second-Level Bootloader for FLASH Bootloading on TMS320C6000 Platform With Code Composer Studio 23

Q‘ TExAs
SPRA999A INSTRUMENTS

Appendix B Example of Linker Table Directive Usage

B.1 Introduction

The example described here executes on the DSK6713. It requires use of Code Composer
Studio version 3.00 or higher. The files for this example are in the rf3_dsk6713_boot_with_table
directory of the .zip file supplied with this application note. The main application project app.pjt is
in the directory

rf3_dsk6713 boot_with_table\referenceframeworks\apps\rf3_table boot\dsk6713. A simpler
version of this example accompanies the application note which describes Reference
Frameworks Level 3: Reference Frameworks for eXpressDSP Software: RF3, A Flexible,
Multi-Channel, Multi-Algorithm, Static System (SPRA793).

B.2 Use the Table Directive

Bootloading DSP/BIOS applications using the table(BINIT) linker directive is a little tricky at
present. Because the DSP/BIOS generated linker command file (prog_namecfg.cmd) does not
yet support applying the table directive to load/run sections, special steps are required.
Enhancement request SDSsq37348 “Generated .cmd file should include table() for load/run
sections” has been logged.

The textual configuration (Tconf) script memory setting as follows:

// Set runtime critical sections to be copied from Flash -> RAM
tibios.MEM.LOADBIOSSEG = FLASHREST
tibios.MEM.BIOSSEG = tibios.IRAM; /*DSP/BIOS Code Section (.bios)

is visualized in graphical configuration (gconf) in Figure B-1

Eztimated Data Size: 4466 - st Min, Stack Size [MAL 2] 643

= MEM - Memory Section Manager, Properties bios section run address:

(internal memory)
General] BlOS Dats BIOS Code l Compiler Seu:tiu:uns] Load Address

BIOS Code Section [bios]:

MEM - Memory Section Manager Properties r>__(|

General] ElOS Data] ElOS I:n:nde] Compiler Sections Load Address l

© .bios section load
[v Specify Separate Load Addresses address (flash)

Load Address - BIOS Code Section [bios] |FLASHREST |

Figure B-1. Existing Load/Run Mechanism in DSP/BIOS Present in Code Composer Studio 2.21

This setting generates the following DSP/BIOS linker command file entry.
.bios:...{} load > FLASHREST, run > IRAM

The missing piece is the table(BINIT) directive for bootloading initialized sections with separate
load and run addresses. For example, the command file entry in Figure B-1 should be:

24 Creating a Second-Level Bootloader for FLASH Bootloading on TMS320C6000 Platform With Code Composer Studio

{'f TeExAS
INSTRUMENTS SPRA999A

B.3

.bios: {} load > FLASHREST, run > IRAM, table(BINIT)
As a workaround, a Javascript function, applyTableBinitCmdFile.tci, does the following:
e Reads in the DSP/BIOS generated linker command file

e Searches for section specifications with load and run directives, as well as the memory
assignment operator >

e For each section specification that meets the search criteria, adds the string
" table(BINIT)” to the end of the section specification

e Saves the modifications to the original prog_namecfg.cmd file

This sounds complex. Why not manually add the ", table(BINIT)” string to the
prog_namecfg.cmd file?The problem is that any modification of the DSP/BIOS configuration, or
even performing a Rebuild All, would generate a new prog_namecfg.cmd file and thus overwrite
the table additions.

How does this Javascript function get called? Most DSP/BIOS users have switched to Tconf for
their DSP/BIOS objects configuration since it is a more scalable, portable solution than relying
on the graphical equivalent. In the configuration file processed by Tconf, the Javascript function
is called after the generation of the prog_namecfg.cmd file, as follows:
// Name of file: appcfg.tcf - configuration file processed by Tconf
// generate the DSP/BIOS configuration
prog.gen() ;
// after generating *cfg.cmd file, now modify it for table() operator
ti tcapps utils.applyTableBinitCmdFile (prog.name + ”cfg.cmd”,

prog.name + “cfg.cmd”,
", table(BINIT)”);

The function takes an input file (e.g. appcfg.cmd), and produces an output file (e.g. appcfg.cmd)
with a string ”, table(BINIT)” appended to each load/run section.

Notes on Running the Example

The DSP/BIOS example attached to this application note includes the Javascript function for
adding the table directive. Other notes on this example:

e The assembly boot code which does the section copying using the linker generated copy
tables is easily ported to other C6000 systems. For example, this code only requires simple
changes to the EMIF settings to run on the DSKC6711.

e Compiler sections are placed in the project’s link.cmd instead of implicitly in the DSP/BIOS
generated prog_namecfg.cmd file. This is done via setting tibios.MEM. ENABLELOADADDR =
true; in the Tconf script. While this step is not strictly necessary, it shows usage of the table
directive in the project’s linker command file.

e At this writing, the only way to connect Code Composer Studio to the DSK6713 is with an
emulator such as the XDS-560. Drivers that support direct connection over USB will be
released at a later date.

e Files for programming the flash are found in the hex sub—directory of the main application
project directory. A readme.txt file in that directory has more detail.

e Plays audio out of the box. After you have burned the code into Flash via Flashburn it will
play audio on board power-up. Ensure you have an audio input source plugged into Line In
and speakers attached to Line Out.

Creating a Second-Level Bootloader for FLASH Bootloading on TMS320C6000 Platform With Code Composer Studio 25

SPRA999A

{'f TExAs
INSTRUMENTS

The default GEL file supplied with the emulator is not specifically configured to the DSK6713.
Replace it with the DSK6713.gel file located in the rf3_dsk6713_boot_with_table directory of the

.zip file.

1. Open Code Composer Studio Setup.

2. Configure the system to use an emulator connected to a C671x target system.

3. In the leftmost column, right click on the name of the emulator and select Properties .

4. Select the tab Startup GEL File(s) .

5. Click the "..” box on the far right, browse to rf3_dsk6713 boot_with_table, select the
filename DSK6713.gel, then click Open, then click Finish .

6. Save the configuration. Select File | Save.

Quit Code Composer Studio Setup. Select File | Exit .

26 Creating a Second-Level Bootloader for FLASH Bootloading on TMS320C6000 Platform With Code Composer Studio

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (Tl) reserve the right to make corrections, modifications,
enhancements, improvements, and other changes to its products and services at any time and to discontinue
any product or service without notice. Customers should obtain the latest relevant information before placing
orders and should verify that such information is current and complete. All products are sold subject to TI's terms
and conditions of sale supplied at the time of order acknowledgment.

Tl warrants performance of its hardware products to the specifications applicable at the time of sale in
accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent Tl
deems necessary to support this warranty. Except where mandated by government requirements, testing of all
parameters of each product is not necessarily performed.

Tl assumes no liability for applications assistance or customer product design. Customers are responsible for
their products and applications using Tl components. To minimize the risks associated with customer products
and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any Tl patent right,
copyright, mask work right, or other Tl intellectual property right relating to any combination, machine, or process
in which Tl products or services are used. Information published by Tl regarding third-party products or services
does not constitute a license from Tl to use such products or services or a warranty or endorsement thereof.
Use of such information may require a license from a third party under the patents or other intellectual property
of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in Tl data books or data sheets is permissible only if reproduction is without
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction
of this information with alteration is an unfair and deceptive business practice. Tl is not responsible or liable for
such altered documentation.

Resale of Tl products or services with statements different from or beyond the parameters stated by Tl for that
product or service voids all express and any implied warranties for the associated TI product or service and
is an unfair and deceptive business practice. Tl is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application
solutions:

Products Applications

Amplifiers amplifier.ti.com Audio www.ti.com/audio

Data Converters dataconverter.ti.com Automotive www.ti.com/automotive

DSP dsp.ti.com Broadband www.ti.com/broadband

Interface interface.ti.com Digital Control www.ti.com/digitalcontrol

Logic logic.ti.com Military www.ti.com/military

Power Mgmt power.ti.com Optical Networking www.ti.com/opticalnetwork

Microcontrollers microcontroller.ticom Security www.ti.com/security
Telephony www.ti.com/telephony
Video & Imaging www.ti.com/video
Wireless www.ti.com/wireless

Mailing Address: Texas Instruments
Post Office Box 655303 Dallas, Texas 75265

Copyright © 2006, Texas Instruments Incorporated

http://amplifier.ti.com
http://dataconverter.ti.com
http://dsp.ti.com
http://interface.ti.com
http://logic.ti.com
http://power.ti.com
http://microcontroller.ti.com
http://www.ti.com/audio
http://www.ti.com/automotive
http://www.ti.com/broadband
http://www.ti.com/digitalcontrol
http://www.ti.com/military
http://www.ti.com/opticalnetwork
http://www.ti.com/security
http://www.ti.com/telephony
http://www.ti.com/video
http://www.ti.com/wireless

