{9 TeEXAS
INSTRUMENTS

TMS320C8x
Software Development Board

Programmer's

Guide

1997 Digital Signal Processing Solutions

*’:‘ TEXAS
INSTRUMENTS

Printed in U.S.A., January 1997 SPRU178
D418019-9761 revision *

“““ % Programmer’s TMS320C8x
Guide Software Development wom.i &

&

PRINTED WITH

SOYINK|_

TMS320C8x
Software Development Board
Programmer’s Guide

Literature Number: SPRU178
Manufacturing Part Number: D418019-9761 revision *
January 1997

b TEXAS

INSTRUMENTS

o

Printed on Recycled Paper

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any
semiconductor product or service without notice, and advises its customers to obtain the latest
version of relevant information to verify, before placing orders, that the information being relied
on is current.

Tlwarrants performance of its semiconductor products and related software to the specifications
applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality
control techniques are utilized to the extent Tl deems necessary to support this warranty.
Specific testing of all parameters of each device is not necessarily performed, except those
mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death,
personal injury, or severe property or environmental damage (“Critical Applications”).

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES
OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of Tl products in such applications is understood to be fully at the risk of the customer.
Use of Tl products in such applications requires the written approval of an appropriate Tl officer.
Questions concerning potential risk applications should be directed to Tl through a local SC
sales office.

In order to minimize risks associated with the customer’s applications, adequate design and
operating safeguards should be provided by the customer to minimize inherent or procedural
hazards.

Tl assumes no liability for applications assistance, customer product design, software
performance, or infringement of patents or services described herein. Nor does Tl warrant or
representthat any license, either express or implied, is granted under any patent right, copyright,
mask work right, or other intellectual property right of Tl covering or relating to any combination,
machine, or process in which such semiconductor products or services might be or are used.

Copyright 0 1997, Texas Instruments Incorporated

Preface

Read This First

About This Manual

This programmer’s guide for the TMS320C8x ('C8x) software development
board (SDB) provides application programming interface (API) references,
descriptions of hardware functions of the SDB, theory of operation, and
example code to help you develop custom applications with the SDB.

This manual assumes you are familiar with working in a Windows NT ™
environment and understand general and technical PC™ and multimedia
processes and terminology.

How to Use This Manual
This book is divided into three distinct sections:

[Introductory information , consisting of Chapters 1 and 2. Chapter 1
provides an overview of the TMS320C8x SDB, its components, and the
organization of this book. Chapter 2 discusses the theory of hardware
operation of the SDB.

(1 Topical material , consisting of Chapters 3—6, provides descriptions of
hardware functions and a complete API reference for each of the following
topics:

B Audio capture and playback
B Video display

B Video capture

B Host communications

(1 Reference material , consisting of Appendixes A, B, C, and D, provides
example code, a listing of the shared data types and macros, a reference
listing of all API functions, and a glossary.

Notational Conventions / Information About Cautions

Notational Conventions
This document uses the following conventions.

(1 Program listings, program examples, and interactive displays are shown
in a special typeface . Examples use a bold version of the
special typeface for emphasis, such as in the following listing:
long DisplaySemald;

ULONG Buff;
DisplaySemald = TaskOpenSema(-1,0);
Display_Init();
Display_InstallSema(DisplaySemald);
Display_SetMode(640,480,60,DISPLAY_T555,DISPLAY_VIDEO);
Display_Enable();
while (1) {
Display_ToggleBuffers();
TaskWaitSema(DisplaySemald);
Buff = Display_GetBuffer(DISPLAY_INACTIVE);

/* do some processing here */
}
(1 Device pins and register bits often are represented in groups. Different
notation distinguishes between device pins and register bits.

Bl Device pin group notation consists of the pin name followed by
brackets containing the range of pins included in the group. A colon
separates the numbers in the range. For example, D[63:0] represents
the 64 data pins (D63 through DO) on a device.

B Register bit group notation consists of the register name or the bit field
name followed by parentheses containing the range of bits included in
the group. A colon separates the numbers in the range. For example,
CDCIDX(7:0) represents the eight bits of the audio codec’s index
address register, and IXA(4:0) represents the five IXA bits (IXA4
through IXAO0) of the CDCIDX register.

Information About Cautions

This book contains cautions.

This is an example of a caution statement.

A caution statement describes a situation that could potentially
damage your software or equipment.

The information in a caution is provided for your protection. Please read each
caution carefully.

Related Documentation From Texas Instruments

Related Documentation From Texas Instruments

The following books describe the TMS320C8x software development board
and related support tools. To obtain a copy of any of these Tl documents, call
the Texas Instruments Literature Response Center at (800) 477—8924. When
ordering, please identify the book by its title and literature number.

TMS320C8x Software Development Board Installation Guide (literature
number SPRU150B) provides information about how to install and use
the SDB.

TMS320C80 Digital Signal Processor Data Sheet (literature number
SPRS023) describes the features of the TMS320C80 and provides
pinouts, electrical specifications, and timings for the device.

TMS320C80 (MVP) C Source Debugger User’s Guide (literature number
SPRU107) describes the 'C8x master processor and parallel processor
C source debuggers. This manual provides information about the
features and operation of the debuggers and the parallel debug
manager; it also includes basic information about C expressions and a
description of progress and error messages.

TMS320C80 (MVP) Code Generation Tools User’s Guide (literature
number SPRU108) provides information about the features and
operation of the linker and the master processor (MP) and parallel
processor (PP) C compilers and assemblers. It also includes a
description of the common object file format (COFF) and shows you how
to link MP and PP code.

TMS320C8x Master Processor User’s Guide (literature number SPRU109)
provides information about the master processor (MP) features,
architecture, operation, and assembly language instruction set; it also
includes sample applications that illustrate various MP operations.

TMS320C8x Multitasking Executive User’s Guide (literature number
SPRU112) provides information about the multitasking executive
software features, operation, and interprocessor communications; it also
includes a list of task error codes.

TMS320C8x Parallel Processor User’s Guide (literature number SPRU110)
provides information about the parallel processor (PP) features,
architecture, operation, and assembly language instruction set; it also
includes software applications and optimizations.

TMS320C8x System-Level Synopsis (literature number SPRU113)
describes the 'C8x features, development environment, architecture,
memory organization, and communication network (the crossbar).

Read This First \Y;

Related Documentation From Texas Instruments / FCC Warning / Trademarks

FCC Warning

Trademarks

vi

TMS320C80 Transfer Controller User’s Guide (literature number
SPRU105) provides information about the transfer controller (TC)
features, functional blocks, and operation; it also includes examples of
block write operations for big- and little-endian modes.

TMS320C80 Video Controller User’s Guide (literature number SPRU111)
provides information about the video controller (VC) features,
architecture, and operation; it also includes procedures and examples
for programming the serial register transfer (SRT) controller and the
frame timer registers.

TVP3020 Video Interface Palette Data Manual (literature number SLAS080)
provides information about the TVP3020 video interface palette
features, register set, operation, and characteristics.

This equipment is intended for use in a laboratory test environment only. It
generates, uses, and can radiate radio frequency energy and has not been
tested for compliance with the limits of computing devices pursuant to subpart
Jof part 15 of FCC rules, which are designed to provide reasonable protection
against radio frequency interference. Operation of this equipment in other
environments may cause interference with radio communications, in which
case the user at his own expense will be required to take whatever measures
may be required to correct this interference.

IBM and PC are trademarks of International Business Machines Corporation.

MS, Windows, and Windows NT are registered trademarks of Microsoft
Corporation.

If You Need Assistance. . .

If You Need Assistance

|

World-Wide Web Sites

Tl Online

Semiconductor Product Information Center (PIC)
DSP Solutions

320 Hotline On-line™

http://www.ti.com
http://www.ti.com/sc/docs/pic/home.htm
http://www.ti.com/dsps
http://www.ti.com/sc/docs/dsps/support.html

North America, South America, Central America

Product Information Center (PIC) (972) 644-5580
Tl Literature Response Center U.S.A. (800) 477-8924
Software Registration/Upgrades (214) 638-0333
U.S.A. Factory Repair/Hardware Upgrades (281) 274-2285
U.S. Technical Training Organization (972) 644-5580
DSP Hotline (281) 274-2320
DSP Modem BBS (281) 274-2323

Fax: (214) 638-7742

Fax: (281) 274-2324 Email: dsph@ti.com

DSP Internet BBS via anonymous ftp to ftp://ftp.ti.com/mirrors/tms320bbs

Europe, Middle East, Africa

European Product Information Center (EPIC) Hotlines:

Multi-Language Support +33130701169 Fax:+33130701032 Email: epic@ti.com
Deutsch +49 8161 80 33 11 or +33 1307011 68
English +33 1307011 65
Francais +33130701164
Italiano +33130701167
EPIC Modem BBS +33130701199
European Factory Repair +33 493 22 25 40
Europe Customer Training Helpline Fax: +49 81 61 80 40 10
1 Asia-Pacific
Literature Response Center +852 2 956 7288 Fax: +852 2 956 2200
Hong Kong DSP Hotline +852 2 956 7268 Fax: +852 2 956 1002
Korea DSP Hotline +82 25512804 Fax: +82 2551 2828
Korea DSP Modem BBS +82 2 551 2914
Singapore DSP Hotline Fax: +65 390 7179
Taiwan DSP Hotline +886 2 377 1450 Fax: +886 2 377 2718
Taiwan DSP Modem BBS +886 2 376 2592
Taiwan DSP Internet BBS via anonymous ftp to ftp://dsp.ee.tit.edu.tw/pub/Tl/
1 Japan
Product Information Center +0120-81-0026 (in Japan) Fax: +0120-81-0036 (in Japan)
+03-3457-0972 or (INTL) 813-3457-0972 Fax: +03-3457-1259 or (INTL) 813-3457-1259
DSP Hotline +03-3769-8735 or (INTL) 813-3769-8735 Fax: +03-3457-7071 or (INTL) 813-3457-7071
DSP BBS via Nifty-Serve Type “Go TIASP”
1 Documentation

When making suggestions or reporting errors in documentation, please include the following information that is on the title
page: the full title of the book, the publication date, and the literature number.

Mail: Texas Instruments Incorporated
Technical Documentation Services, MS 702
P.O. Box 1443

Houston, Texas 77251-1443

Email: comments@books.sc.ti.com

Note:

book.

When calling a Literature Response Center to order documentation, please specify the literature number of the

Read This First Vii

viii

1

Contents

Nt OAUCH ON L 1-1
Describes the TMS320C8x software development board (SDB) and introduces you to the
topics of this book.
1.1 TMS320C8x Digital Signal ProCcessoro, 1-2
1.2 TMS320C8x SDB Contents and COMPONENtSviiiieii e, 1-2
1.3 TMS320C8x SDB Hardware FUNCLIONS0.iii e e 1-4
1.4 TMS320C8x SDB Peripheral Driver Libraries 1-4
SDB HardWare 2-1
Discusses the theory of hardware operation for the SDB.
2.1 System-Level OVEIVIEWt e e 2-2
2.1.1 SDBHardware Modules i e 2-2
2.1.2 Data BUSES 2-5
2.2 TMS320C80 ..ttt it e e 2-6
2.3 AUAIO e 2-7
2.3.1 Memory-Mapped Audio Registers i 2-8
232 AUAIO COUEC .. vttt 2-13
2.3.3 IDT72520 Bidirectional Bus-Matching FIFO 2-14
2.4 Video Display 2-19
2.4.1 Memory-Mapped Video Display Registersccooiiiin... 2-21
2.4.2 ICS1574 Pixel Clock Generatorveiiieine i 2-30
2.4.3 Supported RESOIULIONSot e 2-31
2.4.4 Video Overlay Feature (Mixed Mode)coiiiiiiiiiiinnn. 2-33
2.5 Video CaptUre . .ottt e 2-35
251 Video Capture FIFO 2-35
2.5.2 Memory-Mapped Video Capture Registers ..., 2-37
2.5.3 SAA7196 Video Decoder/Scaler (DESC) ...t 2-44
2.5.4 PCF8584 12C Bus CONrollerouieiii i 2-44
2.6 Memory Controller 2-45
2.6.1 DRAM . 2-45
2.6.2 VRAM . 2-46
2.8.3 O BUS . ..ottt 2-46
2.6.4 Video Capture FIFO 2-46
2.6.5 PCIBUS ..t 2-47

Running Title—Attribute Reference

2.7 Interrupt Controller 2-48
2.7.1 Memory-Mapped Interrupt Controller Registers 2-51
2.8 PCIINtErfaCe . ..ot 2-58
2.8.1 PCIStatus Register 2-59
2.8.2 PCIFIFO .. 2-62
2.8.3 TMS320C80 Accesstothe PCIFIFOo 2-64
284 PCIPIUgand Play 2-64
2.8.5 HOSt ADAreSS SPaCEttt e e 2-66
2.8.6 PCIBUSMaASIEING i ettt 2-68
2.8.7 BOOtSIapPiNg . ..o ittt 2-70
3 Audio Capture and Playback APl e 3-1

Discusses the shared data types and macros and lists alphabetically the API functions
associated with the audio capture and playback drivers for the SDB.

3.1 Audio Capture and Playback APl Macrosand Data Typesc..coveun.... 3-2
3.1.1 AUDIO_PTR Data TYPe . oottt et et et 3-4

3.1.2 Audio Metric Parameters i 3-4

3.2 AUdio BUfErNg . ..o 3-5
3.2.1 Individual QUEUE e 3-7

3.2.2 Individual Buffer 3-8

3.2.3 Individual Subblock 3-8

3.3 Audio Capture and Playback APl Functionscoo i, 3-9

4 Video Display APl o 4-1

Discusses the video display data types and macros and lists alphabetically the API functions
associated with the video display driver for the SDB.

4.1 Video Display APl Macros and Data TYPeSo vv ittt eee e 4-2
4.1.1 Color MOAES . .o 4-5

4.1.2 Monitor Timing Parametersiuiiii et 4-5

4.1.3 Metric Parameters 4-8

4.2 VidEO OVEIIAY ..ottt e 4-8

4.3 Video Display WINOWttt e 4-9

4.4 Video Display API FUNCLIONS e 4-10

B Video Capture APl . 5-1

Discusses the data types and macros and lists alphabetically the API functions associated with
the video capture driver for the SDB.

5.1 Video Capture API Macros and Data TYPESoviiiiiiii it ieeen 5-2
5.1.1 Supported Scaling Resolutions 5-4
5.1.2 Video Capture Metric Parameters i 5-4
5.2 Video Capture Buffering 5-5
5.3 Video Capture APl FUNCLIONS i et e 5-8

Contents

Host Communications APl 6-1

Discusses the data types and macros and lists alphabetically the API functions associated with
the host communications driver for the SDB.

6.1 Host Communications APl Macros and Data Typesciiiiiinnenn.n. 6-2
6.2 Interaction Between the Client APl and the Server APl 6-6

6.2.1 Client/Server Synchronization i, 6-6

6.2.2 Clientto Server ProtoColt e 6-8
6.3 Bootstrapping the SDB fromthe Host i 6-10
6.4 Host Communications API FUNCLIONS 6-11
EXamMple o0 ... A-1

Lists example code to illustrate the effective use of the API libraries. Some examples may be
good starting points for developing your own applications.

A.1 Video Capture-Process-Display Examplec .. A-2
A.2 Audio DMA Capture Exampleco o e e e A-8
A.3 Audio DMA Playback Example e A-12
A.4 Audio Block Capture/Playback Example i A-17
A5 Audio Programmed /O EXample A-21
A.6 Video Capture Scaling Example A-24
A.7 Video Display Test Example e e A-30
Shared Data Types and MacCrOSttt e e e B-1

Describes the data types and macros that are shared by the audio capture and playback, video
display, video capture, and host communications drivers for the SDB.

B.1 TMS320C80 API Library Header File <sdbdrvs.h> B-2
B.2 Host API Library Header File <hsdbdrvs.h> L. B-4
API Functions With Arguments and Return Typesot C-1

Lists all the API functions in alphabetical order by function name and includes their arguments
and return types. Use this list as a function protocol list and as a reminder of argument order.

GOSNy ottt D-1
Defines acronyms and key terms used in this book.

Contents Xi

Figures

|
wnh e

O A N A
B

R
E

PO PGSBS WOENNINNNNNND
WP NPE

Xii

|
WNPFP WNRPERPREOOONO®OJ

TMS320C8x SDB COMPONENTS . ..ottt ettt e e e e 1-3
System BIOCK Diagram 2-3
Audio BIOCK Diagramo e 2-7
Audio FIFO Block Diagramo. i et ettt 2-9
Video Display Block Diagram 2-20
Display EPLD Block Diagram e e 2-27
Display 1/0 BloCcKk Diagram e e 2-34
Video Capture Block Diagramt 2-36
Video Digitizer BIOCK Diagramt 2-39
PCl Interface Block Diagramo e 2-58
PCIFIFO Block Diagram e e e e e e 2-63
HOSt AdAresSS SpPaCe oot 2-66
AUdIo APl Data TYPES .ottt e e e 3-3
Internal Audio Buffer Structure i 3-5
Buffering QUeUE SHIUCTUIEot e e 3-6
Video Display APl Data TYPESttt e e 4-4
Relationship Between the Display Resolution and the Video Frame 4-5
Horizontal Sync and Porch Times of the VideoFrame 4-6
Video Display Driver Window Featurettt 4-9
Video Capture API Data Type (Metrics Parameter Structure CAPTURE_MET) 5-3
Video Capture Double Buffering LOQICt i 5-7
Host Communications APl Data Type (CLIENT_STAT) ..o 6-5
Client/Server Synchronizationt e 6-7
Client/Server Command FIOW e 6-9

= o

WNDNDNDNDNDNDNDNDNDNDNDNDNDDNDNDDNDDN
N

Tables

Audio RegiSters SUMMArYt e e 2-8
Commands Supported by the IDT72520o e 2-15
IDT72520 Internal Configuration Registers ...ttt 2-16
FIFO Flag Pin Configurationsc.iiii et 2-17
Truth Table for FIFO Flag ASSIgNMENtSt e 2-18
Video Display RegiSters SUMMArY i 2-21
Standard Resolutions Supported by the APl 2-32
Video Capture RegiSters SUMMATIYt 2-37
Category-1 EVeNIS 2-49
Category-2 EVENtS ... o 2-50
Interrupt Controller Registers SUMmMaryt 2-51
Parts of the FIFO Device Accessed by Host/SDB Transfers 2-63
PCI Bus Mastering Registers SUmMmaryc.ouiiieuninenennennnnn. 2-69
AUAIO AP MACIOS . oottt et e e e e e e e 3-2
Video Display APIMACIOSot 4-2
Video Capture APIMACIOSot e e 5-2
Host Communications API MaCrOSt e 6-2

Contents Xiii

Examples

|
BoOoo~NOoOGORrLDRE

o

bNNNNII\)I\)I\)I\JI\JI\)

|
=

Xiv

Sample C Codeto Resetthe AUdiO FIFOo e 2-15
Accessing Internal Configuration Register 4 i 2-16
Write Three RGB Triples to the Color Palette RAM 2-22
Read Three RGB Triples from the Color Palette RAMt 2-23
Usage of TVPIDX and TVPDAT ReQiSterst 2-24
Sample Code for Programming the ICS1574 e 2-30
Programming CAP to Be Triggered by an Odd-to-Even Field Transition 2-42
Settingthe CAP Enable BitSt 2-52
Setting/Clearing Category-2 EVENtSt 2-53
Clearing an EVeNt o 2-56
Sample MT Table of Custom Timing Parameters 4-8
VIO ot A-2
AUACAPT . oot e A-8
AUADIAY . o A-12
AUAEES .o A-17
01 10] (= S A-21
(0= 0] 1S A-24
[0S 0] (S P A-30

Chapter 1

Introduction

The software development board (SDB) is a peripheral component intercon-
nect (PCI) plug-in card. The SDB helps you evaluate characteristics of the
TMS320C8x digital signal processor (DSP) to determine how it will meet the
requirements of your given application. You can also use the SDB as a devel-
opment tool to create software applications for the 'C8x on a PC. The SDB is
designed for use on PCI PC-based computers with Windows NT.

This chapter briefly describes the items that are delivered as part of the SDB
and introduces you to the topics of this book.

Topic Page
1.1 TMS320C8x Digital Signal Processor —ccoiiun... 1-2
1.2 TMS320C8x SDB Contents and Components — 1.2
1.3 TMS320C8x SDB Hardware Functions 1-4
1.4 TMS320C8x SDB Peripheral Driver Libraries — 1-4

1-1

TMS320C8x Digital Signal Processor / TMS320C8x SDB Contents and Components

1.1 TMS320C8x Digital Signal Processor

The 'C8x is TI's first generation of single-chip multiprocessor DSP devices. A
single 'C8x contains up to five powerful, fully programmable processors: a
master processor (MP) and up to four parallel processors (PPs). The MP is a
32-bit reduced instruction set computer (RISC) processor with an integral,
high-performance IEEE-754 floating-point unit. Each PP is a 64-bit advanced
DSP that combines capabilities similar to those of conventional DSPs with ad-
vanced features to accelerate operation on a variety of data types.

The 'C8x supports a variety of parallel-processing configurations, which facilitate
a wide range of DSP applications that require high processing speeds. Applica-
tions include medical and industrial image processing, three-dimensional graph-
ics, virtual reality, digital audio and video compression, and telecommunications.

1.2 TMS320C8x SDB Contents and Components

1-2

The 'C8x SDB kit contains the following items:

'C8x SDB PCI plug-in card

Three peripheral cables

'C8x SDB system software

'C8x C source debugger software
User documentation

I Y

The 'C8x PCI plug-in card is the main component of the 'C8x SDB. The board
is a printed-circuit assembly (PCA) that plugs into a PCIl expansion slot on your
computer’s motherboard.

The 'C8x SDB PCI plug-in card includes the following components (see
Figure 1-1):

[40-MHz TMS320C80 DSP
(1 8M bytes of dynamic random-access memory (DRAM)

[0 2M bytes of video random-access memory (VRAM) for high-resolution
display

(1 Audio codec for the capture and playback of audio signals at sample rates
of up to 48 kHz in 16-bit stereo

[Video capture circuitry, consisting of a complete video front end for captur-
ing National Television Standards Committee (NTSC) or phase alternation
line (PAL) video signals in a composite video (CVBS) or super VHS
(S-VHS) component format

TMS320C8x SDB Contents and Components

[0 Video display circuitry, consisting of a video interface palette (VIP) that
drives monitor resolutions up to 1600 x 1200 at 8 BPP (bits per pixel) with
a 60-Hz refresh rate

1 PClinterface
(1 Memory controller

The SDB card also contains IEEE 1149.1-standard emulation support, and the
card’s retaining bracket has cable connectors that connect optional peripher-
als to the SDB.

Figure 1-1. TMS320C8x SDB Components

TMS320C80 DSP

Do

Memory

D< I 64) controller [~ 16)
64 32 Audio
16 codec
64
\4
Video |, 16
dis |a ¢ VRAM ﬁ
ad 64 64 1/0 bus
16 PCI |
/ interface | 16
Video >
capture £ 64
16
32
y.
PCI bus 32

Introduction 1-3

TMS320C8x SDB Hardware Functions / TMS320C8x SDB Peripheral Driver Libraries

1.3 TMS320C8x SDB Hardware Functions

The 'C8x SDB is a complete 'C8x development platform. The board contains
the following hardware functions:

Audio capture and playback

Video display

Video capture

Host communications

The board contains hardware for the cap-
ture and playback of audio signals at sam-
ple rates of up to 48 kHz in 16-bit stereo.

A video RAMDAC coupled with 2M bytes of
VRAM gives the board complete video dis-
play capabilities at resolutions of up to
1600 x 1200 pixels at 8 BPP (bits per pixel).

On a daughter card mounted on the main
board is a complete video front end for cap-
turing NTSC or PAL video signals in either
S-VHS or CVBS component form.

Also on board is in-circuit emulation hard-
ware controlled by C source debuggers.
These debuggers allow real-time, multiple-
processor debugging of 'C8x code.

1.4 TMS320C8x SDB Peripheral Driver Libraries

1-4

The SDB gives you a platform for 'C8x performance evaluation, code bench-
marking, and code production prior to building your own system. The ability to
develop and successfully run code on a’C8x during the early stages of applica-
tion design greatly reduces your time to market. Therefore, itis notideal to pro-
gram all of the peripherals on the board before working on applications.

TI provides a set of 'C8x libraries that you can call through application
programming interface (API) functions to set up the various hardware peripher-
als on the SDB. Using this set of libraries, you can start writing application code
without having to program the hardware. However, Tl understands that knowl-
edge of the low-level activities happening on the board is useful if not necessary.
Therefore, Tl supplies all source code to these libraries for reference.

Chapter 2

SDB Hardware

This chapter discusses the theory of operation for the TMS320C8x software
development board (SDB).

Topic Page
2.1 System-Level OVEeIVIEWo 2-2
2.2 TMS320C80 . . .ottt 2-6
2.3 AUAIO o 2-7
2.4 Video Display 2-19
25 Video Capturet 2-35
2.6 Memory Controller 2-45
2.7 Interrupt Controller 2-48
2.8 PClINterface ... 2-58

2-1

System-Level Overview

2.1 System-Level Overview

Looking at the 'C8x SDB as a whole, it consists of the eight modules depicted
in Figure 2—-1. Each of these modules is discussed individually later in the
chapter. This section describes the overall features of the hardware modules
and the interaction between them.

Note:

The SDB operates in big-endian mode.

2.1.1 SDB Hardware Modules
The 'C8x SDB contains the following hardware modules:

[’'C80: TI's TMS320C80 digital signal processor (DSP) is the single-chip,
multiprocessor device responsible for program execution and input/output
management. For more information about the 'C80 multiprocessor DSP,
see Section 2.2, TMS320C80.

(1 Audio : The on-board hardware for sampling and playing back audio data
features:

H Codec

Bl Stereo

B Sampling rate of up to 48 kHz

B FIFO (firstin, first out logic) interface

For more information about the audio hardware, see Section 2.3, Audio.

[0 Video display : The on-board video display hardware features:

B TI's TVP3020 random-access memory digital-to-analog converter
(RAMDAC)

Resolution support from 640 x 480 at 32 BPP to 1600 x 1200 at 8 BPP

Programmable pixel clock generator

Standard 15-pin D-sub RGB (red-green-blue) output
Multiplexing capability with analog VGA input
For more information about the video display hardware, see Section 2.4,

Video Display.

2-2

System-Level Overview

Figure 2-1. System Block Diagram

'C80
r
64
P /I\ >
DRAM 6z 64 = VRAM
64
A 4
Video = 64 Video
capture | /16 *| display
16 N
1)
I E
2 o
Q =
< va Audio
64] 16
A 4 A 4
PCI a > Mgnmdory
interface 32 interrupt
controller

32)’

PClI bus 32

SDB Hardware 2-3

System-Level Overview

2-4

Video capture : The video capture hardware is a complete video frontend
capable of capturing video signals in either S-VHS or CVBS formats. The
video capture front end includes:

B Two high-speed analog-to-digital converters (S-VHS or CVBS inputs)
B Video decoder accepting NTSC or PAL input formats

B Video scaler with independent horizontal and vertical scaling

W FIFO interface

For more information about the video capture hardware, see Section 2.5,
Video Capture.

Memory/interrupt controller : The memory/interrupt controller manages
external memory plus advanced event handling. Remember, the SDB op-
erates in big-endian mode only. This hardware is responsible for:

B Interfacing between buses ('C80 bus, I/0O bus, and PCI bus)
B Managing special bus cycles
B Managing all board events (interrupts)

For more information about the memory/interrupt controller, see Section
2.6, Memory Controller, and Section 2.7, Interrupt Controller.

PCl interface : A dual-ported FIFO interfaces the SDB with the host. The
peripheral component interconnect (PCI) interface manages SDB trans-
fers on the PCI bus. For more information about the PCI interface, see
Section 2.8, PClI Interface.

DRAM: The DRAM, used for program and data storage, is:
B 8M bytes total

Bl 64 bits wide

B Byte addressable

|

Accessed with 3-cycle-per-column reads and 2-cycle-per-column
writes

For more information about the DRAM, see subsection 2.6.1, DRAM.

VRAM: The VRAM, used for video frame storage, is:
B 2M bytes total

W 64 bits wide

B Byte addressable

|

Accessed with 3-cycle-per-column reads and 2-cycle-per-column
writes

For more information about the VRAM, see subsection 2.6.2, VRAM.

2.1.2 Data Buses

System-Level Overview

Figure 2—1 shows the data paths between the hardware modules on the 'C8x
SDB. There are three main data buses:

(1 ’'C80 bus
1 Input/output (I/O) bus
(1 PClbus

The 'C80 bus is the 64-bit-wide data bus of the 'C80. All transfers to and from
the "C80 happen on this bus. The 'C80 bus interfaces to the system DRAM,
VRAM, and the video capture FIFO. The 'C80 bus also is used by the memory/
interrupt controller to route data to and from the other two buses.

The I/O bus is designed as a general-purpose peripheral bus. In fact, all pe-
ripherals on the board interface to this bus to give access to internal peripheral
registers. The peripherals interfaced to the I/O bus include the audio codec,
display RAMDAC, video capture chipset, and register sets in the electrically
programmable logic devices (EPLDs).

The PCI bus is an integral part of the host in that all transfers to and from the
host happen over this bus. The SDB occupies a certain address range in the
PCI address space as dictated by the PCI BIOS.

SDB Hardware 2-5

TMS320C80

2.2 TMS320C80

2-6

The 'C80 DSP is the heart of the SDB. The 'C80 offers the following features:

d
4
d

L

U U U o d

(I IR Wy I

Capable of over two billion RISC-like operations per second
40-MHz clock speed

32-bit RISC master processor (MP) with an integrated IEEE-754 floating-
point unit and an architecture tuned for efficient compilation of C programs

Four 32-hit fixed-point, advanced DSP parallel processors (PPs) in a mul-
tiple-instruction, multiple-data (MIMD) configuration

Byte-addressable machine with big-endian and little-endian byte ordering
support (however, the SDB operates in big-endian mode only)

50K bytes of on-chip SRAM (static random-access memory)

On-chip crossbar that allows five instruction fetches and ten parallel data
accesses during each cycle to support high transfer rates:

B 1.8G bytes/s transferring instructions
B 2.4G bytes/s transferring data

On-chip video controller (VC) containing dual frame timers for simulta-
neous image capture and display

64-bit direct memory access (DMA) transfer controller (TC) capable of up
to 400M bytes/s on- and off-chip memory transfers

B Dynamic sizing of bus width for 64, 32, 16, or 8 bits
B Access to 64-bit VRAM/RAM/SRAM memory

4G-byte memory address space
Synchronous DRAM support
Four external interrupts, edge- and level-triggered

Built-in emulation features accessed via an IEEE 1149.1-compliant test
port

Full-scan design (plus boundary scan), accessed via an IEEE
1149.1-compliant test port

3.3-V power supply requirement
TIEPIC™ 0.5/0.6-um CMOS technology
Approximately 4 million transistors

305-pin ceramic PGA package

2.3 Audio

Audio

The audio hardware on the SDB provides everything you need to capture and
play back audio data (see Figure 2—2). There are two modes of operation: PIO
(programmed input/output) and DMA (direct memory access). In PIO mode,
the audio codec’s PIO register is accessed to read and write sample data on
a sample-by-sample basis. PIO mode does not use the audio FIFO. In DMA
mode, samples are transferred (using the DMA controller) between the codec
and the audio FIFO. This method of transfer allows audio data to be accessed
in chunks rather than sample by sample. DMA is allowed only in one direction
at a time, which means full-duplex DMA is not possible.

Most commonly, the audio is set up for DMA operation. For DMA playback, the
codec reads data from the FIFO; eventually, the audio FIFO becomes almost
empty and asserts one of its flags. This flag generates a 'C80 interrupt in which
the interrupt service routine (ISR) issues a packet transfer to write audio data
to the FIFO. For DMA capture, the codec writes data to the FIFO; eventually,
the FIFO becomes almost full and asserts a flag. This flag triggers a'C80 inter-
rupt. The ISR then issues a packet transfer to read the audio data from the
FIFO.

Figure 2-2. Audio Block Diagram

'C80 bus

TMS320C80 AD1848
l— :i AUX1 in
Audio PE—————
/—GT’ D[63:0] codec R Linein
—»L .
J— JE— Line out
XPT[2:0] EINT[3:1] ——P»R
' 3 ' 3
3 3 8
y IDT72520
ooo Port B
Memory FLAGA
and CD1 FLAGB
S interrupt CEO FLAGC TFO
controller CE1
FLAGD
Port A
16 16
~ 1/Ohbus 16 "

SDB Hardware 2-7

Audio

2.3.1 Memory-Mapped Audio Registers

The audio hardware has seven registers accessible on the I/O bus. They are
accessed using 16-bit reads or writes. You should use direct external ac-
cesses (DEASs) to bypass the MP’s data cache. Table 2—1 lists the memory-
mapped audio registers. Following the table are diagrams of the register for-
mats and descriptions of the registers and their fields.

Table 2-1. Audio Registers Summary

Register 'C80 Host Size

Name Access Address Address (Bits) Description

AFIFODAT Read/write 0OXE0000200 0x2400 16 Audio FIFO data register

CDCIDX Read/write 0OXE0000208 0x2410 8 Codec index address register
CDCDAT Read/write OXEO00020A 0x2414 8 Codec index data register

CDCSTAT Read/write OXE000020C 0x2418 8 Codec status register

CDCPIO Read/write OXEO00020E 0x241C 8 Codec PIO data register

AFIFOCFG Read/write 0XxE0000210 0x2420 16 Audio FIFO configuration register
AFIFOCMD Read/write 0XxE0000218 0x2430 16 Audio FIFO command/status register

2-8

AFIFODAT register

Audio

'C80 / host addresses: 0OxE0000200 0x2400

15 14 13 12 1 10 9

8 7 6 5 4 3 2 1 0

Audio FIFO data register

AFIFODAT is the gateway to the audio FIFO. Reads of this register read a
16-bit word from the B-to-A FIFO; writes to this register write a 16-bit word to
the A-to-B FIFO (see Figure 2—3). Normally, packet transfer tables are set up
to transfer data to or from this location in blocks. When setting up packet trans-
fertables, remember that this is a single location and not a range. For example,
to transfer 32 16-bit words to the audio FIFO using a packet transfer, you would
program the destination parameters of the packet transfer table as follows:

Parameter Value

Meaning

Destination Address = 0OXxE0000200 This register

Destination A Count = 2 2 bytes, 16-bit register
Destination B Count = 32 32 words to transfer

Destination C Count =0 1-dimensional data

Destination B Pitch=0 No change to destination address
Destination C Pitch =0 1-dimensional data

A similar setup should be used when performing packet transfer reads from

the audio FIFO.

Figure 2-3. Audio FIFO Block Diagram

Codec
S
B L IDT72520
| N |
| 8 Bypass |
I | 8 — _ﬂalh_l 8 I
| [20a8x8] | | [204838 :
	!				
	AtoB			Btoa	
	FFo :	FIFO			
I io2a x 16				1024x16]	
:	I R	-			
/[16 8 } 16					
L % J
potA | T
16
v
I/0 bus

SDB Hardware 2-9

Audio

CDCIDX register

CDCDAT register

2-10

'C80 / host addresses: 0OXxE0000208 0x2410
7 6 5 4 3 2 1 0

INIT MCE TRD IXA

CDCIDX is the audio codec’s index address register. Whenever an internal
register of the codec needs to be accessed, its internal register address must
first be written to this register. Then, a read or a write to the codec index data
register (CDCDAT) reads or writes to that internal register. This register also
has three other bits of information.

INIT Initialization bit . This read-only bit is set whenever the
codec cannot respond to parallel bus cycles and during
codec autocalibration.

INIT=0 Codec can respond
INIT=1 Codec cannot respond
MCE Mode change enable . This bit must be set whenever the

current functional mode of the codec changes.
MCE =0 Mode change disabled
MCE =1 Mode change enabled
TRD Transfer request disable . This bit is used to stop DMA
transfers when the interrupt status (INT) bit is set. TRD

should be cleared to 0 because the codec interrupt pin is
not used.

IXA(4:0) Index address bits . These bits make up the 5-bit
address of the internal register accessed via CDCDAT.

'C80 / host addresses: OXEOO0020A 0x2414
7 6 5 4 3 2 1 0

Codec index data register

CDCDAT is the audio codec’s index data register. Whenever an internal regis-
ter of the codec needs to be accessed, its internal register address must first
be written to the index register (CDCIDX). Then, a read or a write to CDCDAT
reads or writes to the desired internal codec register. All codec internal regis-
ters are 8-bit registers.

CDCSTAT register

Audio

'C80 / host addresses: 0XE000020C 0x2418

5 4 3 2 1 0

CU/L

CL/R

CRDY SOUR PU/L PL/R PRDY INT

CDCSTAT is the audio codec’s status register.

CuU/L

CL/R

CRDY

SOUR

PU/L

PL/R

Capture upper/lower . This bitindicates whether the cap-
ture PI1O port has the upper or lower byte of a sample.

Cu/L=0 Lower byte ready

CuiL=1 Upper byte ready or any 8-bit mode
Capture left/right sample . This bitindicates whether the
capture PIO port has the left- or right-channel data.
CL/IR=0 Right channel

CL/IR=1 Left channel or mono

Capture ready . This bitis set to 1 when the codec has a

capture sample ready and is valid only when the codec is
set up for PIO capture.

CRDY =0 Do not read from PIO port

CRDY =1 Capture ready; PIO port has data

Sample overrun/underrun . This bit indicates that the
most recent sample was not serviced in time.

SOUR =0 No error

SOUR =1 Overrun or underrun occurred

Playback upper/lower . This bit indicates whether the

playback PIO port is ready for the upper or lower byte of
a sample.

PU/L=0 Lower byte needed
PU/L=1 Upper byte needed or any 8-bit mode

Playback left/right sample . This bit indicates whether
the playback PIO port is ready for left- or right-channel
data.

PL/IR=0 Right channel needed
PLIR=1 Left channel or mono

SDB Hardware 2-11

Audio

CDCPIO register

AFIFOCFG register

PRDY Playback ready . This bit is set to 1 when the codec is
ready for a playback sample and is valid only when the co-
dec is set up for PIO playback.

PRDY =0 Do not write to PIO port
PRDY =1 Playback ready; PIO port waiting for data
INT Interrupt status sticky bit . This bit is set when a codec

interrupt occurs. Any write to this register clears the INT
bit.

INT=0 Interrupt pin in active
INT=1 Interrupt pin active

'C80 / host addresses: OXEO00020E 0x241C
7 6 5 4 3 2 1 0

Codec PIO data register

CDCPIQ s the programmed input/output (P1O) port of the audio codec. Writes
to this register access the codec’s P10 playback register, whereas reads from
this register access the codec’s PIO capture register.

This register should not be read unless the codec is configured for P1O capture
mode and should not be written to unless the codec is configured for P10 play-
back mode. Without codec PIO configuration, a read/write of this register will
fail with unpredictable results.

'C80 / host addresses: 0OXxE0000210 0x2420

15

14

13

12

11 10 9 8 7 6 5 4 3 2 1 0

Audio FIFO configuration register

2-12

AFIFOCFG is the audio FIFO configuration register. Along with the audio FIFO
command register (AFIFOCMD), itis accessible by the IDT72520 bidirectional
bus-matching FIFO. The IDT72520 has eight internal configuration registers
accessed via the AFIFOCFG register. For more details about the audio FIFO,
see subsection 2.3.3, IDT72520 Bidirectional Bus-Matching FIFO.

Audio

AFIFOCMD register
'C80 / host addresses: 0XE0000218 0x2430
15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
opcode operand

2.3.2 Audio Codec

AFIFOCMD is the audio FIFO command register. Along with the audio FIFO
configuration register (AFIFOCFG), it is accessible by the IDT72520 bidirec-
tional bus-matching FIFO. The IDT72520 is configured by writing commands
to this register. The command word has a 4-bit opcode and a 3-bit operand.
For more details about the audio FIFO, see subsection 2.3.3, IDT72520 Bi-
directional Bus-Matching FIFO.

The audio codec used on the SDB is Analog Devices AD1848. Although the
codec has a complete set of internal registers, they are accessible only indi-
rectly. This is accomplished using the four registers that are accessible:
CDCIDX, CDCDAT, CDCSTAT, and CDCPIO. The codec operates in either
stereo or mono mode.

The audio codec supports the following sampling rates (in kHz):

5.5125 22.0500
6.6150 27.4286
8.0000 32.0000
9.6000 33.0750
11.025 37.8000
16.0000 44.1000
18.9000 48.0000

The audio codec data formats are:

8-bit unsigned pulse code modulation (PCM)
8-bit p-law companded

8-bit A-law companded

16-bit twos-complement PCM

Uood

SDB Hardware 2-13

Audio

2.3.3

2-14

IDT72520 Bidirectional Bus-Matching FIFO

The audio FIFO is the IDT72520 bidirectional bus-matching FIFO. It is
2048 x 8 on the codec side (port B) and 1024 x 16 on the 1/O bus side (port
A). The FIFO has two accessible registers: AFIFOCMD and AFIFOCFG. This
FIFO has a DMA interface to the audio codec, so transfers between the FIFO
and the codec require no 'C80 resources. The DMA interface is one-way; that
is, the interface either happens for audio capture or audio playback, but not for
both at the same time.

The FIFO has four flags: FLAGA, FLAGB, FLAGC, and FLAGD. These flags
are independently configurable to assert upon the introduction of any of the
FIFO states (empty, almost empty, full, and almost full). The four FIFO flags
are tied to event inputs of the SDB’s interrupt controller as follows:

0 FLAGA-CDO
O FLAGB-CD1
0 FLAGC - CEO
O FLAGD - CE1

The IDT72520 s configured by writing commands to the audio FIFO command
register (AFIFOCMD). The command word has a 4-bit opcode and a 3-bit
operand (as shown in the AFIFOCMD register diagram on page 2-13).
Table 2-2 lists each command the IDT72520 supports.

Audio

Table 2—-2. Commands Supported by the IDT72520

Opcode Operand Command Command Description

0000 001 0x0001 Resets B-to-A FIFO (capture)

0000 010 0x0002 Resets A-to-B FIFO (playback)

0000 011 0x0003 Resets both FIFOs

0000 100 0x0004 Resets internal DMA circuitry

0000 111 0x0007 Resets all internal pointers

0001 000 0x0100 Select configuration register 0

0001 001 0x0101 Select configuration register 1

0001 010 0x0102 Select configuration register 2

0001 011 0x0103 Select configuration register 3

0001 100 0x0104 Select configuration register 4

0001 101 0x0105 Select configuration register 5

0001 110 0x0106 Select configuration register 6

0001 111 0x0107 Select configuration register 7

0110 000 0x0600 Set DMA direction to capture (through B-to-A FIFO)
0110 001 0x0601 Set DMA direction to playback (through A-to-B FIFO)
0111 000 0x0700 Select FIFO status register format O

0111 001 0x0701 Select FIFO status register format 1

Example 2—-1 shows sample C code that resets the FIFO.

Example 2—1. Sample C Code to Reset the Audio FIFO

/* macro used to access the registers on the 1/0 bus */
#define AFIFOCMD NOCACHE_USHORT(*(volatile unsigned short *)0xE0000218)

AFIFOCMD = 0x0003; /* reset both FIFOs */
AFIFOCMD = 0x0004; /* reset internal DMA circuitry */
AFIFOCMD = 0x0007; /* reset internal pointers ~ */

SDB Hardware 2-15

Audio

The IDT72520 has eight internal configuration registers accessed via the au-
dio FIFO configuration register (AFIFOCFG). To access one of the internal
configuration registers, you must first issue a command to the device with
opcode = 0001 and the operand equal to the configuration register number.
The read of AFIFOCFG reads that internal register, whereas a write to
AFIFOCFG writes to that configuration register. To read the device’s internal
configuration register number 3, you write 0x0103 to the command register
(AFIFOCMD), and then read the configuration register (AFIFOCFG).
Example 2—-2 shows the C code to read configuration register 4, mask off the
lower four bits, and then write it back. See Table 2—3 for a listing of each
IDT72520 internal configuration register.

Example 2-2. Accessing Internal Configuration Register 4

/* macros used to access the registers on the 1/0 bus */

#define AFIFOCFG NOCACHE_USHORT (*(volatile unsigned short *)0xE0000210)
#define AFIFOCMD NOCACHE_USHORT(*(volatile unsigned short *)0xE0000218)

USHORT Val;

AFIFOCMD = 0x0104; /* select configuration register 4 */
Val = AFIFOCFG; /* read configuration register 4 */
Val = Val & OXFFFO; /* mask off lower 4 bits */
AFIFOCFG = Val; /* write back to configuration register 4 */

Table 2-3. IDT72520 Internal Configuration Registers

Register

No. Description

0 A-to-B FIFO almost empty offset (playback) [valid 0x0000 to 0x03FF]
1 A-to-B FIFO almost full offset (playback) [valid 0x0000 to OxO3FF]

2 B-to-A FIFO almost empty offset (capture) [valid 0x0000 to OxO3FF]
3 B-to-A FIFO almost full offset (capture) [valid 0x0000 to 0x03FF]

4 Flag pin assignments

5 Hardware interface register; should be set to 0x0780

6 Reserved; do not read or write to this register

7 Reserved; should be initialized to 0x0000

2-16

Audio

The flag pin assignment register (configuration register 4) specifies which
FIFO conditions assert the four FIFO flag pins (FLAGA, FLAGB, FLAGC, and
FLAGD). Each FIFO flag pin can be configured to any of the FIFO conditions
listed in Table 2—4. Active low means that the flag pin goes low when asserted.
The active-high pins should be used for the SDB because a low-to-high transi-
tion on the pin triggers the event on the interrupt controller.

Table 2-4. FIFO Flag Pin Configurations

Bits FIFO Condition Polarity

0000 AtoB (playback) Not empty Active low
0001 AtoB (playback) Almost empty Active low
0010 AtoB (playback) Full Active low
0011 AtoB (playback) Almost full Active low
0100 Bto A (capture) Empty Active low
0101 Bto A (capture) Almost empty Active low
0110 Bto A (capture) Full Active low
0111 Bto A (capture) Almost full Active low
1000 AtoB (playback) Not empty Active high
1001 AtoB (playback) Almost empty Active high
1010 AtoB (playback) Full Active high
1011 AtoB (playback) Almost full Active high
1100 Bto A (capture) Empty Active high
1101 Bto A (capture) Almost empty Active high
1110 Bto A (capture) Full Active high
1111 Bto A (capture) Almost full Active high

For example, you could program the flag pin assignments as follows:
FLAGA - (1001) playback FIFO almost empty, active high

FLAGB - (1111) capture FIFO almost full, active high

FLAGC — (1010) playback FIFO full, active high

FLAGD — (1110) capture FIFO empty, active high

SDB Hardware 2-17

Audio

The flag pin assignment register value then becomes:

[ddddcceebbbbaaaa] = [1110101011111001] = OXEAF9

The flag offsets are set to determine when the flags assert. Table 2-5 contains
the truth table of the flags.

Table 2-5. Truth Table for FIFO Flag Assignments

Number of Words in FIFO

FIFO Flag Condition

From To Empty Almost Empty Almost Full Full
0 0 Asserted Asserted Not asserted Not asserted
1 n Not asserted Asserted Not asserted Not asserted
n+1 D-(m+1) Not asserted Not asserted Not asserted Not asserted
D-m D-1 Not asserted Not asserted Asserted Not asserted
D D Not asserted Not asserted Asserted Asserted

Legend: D FIFO depth (1024)
m almost-full flag offset
n almost-empty flag offset

2-18

2.4 Video Display

Video Display

The video display hardware on the SDB provides everything you need to dis-
play video and graphics on a standard VGA monitor (see Figure 2—4). It fea-
tures TI's TVP3020 RAMDAC, ICS1574 programmable pixel clock generator,
and analog multiplexing circuitry for video overlay. This is all coupled with 2M
bytes of VRAM to support resolutions up to 1600 x 1200 at 8 BPP, noninter-
laced. These features’ descriptions use the following terms:

Active area
Pixel

Pixel resolution

Dot

Dot rate

Refresh rate

Pixel depth

The area of a display frame that is not in blanking
One picture element (pel)

Dimensions of the active area of the display in number of
pixels

Measurement of time equal to the time required for the
display hardware to draw one pixel

The reciprocal of dot. If it takes 40 ns to display one pixel,
then the dot rate is 1/40 ns = 25 MHz. The dot rate is also
known as the dot clock frequency (Fq) or the pixel clock
frequency.

The number of times a display frame is drawn in one se-
cond. A common refresh rate for VGA displays is 60
frames per second. The refresh rate is also known as the
vertical frequency (Fy).

The number of bits needed to store a pixel in VRAM

SDB Hardware 2-19

Video Display

Figure 2—4. Video Display Block Diagram

8
TVP3020

2-20

'

1/O bus

D[7:0]

CLKO

CLK1
CLK2
CLK2

8/6
SENSE

RAMDAC

RCLK
LCLK

ovSs
PSEL

SYSBL

VCLK
SCLK

P[63:0]

16

ICS1574

A

PCLK HOLD
DATA
DATCLK

PCLKEN

[

v

Display
EPLD

AAAA

Pixel clock generator

A

YVYVYY

D[5:0]

ICSHOLD
ICSDATA
ICSCLK
PCLKEN

PAL86

VGAIHS
SENSE _VGAIVS
CAREA1 VGAOHS
VSYNC1 VGAOVS |—
HSYNC1 VGASEL |

A A

i TMS320C80
»|HSYNC1
4—1 »{VSYNC1
< CAREAL
< CBLNK1
> FCLK1
»|scLKk1
VRAM
Serial
_ Pixelbus clock f ~ cgo bus
< 64 VRAM ¢ 64
<
<
Display 1/0
> IOR VGASEL [
»{10G VGAIHS
»1{10B _VGAIVS
VGAOHS |-«
VGAOVS |«

Video Display

2.4.1 Memory-Mapped Video Display Registers

The video display hardware has nine registers accessible on the /0O bus. They
are accessed using 16-bit reads or writes. You should use direct external ac-
cesses (DEASs) to bypass the MP’s data cache. Table 2—6 lists the memory-
mapped video display registers. Following the table are diagrams of the regis-
ter formats and descriptions of the registers and their fields.

Table 2—6. Video Display Registers Summary

Register 'C80 Host Size

Name Access Address Address (Bits) Description

PALADWR Read/write 0xE0000400 0x2800 8 Palette write address register
PALHOLD Read/write 0xE0000402 0x2804 8 Palette holding register
PELMASK Read/write 0xE0000404 0x2808 8 Pixel read-mask register
PALADRD Read/write 0xE0000406 0x280C 8 Palette read address register
TVPIDX Read/write 0xE000040C 0x2818 8 TVP3020 index register
TVPDAT Read/write 0XxEO00040E 0x281C 8 TVP3020 data register
DISOCON Read/write 0xE0000410 0x2820 6 Display control register O
DIS1CON Read/write 0xE0000412 0x2824 6 Display control register 1
DIS2CON Read/write 0xE0000414 0x2828 2 Display control register 2
PALADWR register

'C80 / host addresses: 0OXxE0000400 0x2800
7 6 5 4 3 2 1 0

Palette write address register

PALADWR is used to set the write address of the TVP3020 color palette. After
this register is set, writes to the palette data holding register (PALHOLD) go
into the color palette memory at that address. This register is autoincrement-
ing, so sequential writes to PALHOLD are possible.

SDB Hardware 2-21

Video Display

PALHOLD register

'C80 / host addresses: 0XxE0000402 0x2804
7 6 5 4 3 2 1 0

Palette holding register

PALHOLD isthe TVP3020’s palette holding register. Reads of this register per-
form aread of the color palette RAM, and writes to this register perform a write
to the color palette RAM. The color palette RAM must be read or written in tri-
ples, thatis, in three successive reads or writes. The three reads or writes are
a byte of red, a byte of green, and a byte of blue in that order (this is called an
RGB triple). Upon reading the third byte from this register, the palette read ad-
dress register (PALADRD) increments by 1. Writing a triple to this register in-
crements the palette write address register (PALADWR) by 1. This allows RGB
triples to be read to or written from the palette in sequence, without updating
the read or write register each time. Example 2—-3 shows the writing of three
RGB triples to the color palette RAM starting at RAM address 0x20, and
Example 2—4 shows the reading of three RGB triples to the color palette RAM
starting at RAM address 0x40.

Example 2—3. Write Three RGB Triples to the Color Palette RAM

[* macros used to access the registers on the 1/O bus */

#define PALADRD NOCACHE_USHORT(*(volatile unsigned short *)0OxE0000406)
#define PALADWR NOCACHE_USHORT(*(volatile unsigned short *)0OxE0000400)
#define PALHOLD NOCACHE_USHORT (*(volatile unsigned short *)0xE0000402)

[* set color palette RAM address for writes to 0x20 */
PALADWR = 0x20;

/* remember that all I/O bus accesses must be 16 bit, so the upper 8 bits are
set to zero when writing to 8-bit registers */

[* write first triple (red = 0, green =0, blue = 0) */
PALHOLD = 0x0000; PALHOLD = 0x0000; PALHOLD = 0x0000;

[* write second triple (red =0, green =0, blue = 0) */
PALHOLD = 0x0000; PALHOLD = 0x0000; PALHOLD = 0x0000;

[* write third triple (red = 0, green = 0, blue = 0) */
PALHOLD = 0x0000; PALHOLD = 0x0000; PALHOLD = 0x0000;

2-22

Example 2—4. Read Three RGB Triples from the Color Palette RAM

Video Display

/* macros used to access the registers on the 1/0O bus */

#define PALADRD NOCACHE_USHORT(*(volatile unsigned short *)OXxE0000406)
#define PALADWR NOCACHE_USHORT (*(volatile unsigned short *)0xE0000400)
#define PALHOLD NOCACHE_USHORT (*(volatile unsigned short *)0XE0000402)

/* declare some variables to store RGB triples */
unsigned short R1,G1,B1;
unsigned short R2,G2,B2;
unsigned short R3,G3,B3;

/* set color palette RAM address for reads to 0x40*/
PALADRD = 0x40;

/* remember that I/0O bus accesses are 16 bit, so the upper 8 bits need to be
masked off */

/* read first triple */
R1 = PALHOLD & Ox00FF; G1 = PALHOLD & 0x00FF; B1 = PALHOLD & OxO0FF;

/* read second triple */
R2 = PALHOLD & Ox00FF; G2 = PALHOLD & 0xO0FF; B2 = PALHOLD & Ox00FF;

/* read third triple */
R3 = PALHOLD & 0x00FF; G3 = PALHOLD & 0x00FF; B3 = PALHOLD & OxO0FF;

PELMASK register

'C80 / host addresses: 0OXxE0000404 0x2808
7 6 5 4 3 2 1 0

Pixel read-mask register

PELMASK is the pixel read-mask register. This 8-bit register is used to enable
or disable a bit plane from addressing the color palette RAM in the pseudocolor
modes. Each palette address bit is logically ANDed with the corresponding bit
from the read-mask register before going to the palette-page register and ad-
dressing the palette RAM.

SDB Hardware 2-23

Video Display

PALADRD register

TVPIDX register

TVPDAT register

'C80 / host addresses: 0OXxE0000406 0x280C
7 6 5 4 3 2 1 0

Palette read address register

PALADRD is used to set the read address of the TVP3020 color palette. After
this register is set, reads from the palette holding register (PALHOLD) come
from the color palette memory at that address. This register is autoincrement-
ing, so sequential reads from PALHOLD are possible.

'C80 / host addresses: 0OxE000040C 0x2818
7 6 5 4 3 2 1 0

TVP3020 index register

TVPIDXisthe index register to the TVP3020 internal registers. Set this register
to access one of the TVP3020 internal registers. For instance, If you want to
read the TVP3020 internal register 0x1B, you write 0x1B to TVPIDX and then
read from TVPDAT (see Example 2-5).

'C80 / host addresses: OXEO00040E 0x281C
7 6 5 4 3 2 1 0

TVP3020 data register

TVPDAT is the data port register to the TVP3020 internal registers. Set the in-
ternal register address in TVPIDX and then read or write to register TVPDAT,
which performs a read or write to the internal register (see Example 2-5).

Example 2-5. Usage of TVPIDX and TVPDAT Registers

unsigned short Val;

TVPIDX = 0x1B,;

TVPDAT = Val;

[* macros used to access the registers on the 1/0 bus */
#define TVPIDX NOCACHE_USHORT (*(volatile unsigned short *)0xE000040C)
#define TVPDAT NOCACHE_USHORT(*(volatile unsigned short *)OXxEO00040E)

[* set bit zero of TVP3020 register 0x1B */

Val = (TVPDAT & 0xO00FF) | 0x0001,;

2-24

DISOCON register

Video Display

'C80 / host addresses: 0OXxE0000410 0x2820

4 3 2 1 0

MEN

WIN IVS IHS ICE VGA

DISOCON is one of three display control registers on the SDB located in an
EPLD (electrically programmable logic device). This register contains bits to
control the video overlay feature of the board. A complete description of the
video overlay feature is provided in subsection 2.4.4, Video Overlay Feature
(Mixed Mode). The display EPLD block diagram depicted in Figure 2-5 shows
the logical relationship between the display control registers and the display

signals.

MEN

WIN

IVS

IHS

Mix enable . This bit enables mixed (overlay) mode in
which the input from the VGA pass-through cable is
mixed in the analog domain with the output of the
TVP3020 RAMDAC; that is, VGA is mixed with palette
graphics.

MEN =0 Disable mixed mode
MEN =1 Enable mixed mode
Window mode . When the display is in mixed mode
(VGA =1 and MEN = 1), this bit determines which video

signal is in the window and which signal is in the back-
ground.

WIN =0 Palette graphics window over VGA
background

WIN =1 VGA window over palette graphics
background

Invert vertical sync . Setting this bit to 1 inverts the verti-
cal sync (VS) signal going to the display output connector.

IVS=0
IVS=1

Invert horizontal sync

Normal VS
Invert VS

. Setting this bit to 1 inverts the

horizontal sync (HS) signal going to the display output

connector.
IHS=0 Normal HS
IHS =1 Invert HS

SDB Hardware

2-25

Video Display

2-26

ICE

VGA

Invert pixel clock enable . Setting this bit inverts the en-
able signal (PCLKEN) to the pixel clock generator chip
(ICS1574). When the VGA bitis 1, the PCLKEN signal is
driven by the horizontal sync signal from the VGA pass-
through input (VGAIHS). When the VGA bit is 0, the
PCLKEN signal is held high (pixel clock always enabled).

ICE=0 Normal ICS1574 enable
ICE=1 Invert ICS1574 enable

VGA/mix enable . When this bitis cleared to 0, the video
output of the SDB is palette graphics (that is, the output
ofthe TVP3020 RAMDAC). When this bitis setto 1, either
the VGA input from the VGA pass-through cable or a mix-
ture of that and palette graphics is displayed, depending
on the MEN (mix enable) bit.

VGA=0 Palette graphics only

VGA =1 VGA or VGA/palette graphics mix
enabled

Figure 2-5. Display EPLD Block Diagram

DISOCON

DIS1CON

DIS2CON

5

4

3

MEN

WIN

Vs

IHS

ICE

VGA

Res.

SEN

ICSC

ICSH

IISD

PAL86

PAL86 <— DISICONI0]
ICSDATA <4— DISICON[1]
ICSHOLD <— DIS1CON[2]

ICSCLK 4— DISICON([3]

SENSE —» DISICON[4]

DIS2CON [0]

VGAIHS —4

DISOCON [4]

DISOCON [5] DISOCON 0]

IVS1

IHS1

DISOCON|[1] DISOCON[0]

| >—

DISOCON[1]

DISOCON [0]

HSYNC1 <«

DIS2CON[1]

VGAIVS —4

DISOCON([3]

DISOCON [0]

VSYNC1 <«

Video Display

Display

— control

registers

VGASEL

PCLKEN

1>

D—» VGAOHS

D—» VGAOVS

SDB Hardware 2-27

Video Display

DIS1CON register

'C80 / host addresses: 0OxE0000412 0x2824

5

4 3 2 1 0

Reserved

SEN ICSC ICSH ICSD PAL86

DIS1CON is one of three display control registers on the SDB located in an
EPLD (electrically programmable logic device). This register programs the
ICS1574 pixel clock generator chip. The display EPLD block diagram depicted
in Figure 2-5 shows the logical relationship between the display control regis-
ters and the display signals.

Reserved

SEN

ICSC

ICSH

ICSD

PAL86

2-28

This bit is not used.

SENSE from TVP3020 . This bit is read only and returns
the state of the TVP3020’s SENSE line.

ICS1574 clock . This bitis tied directly to the DATCLK pin
of the ICS1574 pixel clock generator chip and is used for
serial communication to the ICS1574 device. See sub-
section 2.4.2, ICS1574 Pixel Clock Generator, for more
details.

ICS1574 hold . This bit is tied directly to the HOLD pin of
the ICS1574 pixel clock generator chip and is used for se-
rial communication to the ICS1574 device. See subsec-
tion 2.4.2, ICS1574 Pixel Clock Generator, for more de-
tails.

ICS1574 data. This bit is tied directly to the DATA pin of
the ICS1574 pixel clock generator chip and is used for se-
rial communication to the ICS1574 device. See subsec-
tion 2.4.2, ICS1574 Pixel Clock Generator, for more de-
tails.

TVP3020 palette 8/6 mode . This bitis only for backward
compatibility with earlier graphics systems and is normal-
ly not used. It should always be set to 1.

PAL86 =0 6-bit component palette graphics
PAL86 =1 8-bit component palette graphics

DIS2CON register

Video Display

'C80 / host addresses: 0XxE0000414 0x2828

1 0

IVS1 IHS1

DIS2CON is one of three display control registers on the SDB located in an
EPLD (electrically programmable logic device). This register is used to invert
the sync signal inputs of the 'C80 when the video display is set for mixed mode.
The display EPLD block diagram depicted in Figure 2—5 shows the logical
relationship between the display control registers and the display signals.

IVS1

IHS1

VSYNC1 invert . When the display is set for mixed mode,
setting this bit inverts the vertical sync input to the 'C80.

IVS1=0 Normal VSYNC1 input to 'C80

IVS1=1 Invert VSYNCI input to 'C80

HSYNCT1 invert . When the display is set for mixed mode,
setting this bitinverts the horizontal sync input to the 'C80.
IHS1=0 Normal HSYNCI input to 'C80

IHS1=1 Invert HSYNC1 input to 'C80

SDB Hardware 2-29

Video Display

2.4.2 I1CS1574 Pixel Clock Generator

The SDB uses the ICS1574 programmable pixel clock generator chip
manufactured by Integrated Systems, Inc. This device is fully programmable
to output a clock frequency up to 400 MHz. It contains a crystal oscillator, a
phase-frequency detector, a prescaler, and a postscaler. The device has one
internal 56-bit register, which is written serially using its DATA, HOLD, and
DATCLK pins. These three pins are tied to the ICSD, ICSH, and ICSC bits, re-
spectively, of the DIS1CON register. Actually a 56-bit shift register accepts the
serial input and, when all serial bits are shifted in, the shift register contents
are written to the internal register and take effect.

To program the ICS1574, the ICSH bit should go low and remain low until the
last bit is written. When ICSH goes high, the data in the shift register is trans-
ferred to the internal register. The serial data bit (ICSD) is shifted into the
ICS1574 upon the 0-to-1 transition of the DATCLK bit. Four operations are
needed to program the device:

1) Serially write a 1 bit.
2) Serially write a 0 hit.
3) Serially write a 1 bit as the last bit.
4) Serially write a 0 bit as the last bit.

Example 2—6 shows sample code to do each operation.

Example 2—-6. Sample Code for Programming the ICS1574

/* write a 1 bit */
DIS1CON = 0x03;
DIS1CON = 0x0B;

/* write a 0 bit */
DIS1CON = 0x01;
DIS1CON = 0x09;

DIS1CON = 0x07;
DIS1CON = OxOF;

DIS1CON = 0x05;
DIS1CON = 0x0D;

[* macros used to access the registers on the 1/O bus */
#define DISICON NOCACHE_USHORT (*(volatile unsigned short *)0OxE0000412)

[* in each case, the PALS6 bit is set to 1, which has nothing to do with */
[* programming the ICS1574 but is the desired setting */

[*ICSC =0, ICSH=0, ICSD=1, PAL86=1%*
[*1ICSC =1, ICSH=0, ICSD=1, PAL86=1%*

[*1ICSC =0, ICSH=0, ICSD =0, PAL86=1*
/*1CSC=1, ICSH=0, ICSD=0, PAL86 =1*

/* write a 1 bit as the last bit */
/*ICSC =0, ICSH=1, ICSD=1, PAL86=17%
/ICSC =1, ICSH=1, ICSD=1, PAL86=1"%

/* write a 0 bit as the last bit */
/[*ICSC =0, ICSH=1, ICSD=0, PAL86=1"%*
/*ICSC =1, ICSH=1, ICSD =0, PAL86=1"%*

2-30

Video Display

The display application programming interface (API) has functionality that
translates a frequency into the 56 bits and then writes them out to the device.
If you wish to program the ICS1574, you must determine all 56 bits and then
write them to the device using the previously described methods.

2.4.3 Supported Resolutions

Two factors govern available pixel resolution:

[Amount of VRAM
[Refresh rate

The pixel resolution is bound by the amount of VRAM because each pixel has
to be stored there. The refresh rate is a limiting factor because the maximum
dot rate available on the SDB is 170 MHz, and the dot rate depends on the
refresh rate.

The amount of VRAM is determined by pixel resolution and pixel depth. So,
for a pixel resolution of 1600 x 1200 with a pixel depth of 8 BPP, 1.92 million
bytes of VRAM are needed (see the calculation that follows). The SDB has 2M
bytes (2 097 152 bytes) of VRAM, which means there is more than enough
storage for a 1600 x 1200 at 8 BPP display.

Calculation for 1600 x 1200 at 8 BPP:

1600 pixels » 1200 lines 8 bits 1 byte 1.92 million bytes
1 line 1 frame 1 pixel 8 bits 1 frame

To determine an approximate dot rate, apply two general rules:

[Approximately 76% of the total horizontal frame width is active, while
about 24% is in blanking.

(1 Approximately 96% of the total vertical frame height is active, while about
4% is in blanking.

Pixels are displayed only in the active area. Thus, for a 1600 x 1200 pixel reso-
lution, the active area is 1600 x 1200, whereas the entire frame is about
2105 x 1250 (1600/.76 = 2105, 1200/.96 = 1250). Because a dot is the amount
of time it takes to display a pixel, there are 2105 x 1250 dots in the entire frame
for this example. Multiply the number of pixels per frame (dots) by the number
of frames per second (refresh rate); the result is the number of pixels per se-
cond. Pixels per second is the dotrate. So, for a pixel resolution of 1600 x 1200
and a refresh rate of 60 frames per second, a dot rate of 157.9 MHz is needed
(as shown in the calculation that follows). The board can handle up to 170
MHz.

SDB Hardware 2-31

Video Display

Table 2—-7. Standard Resolutions Supported by the API

Calculation for 1600 x 1200 at 60 frames per second:

1600 pixels

Tlne ~ 076

1200 lines
1 frame

60 frames

_157.9 million pixe

1s

1ls

Apply these calculations to another example, and the result becomes margin-
al: 1600 x 1280 at 8 BPP and 60 frames per second. There is enough VRAM
(2 048 000 bytes), but the dot clock approaches 170 MHz. This dot rate is
close to the maximum and could cause slight instability or noise. For this rea-
son, the maximum resolution specified is 1600 x 1200 at 8 BPP with a 60-Hz
refresh rate. Table 2—7 specifies the standard resolutions supported by the

API.

Horizontal Vertical Required Approximate

Resolution Resolution Refresh Rate Pixel Depth VRAM Required Dot

(Pixels) (Pixels) (Hz) (BPP) (Bytes) Rate (MHz)
640 480 60 8 307 200 25.26
640 480 60 16 614 400 25.26
640 480 60 32 1228 800 25.26
640 480 72 8 307 200 30.32
640 480 72 16 614 400 30.32
640 480 72 32 1 228 800 30.32
800 600 60 8 480 000 39.47
800 600 60 16 960 000 39.47
800 600 60 32 1920 000 39.47
1024 768 60 8 786 430 64.67
1024 768 60 16 1572 864 64.67
1024 768 70 8 786 430 75.45
1024 768 70 16 1572 864 75.45
1280 1024 60 8 1310720 107.79
1600 1200 60 8 1 920 000 157.89

2-32

Video Display

It is clear from Table 2—7 that the display resolution is dependent on the
amount of VRAM available. There must be enough VRAM to store the pixels
that fill the active area of the display. One feature the API supports is the ability
to set up a display window. A display window is nothing more than the widening
ofthe blanking areato shrink the active area of the display. Reducing the active
area size reduces the number of pixels in the active area, thus reducing the
VRAM storage requirements.

When the API sets up a display window, the monitor timing parameters are cal-
culated for a full resolution window. The active area then is shrunk to the win-
dow size and position. One might set up a display resolution of 1024 x 768 and
then specify awindow of 512 x 512. The dot clock and sync signal parameters
are calculated for a 1024 x 768 resolution to allow the monitor to sync up. Then
the blanking signals are programmed such that an active area of 512 x 512 is
produced. By setting up a display window, you can achieve higher resolutions
for a given pixel size. For instance, the SDB does not support 1024 x 768 at
32 BPP, but you could set up a 640 x 480 at 32 BPP window in a 1024 x 768
display. This method is useful when using the video overlay feature.

2.4.4 Video Overlay Feature (Mixed Mode)

The SDB supports analog video overlay (mixed mode) by multiplexing be-
tween palette graphics (TVP3020 RAMDAC output) and VGA graphics (input
from VGA pass-through cable) using an analog multiplexer. This is illustrated
in Figure 2—6. One signal, VGASEL, determines which signal (palette or VGA)
is sent to the graphics output of the SDB. Overlay is made possible by the fact
that VGASEL can be switched in real time on a pixel-by-pixel basis.

You could, for instance, overlay palette graphics on top of VGA graphics. The
multiplexer normally switches to pass VGA graphics to the output, but when
the pixel location is within the overlay window, the multiplexer switches, pass-
ing palette graphics to the output. Then, as the scan line continues, it reaches
the end of the window and the multiplexer switches back to VGA graphics. The
'C80’'s CAREAL signal is used to control the multiplexer.

It is important for the pixel clock frequency of the RAMDAC to match the pixel
clock frequency of the VGA input. The pixel clock frequency of the VGA input
is considered an unknown, so trial and error must be used to match it. The gen-
eral rules described in subsection 2.4.3, Supported Resolutions, to calculate
the pixel clock frequency usually yield a close match, but some adjustments
need to be applied. The display API provides tweak functions for adjusting the
video overlay parameters.

SDB Hardware 2-33

Video Display

Figure 2—6. Display I/O Block Diagram

QS3257
IOR »{ IOR s VGASEL
10G > 10G
0B »4os
VGAORED - 1
VGAOGRN |
VGAOBLU I
r— T T T = .l | l
| @,—P— VGAIRED | YYY |
— @ veaGrn | I
VGA'HS‘—: ® o) VGAIBLU I\ &R0 /I
VeAVS +— () | WOE®D®O/ |
I I Analog | CERLW/ |
| | multiplexer | |
: @ @ : : A A |
| VGAOHS
I\ ® @ G} !_ — VGAOVS
_________ .
: @@ : Graphics
L. = B output connector
VGA
pass-through
connector S=0 IOR —» VGAORED

2-34

Palette
graphics

TVP3020

RAMDAC

VGA
graphics
card VGA
graphics

I0G —» VGAOGRN
I0OB —» VGAOBLU

VGAIRED —» VGAORED

VGAIGRN —» VGAOGRN
VGAIBLU —» VGAOBLU

v

o

A\ 4

VGASEL
0 = RAMDAC

1=VGA

Overlay window

47

00do

[

Video Capture

2.5 Video Capture

The video capture front end on the SDB, as depicted in Figure 2—7, resides on
a daughter card mounted on the main board. The front end is capable of cap-
turing NTSC or PAL video in CVBS or S-VHS formats. The chipset decodes
and then scales the digitized video data. The output of the scaler is configur-
able to several pixel formats in both YUV and RGB color space. The scaler out-
put is a 32-bit interface to a 1024 x 32 FIFO. The other end of this FIFO (512
% 64) is tied to the 'C80’s data bus and supports peripheral data packet trans-
fers to DRAM or VRAM. The scaler performs scaling by pixel dropping and
line dropping but has built-in filters to lessen the effects that pixel and line drop-
ping have.

The video capture front end supplies three events for the interrupt controller:
FRM, ROW, and CAP. The FRM event occurs at the end of each frame for non-
interlaced and at the end of each field for interlaced video. The ROW event
occurs at the end of each line of video. CAP is a programmable event that can
be triggered by one of eight video capture conditions. Section 2.7, Interrupt
Controller, provides more detailed information about interrupt controller
events and triggers.

2.5.1 Video Capture FIFO

The 512 x 64 video capture FIFO, tied directly to the 'C80 data bus (64 bit),
allows the 'C80'’s transfer controller (TC) to packet transfer video data out of
the FIFO one whole line at a time. The FIFO is read only but can act as a pe-
ripheral to support peripheral data packet transfers to DRAM or VRAM. The
video capture FIFO has the following address range:

0xC0400000 to OXCO7FFFFF

SDB Hardware 2-35

Video Capture

Figure 2—7. Video Capture Block Diagram

S-VHS input connector

r—— a
I I
I I
i @ @\
e ol
[\ S=———
| | _'C80 bus R
: VIDL VID2 :) 64 { i’
64
e @ |
Video digitizer SAA7196 512 x 64
FIFO
VID1 CVBS[7:0] »| CVBS[7:0]
1024 x 32
VID2 CHRI[7:0] »| CHR[7:0]
IS1 IS0 J
VR[31:0] =
Capture EPLD
To interrupt IS1 180
controller ODD/EVEN |-« ODD/EVEN
d
ROW € ROW |NCADH|?:IE p m:cLADDR
FRM 4—FRM 2c 2CF8584
cAP «—]caP SCL |« SCL
HSYNCO |« HS SDA |<4—>»{ SDA
VSYNCO |« VS
D[7:0] CSYNCO D[7:0]
¥ S
CSYNCO «
HSYNCO <
VSYNCO <
8 8
< Z Z .
1/0 bus 16

2-36

Video Capture

2.5.2 Memory-Mapped Video Capture Registers

The video capture hardware has 14 registers accessible on the 1/0 bus. They
must be accessed using 16-bit reads or writes. You should use direct external
accesses (DEAS) to bypass the MP’s data cache. Table 2-8 lists the memory-
mapped video capture registers. Following the table are diagrams of the regis-

ter formats and descriptions of the registers and their fields.

Table 2-8. Video Capture Registers Summary

Register 'C80 Host Size

Name Access Address Address (Bits) Description

CFIFORST Write only OxE0000600 0x2C00 8 Reset video capture FIFO register
ISRC Read only OxE0000602 0x2C04 2 Read input source setting register
SVHS Write only ~ OxE0000608 0x2C10 8 Set input to S-VHS register
CVBS1 Write only ~ OXEOOO060A 0x2C14 8 Set input to CVBSL1 register
CVBS2 Write only OXE000060C 0x2C18 8 Set input to CVBS2 register
CAPID Read only OxEOO0060E 0x2C1C 8 Capture card ID register

INTREG Read only OxE0000610 0x2C20 8 Interrupt flag register

INTEN Write only OXE0000618 0x2C24 8 Interrupt enable register

INTSRC Write only OxE0000614 0x2C28 8 Interrupt source register

I2CDAT Read/write 0xE0000620 0x2C40 8 PCF8584 |2C data register
I2CCTRL Write only ~ OxE0000622 0x2C44 8 PCF8584 12C control register
I2CSTAT Read only OxE0000626 0x2C4C 8 PCF8584 I2C status register
CAPRST Write only ~ OXE000063C 0x2C78 8 Reset video capture EPLD register
I2CRST Write only OXE000063C 0x2C7C 8 Reset PCF8584 12C controller
CFIFORST register

'C80 / host addresses: 0XE0O000600 0x2C00
7 6 5 4 3 2 1 0

Pseudobits

CFIFORST is a write-only pseudoregister; that is, a write to this address
causes an action to occur, but no data is stored here. Writing any value to this
register location resets the video capture FIFO.

SDB Hardware 2-37

Video Capture

ISRC register

SVHS register

CVBS1 register

2-38

'C80 / host addresses: 0OXE0000602 0x2C04
1 0

Input source

ISRC is a read-only register that returns the current video input configuration.
The input configuration is set by writing to the SVHS, CVBS1, or CVBS2 regis-
ter locations.

ISRC =00 S-VHS input

ISRC =01 CVBSL1 input

ISRC =11 CVBS2 input

'C80 / host addresses: 0OXxE0000608 0x2C10
7 6 5 4 3 2 1 0

Pseudobits

SVHS is a write-only pseudoregister; that is, a write to this address causes an
action to occur, but no data is stored here. Writing any value to this register
location sets up the video capture input for S-VHS. When the setting is S-VHS
mode, the luminance is digitized from video input 1, whereas chrominance is
digitized from video input 2 (see Figure 2-8).

'C80 / host addresses: OXEOOO060A 0x2C14
7 6 5 4 3 2 1 0

Pseudobits

CVBS1 is a write-only pseudoregister; that is, a write to this address causes
an action to occur, but no data is stored here. Writing any value to this register
location sets up the video capture input for CVBS1. When the settingis CVBS1
mode, the composite video signal at video input 1 is digitized (see Figure 2-8).

Figure 2-8. Video Digitizer Block Diagram

Video Capture

TDA8708
IS1 11
10
IS0 l— L]
y D[7:0] === CVBSI[7:0]
,_l > VINO
x— VIN1
> o o » VIN2
VID1 > o o °
TDA8709
11
> oo 10
D[7:0] —-Shb CHR[7:0]
VID2 —o—» oo »{ viNo
x— VIN1
Analog switch x VIN2
MODE IS1 1SO CVBS CHR
S-VHS 0 0 VID1 VID2
CVBS1 0 1 VID1 z
N/A 1 0 z VID2
CcvBS2 1 1 VID2 Z
CVBS2 register
'C80 / host addresses: 0OxEO000060C 0x2C18
7 6 5 4 3 2 1 0
Pseudobits

CVBS?2 is a write-only pseudoregister; that is, a write to this address causes
an action to occur, but no data is stored here. Writing any value to this register
location sets up the video capture input for CVBS2. When the setting is CVBS2
mode, the composite video signal at video input 2 is digitized (see Figure 2-8).

SDB Hardware

2-39

Video Capture

CAPID register

INTREG register

2-40

'C80 / host addresses: OXEOOO060E 0x2C1C

7 6 5 4

3

2

1

0

Capture card ID

X

X

X

X

CAPID is aread-only register that detects the video capture card ID. If reading
this register returns 1010 (0xA) in bits 7:4 (the capture card ID), the video cap-
ture card is present. Bits 3:0 are ignored.

'C80 / host addresses: OXxE0000610 0x2C20

7 6 5 4

3

2

1

0

i7 i6 i5 i4

i3

i2

i1

i0

INTREG is aread-only register that returns the video capture interrupt flag bits.
Reading this register clears all of its bits. Any of eight video capture conditions
can cause an interrupt; each of these conditions has a corresponding bit in
INTREG. When one of these conditions occurs, its bit is set in INTREG,
assuming the corresponding bit in the interrupt enable register (INTEN) is set.

i7 Capture FIFO empty flag interrupt flag

i6 TFRAME interrupt flag

i5 TROW interrupt flag

i4 Odd-to-even field transition interrupt flag

i3 Even-to-odd field transition interrupt flag

i2 VSYNCO falling edge interru

il HSYNCO falling edge interru

pt flag
pt flag

i0 Capture FIFO full flag interrupt flag

INTEN register

INTSRC register

Video Capture

'C80 / host addresses: 0XE0000612 0x2C24

7

6

5 4 3 2 1 0

e7

e6

e5 e4 e3 e2 el e0

INTEN is a write-only register that enables/disables video capture interrupt
sources. Setting a bit to 1 enables the source; clearing it to 0 disables the
source. If the enable is set for a source and that source asserts, the corre-
sponding bit in the interrupt flag register (INTREG) is set.

e7 Capture FIFO empty flag enable flag

e6 TFRAME enable flag
e5 TROW enable flag

e4 Odd-to-even field transition enable flag

e3

Even-to-odd field transition enable flag

e2 VSYNCO falling edge enable flag

el

HSYNCO falling edge enable flag

e0 Capture FIFO full flag enable flag

'C80 / host addresses: 0xE0000614 0x2C28

2 1 0

CAP source

INTSRC is a write-only register that determines which video capture interrupt
source triggers the SDB event CAP.

INTSRC = 000
INTSRC =001
INTSRC =010
INTSRC =011
INTSRC =100
INTSRC =101
INTSRC =110
INTSRC =111

Capture FIFO full flag interrupt source
HSYNCO falling edge interrupt source
VSYNCO falling edge interrupt source
Even-to-odd field transition interrupt source
Odd-to-even field transition interrupt source
TROW interrupt source

TFRAME interrupt source

Capture FIFO empty flag interrupt source

SDB Hardware 2-41

Video Capture

Example 2—7 shows how to program CAP to be triggered by an odd-to-even
field transition.

Example 2—7. Programming CAP to Be Triggered by an Odd-to-Even Field Transition

[* macros used to access the registers on the 1/O bus */

#define INTREG NOCACHE_USHORT (*(volatile unsigned short *)0OxE0000610)
#define INTEN NOCACHE_USHORT(*(volatile unsigned short *)0xE0000612)
#define INTSRC NOCACHE_USHORT (*(volatile unsigned short *)0xE0000614)

USHORT Junk;

/* read the INTREG register, which clears it */
Junk = INTREG;

/* bind CAP with odd to even field transition */
INTSRC = 0x0004;

[* enable odd to even field transition interrupt condition */
INTEN = 0x0010;

I2ZCDAT register

'C80 / host addresses: 0XxE0000620 0x2C40
7 6 5 4 3 2 1 0

PCF8584 12C data register

I2CDAT, the data register of the PCF8584 12C controller chip, writes data to the

I2C bus. For more details about the PCF8584 12C controller, see subsection
2.5.4, PCF8584 I2C Bus Controller.

I2CCTRL register

'C80 / host addresses: 0OXE0000622 0x2C44
7 6 5 4 3 2 1 0

PCF8584 12C control register

I2CCTRL, the PCF8584 12C control register, controls the operation of the
PCF8584 12C controller chip. For more details about the PCF8584 |12C control-
ler, see subsection 2.5.4, PCF8584 I2C Bus Controller.

2-42

I2CSTAT register

CAPRST register

I2CRST register

Video Capture

'C80 / host addresses: 0OXxE0000626 0x2C4C

7 6 5 4 3 2 1 0

PCF8584 12C status register

I2CSTAT is the status register of the PCF8584 |12C controller chip. Reading this
register returns status information about the PCF8584 12C controller chip. For
more details about the PCF8584 12C controller, see subsection 2.5.4,
PCF8584 I2C Bus Controller.

'C80 / host addresses: 0OXxEO00063C 0x2C78
7 6 5 4 3 2 1 0

Pseudobits

CAPRST is a write-only pseudoregister; that is, a write to this address causes
an action to occur, but no data is stored here. Writing any value to this register
location resets the video capture EPLD (electrically programmable logic de-
vice).

'C80 / host addresses: OXEO00063E 0x2C7C
7 6 5 4 3 2 1 0

Pseudobits

I2CRST is a write-only pseudoregister; that is, a write to this address causes
an action to occur, but no data is stored here. Writing any value to this register
location resets the PCF8584 12C controller. For more details about the
PCF8584 12C controller, see subsection 2.5.4, PCF8584 I12C Bus Controller.

SDB Hardware 2-43

Video Capture

2.5.3 SAAT7196 Video Decoder/Scaler (DESC)

The video capture front end uses a Philips chipset for digitizing, decoding, and
scaling video input. (See Figure 2—7 and Figure 2—8.) Analog video is digitized
and then goes into the SAA7196. The SAA7196 is where the digitized video
is decoded and then scaled. Next, the scaled output of the SAA7196 is written
into the video capture FIFO, where the 'C80 has access to it. All register ac-
cesses to the SAA7196 occur via the PCF8584 12C controller.

2.5.4 PCF8584 I2C Bus Controller

2-44

The PCF8584 I2C controller writes to the register space of the SAA7196 video
decoder/scaler. Three registers, I2CDAT, I2CCTRL, and I2CSTAT, control the
PCF8584 12C device. The API handles all 12C bus communications, so the
strict protocols used to communicate over the bus are a concern for an applica-
tion only in rare instances.

Memory Controller

2.6 Memory Controller

2.6.1 DRAM

A memory controller on the SDB manages transfers between the 'C80 bus, I/O
bus, and the PCI bus. The system DRAM and VRAM are connected to the
'C80 bus. The video capture FIFO also ties to the memory controller.

Integrated with the memory controller is the interrupt controller, which is de-
scribed in Section 2.7, Interrupt Controller.

Note:

The SDB operates in big-endian mode only.

The SDB has 8M bytes of 64-bit-wide, byte-addressable DRAM (dynamic
RAM), which is used for program and data storage. The DRAM is accessed
in page mode at two cycles per column for writes and three cycles per column
for reads. For a 40-MHz 'C80, this gives a peak transfer rate of 160M bytes/s
for writes and 106.66M bytes/s for reads. The DRAM is on two 4M-byte DIMM
modules. DIMM rather than SIMM modules were used to save space. The
memory controller is hardwired for 8M bytes of DRAM, so it is not upgradable.
The DRAM interface supports peripheral data packet transfers (PDPTs) from
the video capture FIFO. To use PDPTSs to transfer data from the video capture
FIFO to DRAM, the 28th bit of the DRAM address must be set. The DRAM has
the following address range:

Normal access 0x80000000 to 0x807FFFFF

PDPT access 0x90000000 to 0x907FFFFF

SDB Hardware 2-45

Memory Controller

2.6.2 VRAM

The SDB has 2M bytes of 64-bit-wide, byte-addressable VRAM (video RAM),
which is used for video frame storage. The VRAM is accessed in page mode
at two cycles per column for writes and three cycles per column for reads. For
a 40-MHz 'C80, this gives a peak transfer rate of 160M bytes/s for writes and
106.66M bytes/s for reads. Because the VRAM is surface mounted on the
board, it is not upgradable. The VRAM, by nature, is dual ported, having both
a 64-bit processor port and a 64-bit serial port. The serial port supports a peak
display rate of 340M bytes/s. The VRAM interface supports PDPTs from the
video capture FIFO. To use PDPTs to transfer data from the video capture
FIFO to VRAM, the 28th bit of the VRAM address must be set. The VRAM
memory is composed of four 4M-bit VRAM devices. Each VRAM device is or-
ganized as 512 x512 x 16 with 256 words of serial access memory (SAM). The
VRAM has the following address range:

Normal access 0xC0000000 to OXCO1FFFFF

PDPT access 0xD0000000 to OXDO1FFFFF

2.6.3 1/OBus

All peripheral devices are tied to the 1/0 bus. The I/0 bus is 16 bits wide, is non-
byte-addressable, and does not operate in page mode. All I/O bus accesses
must be 16 bits. If a register of less than 16 bits is read from the I/O bus, the
upper bits of the read value should be ignored. When writing to a register of
less than 16 bits on the 1/O bus, you should set the upper bits to 0. You should
access the I/0 bus using DEAs to bypass the MP’s data cache. To be compat-
ible with all devices on the bus, each access has six wait states added, which
amounts to nine column cycles per access (reads and writes). The audio FIFO
is connected to the 1/0O bus, which means all audio data transfers occur at 1/O
bus rates. The I/O bus has the following address range:

0XE0000000 to OXEFFFFFFF

2.6.4 Video Capture FIFO

The 512 x 64 video capture FIFO, tied directly to the 'C80 data bus (64 bit),
allows the 'C80’s transfer controller (TC) to packet transfer video data out of
the FIFO one whole line at a time. The FIFO is read only but can act as a pe-
ripheral to support peripheral data packet transfers to DRAM or VRAM. The
video capture FIFO has the following address range:

0xC0400000 to 0XCO7FFFFF

2-46

2.6.5 PCIBus

Memory Controller

The memory controller manages all accesses to and from the PCI bus through
the PCI FIFO. All PCI FIFO accesses are 32 bits wide and require two cycles.
This nets an 80M bytes/s peak transfer rate. For a complete description of the
PCI bus interface, see Section 2.8, PCI Interface.

SDB Hardware 2-47

Interrupt Controller

2.7 Interrupt Controller

The interrupt controller is integrated with the memory controller. It detects ex-
ternal event signals and then takes the appropriate action. The following ter-
minology is used in describing the interrupt controller.

Event An occurrence in hardware that requires attention.
For example, a FIFO becoming empty, thus requir-
ing more data, is an event. The SDB interrupt con-
troller handles 22 events. Each event is given a
mnemonic name; for instance, ROW is an event
that occurs when the video capture hardware has
captured a row of video and needs it to be read
from the video capture FIFO.

Event signal The means by which the interrupt controller is noti-
fied that an event has occurred. For instance, the
FLAGA pin of the audio FIFO is tied to one of the
interrupt controller inputs. When the interrupt con-
troller detects a rising edge on this input, it is said
to be signaled.

Triggering an event When the interrupt controller detects an event sig-
nal, the corresponding event is said to be triggered.

Event source Device, condition, or action that signals or triggers
an event. For instance, the FLAGA pin of the audio
FIFO is an event source because it signals the in-
terrupt controller that an event has occurred.

Event destination Once an event has been triggered, action must be
taken by some device. This device is the event des-
tination. There are three event destinations on the
SDB: 'C80 EINT, 'C80 XPT, and host interrupt. For
example, a hostinterruptis the event destination of
the CEO event. That is, when the CEO event is trig-
gered, it causes a host interrupt.

2-48

Interrupt Controller

Category-1 event An event whose event destination is configurable.

CDO is a category-1 event because its event des-
tination can be configured to C80 EINT, C80 XPT,
or host interrupt. There are 11 category-1 events
(see Table 2-9).

Category-2 event An event that has one fixed event destination. CEO

Table 2-9. Category-1 Events

is a category-2 event because it only causes host
interrupts when it is triggered. All category-2
events have the host interrupt as their event des-
tination. That is, category-2 events can only cause
host interrupts. There are 11 category-2 events
(see Table 2-10).

Event

Description

CDO
CD1

CAP

ROW

FRM

PCI

BRD

BWR

EF2

AE2

AF1

Audio codec event 0 . Triggered by audio FIFO FLAGA.
Audio codec event 1 . Triggered by audio FIFO FLAGB.

General-purpose video capture event . Triggered by CAP from the video
capture front end.

Video capture row event . Triggered by ROW from the video capture front
end. ROW events happen at the end of each captured row of video.

Video capture frame event . Triggered by FRM from the video capture
front end. FRM events happen at the end of each captured field of video.

PCI event. General-purpose event, which is usually triggered by the host
writing to the PCI bit in STFLAGO.

Block transfer (blt) read event . Triggered by setting the BLR bitin the PCI
status register.

Block transfer (blt) write event . Triggered by setting the BLW bit in the
PCI status register.

FIFO2 empty flag event . Triggered by SDB-to-host FIFO becoming
empty.

FIFO2 almost empty flag event . Triggered by SDB-to-host FIFO becom-
ing almost empty.

FIFO1 almost full flag event . Triggered by host-to-SDB FIFO becoming
almost full.

SDB Hardware 2-49

Interrupt Controller

Table 2—-10. Category-2 Events

2-50

Event Description

CEO Audio codec error event 0 . Triggered by audio FIFO FLAGC.

CEl Audio codec error event 1 . Triggered by audio FIFO FLAGD.

FF1 FIFOL1 full flag event . Triggered by the host-to-SDB FIFO becoming full.

FF2 FIFO2 full flag event . Triggered by the SDB-to-host FIFO becoming full.

EF1 FIFO1 empty flag event . Triggered by the host-to-SDB FIFO becoming
empty.

AE1l FIFO1 almost empty flag event . Triggered by the host-to-SDB FIFO be-
coming almost empty.

AF2 FIFO2 almost full event . Triggered by the SDB-to-host FIFO becoming al-
most full.

PGD Programming done event . Triggered when all EPLDs have finished pro-
gramming.

MCI Memory controller event . Reserved.

BMI Bus master event . Triggered at the start of a bus master operation.

XLI Test bus controller event . Reserved.

Interrupt Controller

2.7.1 Memory-Mapped Interrupt Controller Registers

To manipulate SDB events, the interrupt controller has 12 registers accessible
onthel/O bus. They are accessed using 16-bit reads or writes. You should use
direct external accesses (DEAS) to bypass the MP’s data cache. Following the
table are diagrams of the register formats and descriptions of the registers and

their fields.
Table 2-11. Interrupt Controller Registers Summary
Register 'C80 Host Size
Name Access Address Address (Bits) Description
ENABLEO Read/write OxE0000180 0x2300 16 Event enable register 0
ENABLE1 Read/write 0xE0000182 0x2304 16 Event enable register 1
ENABLE2 Read/write 0XxE0000184 0x2308 16 Event enable register 2
EVSTATE Read only OxE0000186 0x230C 16 Event state register
CLFLAGO Write only OxE0000188 0x2310 16 Clear flag register 0
RDFLAGO Read only 0xE0000188 0x2310 16 Read flag register O
STFLAGO Write only OXEOOO018A 0x2314 16 Set flag register 0
CNFLAGO Read only = OxEOO0018A 0x2314 16 Condition flag register 0
CLFLAG1 Write only OXE000018C 0x2318 16 Clear flag register 1
RDFLAG1 Read only = 0xE000018C 0x2318 16 Read flag register 1
STFLAG1 Write only ~ OXxEOOO018E 0x231C 16 Set flag register 1
CNFLAG1 Read only OxEO00018E 0x231C 16 Condition flag register 1

SDB Hardware 2-51

Interrupt Controller

ENABLEQO register
'C80 / host addresses: 0XxE0000180 0x2300
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 PCI(1:0) FRM(1:0) ROW(1:0) CAP(1:0) CD1(1:0) CDO(1:0)
00 disabled 00 disabled 00 disabled 00 disabled 00 disabled 00 disabled
01 XPT5 01 XPT4 01 XPT3 01 N/A 01 XPT2 01 XPT1
10 EINT3 10 EINT1 10 EINT2 10 EINT3 10 EINT1 10 EINT2
11 N/A 11 N/A 11 N/A 11 Host 11 Host 11 Host
ENABLE1 register
'C80 / host addresses: 0OXE0000182 0x2304
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 AF1(1:0) AE2(1:0) EF2(1:0) BWR(1:0) BRD(1:0) 0 0 0 0
00 disabled 00 disabled 00 disabled 00 disabled 00 disabled
01 XPT5 01 XPT4 01 XPT3 01 XPT2 01 XPT1
10 EINT2 10 EINT3 10 EINT1 10 EINT2 10 EINT3
11 N/A 11 N/A 11 N/A 11 N/A 11 N/A

The ENABLEO and ENABLE1 registers contain the enable bits for all
category-1 events (see Table 2—-9). Each event has two enable bits that config-
ure the event destination. For example, writing 0x0090 to ENABLEL1 sets the
BWR event to cause EINT2, and it sets the BRD event to cause XPT1. That
is, EINT2 is the event destination of the BWR event, and XPT1 is the event
destination of the BRD event. Clearing the enable bits to 00 disables the event.
Normally, when you set the enable bits of an event, you leave all other bits
alone. Example 2—8 shows how to set the CAP enable bits.

Example 2-8. Setting the CAP Enable Bits

#define ENABLEO NOCACHE_USHORT(*(volatile unsigned short*)0xE0000180)

/* enable CAP to EINT3 */
ENABLEO = (ENABLEO & OxFFCF) | 0x0020;

2-52

Interrupt Controller

ENABLE?2 register
'C80 / host addresses: 0OxE0000184 0x2308
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 XLl | BMI | MCI | PGD | AF2 | AE1 | EF1 | FF2 | FF1 | CE1 | CEO

The ENABLEZ2 register contains the enable bits for all category-2 events (see
Table 2—10). Setting a bit to 1 enables the event; clearing it to 0 disables the
event. All category-2 events cause a host interrupt when the event is enabled
and triggered. Normally, when you set the enable bits of an event, you leave
all other bits alone. Example 2—9 provides sample code to set/clear the bits.

Example 2-9. Setting/Clearing Category-2 Events

#define ENABLE2 NOCACHE_USHORT(*(volatile unsigned short*)0xE0000184)

/* enable CE1 */
ENABLE?2 = (ENABLE2 & OxFFFD) | 0x0002;

/* disable AF2 */
ENABLE2 = ENABLE2 & OxFFBF;

SDB Hardware 2-53

Interrupt Controller

EVSTATE register
'C80 / host addresses: 0XxE0000186 0x230C
15 14 13 12 1 10 9 8 7 6 5 4 | 3 2 1 0
LINT EINT(3:1) XPT(2:0) 0 0 0 0 0 0 0 0 0

EVSTATE isthe event state register. The bits in this register provide areal-time
(synchronous) image of the 'C80 event pins. The EVSTATE register is read

only.

LINT State of the 'C80 LINT4 pin. This pin is an active-low,
level-sensitive interrupt pin.
LINT=0 LINT4 is asserted (active)
LINT=1 LINT4 is not asserted (not active)

EINT(3:1) State of the 'C80 EINT [3:1] pins . A 0 in one of the bit
positions means the corresponding EINT (external inter-
rupt) pin on the 'C80 is low. 'C80 EINTSs are triggered on
the rising edge of the EINT pin.

XPT(2:0) State of the 'C80 XPT [2:0] pins . All zeros means that no

XPTs (external packet transfers) are being requested.
XPT =000 no XPTs are being requested

XPT =001 XPT1is being requested

XPT =010 XPT2 is being requested

XPT =011 XPT3 s being requested

XPT =100 XPT4 is being requested

XPT =101 XPT5 is being requested

XPT =110 XPT6 is being requested

XPT =111 XPT7 is being requested

2-54

Interrupt Controller

CLFLAGO (write) / RDFLAGO (read) register

'C80 / host addresses: 0XxE0000188 0x2310

15

14

13

12

11 10 9 8 7 6 5 4 3 2 1 0

AF1

AE2 | EF2 | BWR | BRD 0 0 PCI | FRM | ROW | CAP | CD1 | CDO

CLFLAGO / RDFLAGO is a dual-purpose register. Writes to this register ac-
cess CLFLAGO; reads from it access RDFLAGO. CLFLAGO and RDFLAGO
are located at the same address.

The RDFLAGO register contains event sticky bits or flags. When a category-1
eventistriggered, its corresponding sticky bit in this register is set and remains
set until cleared by software. (See Table 2—-9 for a list of category-1 events.)
The one exception to the bit remaining setis when an eventis enabled to cause
an XPT. If the enabled event causes an XPT, the corresponding sticky bit is
cleared automatically when the 'C80 begins the XPT cycle. The flags in this
register get set whether the corresponding event is enabled or not.

For example, assume that the CDO enable bits in ENABLEO are set to O (dis-
abled), and then the CDO event is triggered. In this case, the CDO flag bit in
RDFLAGO gets set, but nothing else occurs. In other words, no EINTs, XPTs,
or host interrupts are caused. Also, once a sticky bit is set, no further events
happen until the sticky bit is cleared. For instance, assume CDO is enabled to
cause EINT2. CDO is then triggered, which sets the CDO sticky bit in
RDFLAGO, causing EINT2 to occur on the 'C80. If another CDO event happens
before the sticky bitis cleared, another 'C80 EINT2 is not caused. For this rea-
son, the sticky bit must be cleared in the ISR.

The CLFLAGO register clears the sticky bits in the RDFLAGO register. Writing
a 1 to a bit has no effect; writing a 0 to a bit clears that bit.

SDB Hardware 2-55

Interrupt Controller

Example 2-10. Clearing an Event

#define CLFLAGO NOCACHE_USHORT(*(volatile unsigned short*)0xE0000188)
#define RDFLAGO NOCACHE_USHORT (*(volatile unsigned short*)0OxE0000188)

unsigned short flags;

[* read the event flags */
flags = RDFLAGO;

[* does nothing */
CLFLAGO = OxFFFF;

[* clear the ROW flag */
CLFLAGO = OxFFF7;

[* clear all flags in RDFLAGO */
CLFLAGO = 0x0000;

STFLAGO (write) / CNFLAGO (read) register

'C80 / host addresses: OXEO00018A 0x2314

15

14

13

12

11 10 9 8 7 6 5 4 3 2 1 0

AF1

AE2 | EF2 | BWR | BRD 0 0 PCI | FRM | ROW | CAP | CD1 | CDO

STFLAGO / CNFLAGO is a dual-purpose register. Writes to this register ac-
cess STFLAGO; reads from it access CNFLAGO. STFLAGO and CNFLAGO
are located at the same address.

The STFLAGO register is used to trigger a category-1 event (see Table 2-9).
Writing a 1 to one of the bits in this register triggers the corresponding event
just as if that event had actually happened. This capability allows the software
to simulate event occurrences.

The CNFLAGO register returns the state of the event signals coming into the
interrupt controller. For instance, the CDO bit reflects the current state of the
audio FIFO FLAGA pin.

CLFLAGI1 (write) / RDFLAG1 (read) register

'C80 / host addresses: OXE000018C 0x2318

15

14

13

12

|11 10 9 8 7 6 5 4 3 2 1 0

0

0

0

0

0 XLI BMI | MCI | PGD | AF2 | AE1 | EF1 | FF2 | FF1 | CE1 | CEO

2-56

CLFLAG1/ RDFLAG1 operates in the same way as the CLFLAGO/
RDFLAGO register, except the sticky bits (or flags) in this register correspond
to category-2 events (see Table 2-10).

Interrupt Controller

STFLAGI (write) / CNFLAG1 (read) register

'C80 / host addresses: OXEO00018E 0x231C
15 14 13 12 | 1 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 XLI BMI | MCI | PGD | AF2 | AE1 | EF1 | FF2 | FF1 | CE1 | CEO

STFLAG1/CNFLAG1 operates in the same way as the STFLAGO/
CNFLAGO register, except the bits in this register correspond to category-2
events (see Table 2-10).

SDB Hardware 2-57

PCI Interface

2.8 PCI Interface

The interface between the SDB and the host is a dual-ported FIFO mapped
into both 'C80 and host address space. The host side of the FIFO connects
directly to the PCl bus through a 32-bit bus transceiver. Bus control logic is con-
tained in EPLDs, which manage all transfers to and from the PCI bus. The
SDB side of the FIFO connects to the SDB’s memory controller via a 32-bit
data path. The memory controller routes FIFO data to or from either the SDB'’s
I/0 bus or the 'C80’s data bus. Figure 2—9 illustrates this process. The inter-
face logic also generates control signals for the PCI bus itself.

Figure 2-9. PCI Interface Block Diagram

2-58

1/0 bus 5
'C80 bus

Memory
and
interrupt
controller

a

32

v PCI FIFO
Port B

16

FIFO

Port A

r ¥

32

A\ 4

\ | Interface

logic

32
PCI bus

v

2.8.1 PCI Status Register

PCI Interface

The host uses the PCI status register (PCISTAT) to monitor the FIFO status,
to reset the board, and to cause SDB events. This 32-bit register is accessible
only from the host and is located at host address 0x0000. PCISTAT is imple-
mented in EPLD logic. For more details about host addresses, see Section
2.8.5, Host Address Space. Following is a diagram of the register’s format and
definitions of the bit fields.

PCISTAT(31:16) register

Host address: 0x0000

31 30 29 28 | 27 26

25 24 23 22 21 20 19 18 17 16

Reserved

GPI(1:0) PRGD | MB2 | MB1 | AF2 | AF1 | EF1

PCISTAT(15:0) register

15 14 13 12 | 11 10

9 8 7 6 5 4 3 2 1 0

EF2 Reserved GPO(1:0) Res.

BDIS | BLW | BLR | IAEN | FOFF(1:0) FSW(1:0) FRST | MRST

Reserved
(Res.)
GPI(1:0)

PRGD

MB2

These bits should always be cleared to 0 when writing. The bits
are undefined when read.

General-purpose input . These two bits are not used. They
should always be written to with 0s.

Programming done bit . This bit indicates when EPLD de-
vices are finished programming and the board is ready for use.

PRGD =0 Devices are programming
PRGD =1 Programming is finished

FIFO mailbox2 full flag . This bitis asserted when the SDB-to-
host FIFO mailbox contains data. The host should not attempt
to read this mailbox when it is empty, and the host should not
attempt to write to this mailbox when it is full.

MB2 =0 SDB-to-host FIFO mailbox has data
MB2 =1 SDB-to-host FIFO mailbox is empty

SDB Hardware 2-59

PCI Interface

2-60

MB1

AF2

AF1

EF1

EF2

FIFO mailbox1 fullflag . This bitis asserted whenthere is data
in the host-to-SDB FIFO mailbox. The 'C80 should not attempt
to read this mailbox when it is empty, and the 'C80 should not
attempt to write to this mailbox when it is full.

MB1 =0 Host-to-SDB FIFO mailbox has data
MBl1=1 Host-to-SDB FIFO mailbox is empty

FIFO2 almost full flag . This bit asserts when the SDB-to-host
FIFO becomes almost full. The 'C80 should not attempt to write
to this FIFO when it is almost full.

AF2=0 SDB-to-host FIFO is almost full
AF2 =1 SDB-to-host FIFO is not almost full

FIFO1 almost full flag . This bit asserts when the host-to-SDB
FIFO becomes almost full. The host should not attempt to write
to this FIFO when it is almost full.

AF1=0 Host-to-SDB FIFO is almost full
AF1=1 Host-to-SDB FIFO is not almost full

FIFO1 empty flag . This bit asserts when the host-to-SDB
FIFO becomes empty. The 'C80 should not attempt to read this
FIFO when it is empty.

EF1=0 Host-to-SDB FIFO is empty
EF1=1 Host-to-SDB FIFO is not empty

FIFO2 empty flag . This bit asserts when the SDB-to-host
FIFO becomes empty. The host should not attempt to read this
FIFO when it is empty.

EF2=0 SDB-to-host FIFO is empty
EF2=1 SDB-to-host FIFO is not empty

GPO(1:0)

BDIS

BLW

BLR

IAEN

PCI Interface

General-purpose output . These two bhits are general-
purpose output bits that can be written to by the host, where
they can then be used by the SDB. Currently, GPO1 is not
used, but GPOQO is used to trigger the PCI event on the SDB’s
interrupt controller. A 0-to-1 transition of the GPOO bit triggers
the PCI event. The 'C80 code handles the event. Generally,
this event is used to cause EINT3 on the 'C80 for message
passing to the SDB from the host.

GPOO 0 to 1 transition triggers PCI event
GPO1 Not used

Burst disable . Setting this bit disables all burst transfers
between the SDB and PCI bus.

BDIS=0 Burst transfers enabled
BDIS=1 Burst transfers disabled

Block transfer (blt) write event triggerbit . A 0-to-1 transition
ofthe bittriggers the BWR event on the SDB’s interrupt control-
ler. Because block transfers between the SDB and host are
common, this feature has been added as an efficient way to
trigger an event on the SDB. The 'C80 code handles the BWR
event.

Block transfer (blt) read event trigger bit . A 0-to-1 transition
of the bittriggers the BRD event on the SDB'’s interrupt control-
ler. Because block transfers between the SDB and host are
common, this feature has been added as an efficient way to
trigger an event on the SDB. The 'C80 code handles the BRD
event.

PClinterrupt A enable . Setting this bitto 1 enables host inter-
rupts.

IAEN =0 Host interrupts disabled
IAEN =1 Host interrupts enabled

SDB Hardware 2-61

PCI Interface

2.8.2 PCIFIFO

2-62

FOFF(1:0) PCIFIFO offset . These bits determine the PCI FIFO offset that
governs when the FIFO flags assert/deassert. The suggested
setting for the offset is 12 32-bit words.

FOFF = 00
FOFF = 01
FOFF = 10
FOFF = 11

4-word offset
8-word offset
12-word offset
16-word offset

FSW(1:0) FIFO swap setting bits . The PCI FIFO logic has functionality
to swap bytes on transfers through the FIFO. When a FIFO
swap setting change occurs, any data currently in the FIFO
gets the new swap setting. This feature is useful for transfer-
ring little-endian data from the host to a big-endian format for
the SDB. The swapping does not affect the FIFO mailboxes.

FSW =00 No swapping 0x12345678 - 0x12345678
FSW =01 Byte swapping 0x12345678 - 0x78563412
FSW =10 Word swapping 0x12345678 — 0x56781234
FSW=11 Byte-word 0x12345678 — 0x34127856
swapping

FRST PCI FIFO reset. Writing a 0 to this bit resets the PCl interface
FIFO.
FRST=0 FIFO reset asserted
FRST=1 FIFO reset not asserted

MRST Master reset . Writing a 0 to this bit pulls the C80’s RESET pin
low. Other devices on the board are also tied to this reset sig-
nal.
MRST =0 Master reset asserted
MRST =1 Master reset not asserted

The PCI FIFO is depicted in Figure 2—10. The FIFO device has two data FIFOs
and two mailboxes. The mailboxes act as single-word FIFOs, meaning that the
mailboxes are full after one write and then are empty after one read. The mail-
boxes can be accessed without disrupting the data in the data FIFOs.
Table 2—-12 lists the parts of the FIFO device accessed by different host/SDB
transfers. All FIFO accesses must be 32-bit accesses.

Figure 2-10. PCI FIFO Block Diagram

PCI Interface

SDB side
32
Port B
/ N
32 f 32 32 32
64 x 32 64 x 32 d
1x32 1x32
Mailbox1 FIFO1 FIFO2 Mailbox2
S
\32 {32 } 32 y, 32
Port A
32
Host side

Table 2-12. Parts of the FIFO Device Accessed by Host/SDB Transfers

Type of Access

Part of FIFO Device Accessed

'C80 reads from data FIFO

'C80 writes to data FIFO

FIFO1 Host-to-SDB FIFO

FIFO2 SDB-to-host FIFO

'C80 reads from mailbox

'C80 writes to mailbox

Mailbox1 Host-to-SDB mailbox

Mailbox2 SDB-to-host mailbox

Host reads from data FIFO

Host writes to data FIFO

FIFO2 SDB-to-host FIFO

FIFO1 Host-to-SDB FIFO

Host reads from mailbox

Host writes to mailbox

Mailbox2 SDB-to-host mailbox

Mailbox1 Host-to-SDB mailbox

SDB Hardware 2-63

PCI Interface

2.8.3 TMS320C80 Access to the PCI FIFO

The 'C80 can access the PCI data FIFOs and the PCI FIFO mailboxes. All ac-
cesses must be 32-bit accesses. When the 'C80 performs a read from the
FIFO data address range, a read is done from the host-to-SDB data FIFO
(FIFO1). When the 'C80 performs a write to this range, a write is done to the
SDB-to-host data FIFO (FIFO2). The 'C80 should not attempt a read from an
empty FIFO or attempt a write to an almost full or full FIFO. When the *C80 per-
forms a read from the FIFO mailbox address range, a read is done from the
host-to-SDB mailbox (mailbox1). When the 'C80 performs a write to this range,
a write is done to the SDB-to-host mailbox (mailbox2). The 'C80 should not at-
tempt to read an empty mailbox or attempt to write to a full mailbox.

'C80 FIFO mailbox address range:
0xF8000000 to OXFBFFFFFF
'C80 FIFO data address range:
O0xFCO000000 to OXFFFFFFFF

2.8.4 PCI Plug and Play

2-64

The SDB is a PCI plug-and-play device, meaning the host PCI BIOS dynami-
cally configures the board at system boot time. The purpose of plug and play
is to dynamically allocate resources to devices so that no two devices use the
same resource. These resources include memory address space, I/0 address
space, interrupts, and DMA channels. Each plug-and-play device requests
needed resources during autoconfiguration. The BIOS assigns those re-
sources to the device. Each device has a standard set of PCI configuration reg-
isters that the BIOS sets to reflect assigned resources. For the most part, this
is all transparent to the user.

The SDB requests 64K bytes of memory address space and one interrupt.
During autoconfiguration at boot time, the PCI BIOS detects the SDB request.
The PCI BIOS then finds an unused 64K byte chunk of address space and
assigns it to the SDB. Next, the PCI assigns an unused interrupt resource to
the SDB.

The memory address assigned to the SDB is its physical location on the PCI
bus. Generally, an application cannot access this physical address space di-
rectly, so a device driver is needed. Because the SDB has 64K bytes of ad-
dress space, only 16 bits of address are needed to locate any position in that
64K, given the starting address. The device driver locates the starting or physi-
cal address by taking a 16-bit address and adding the physical base address.
The device driver knows where the physical base address is from the PCl con-
figuration space on the board.

PCI Interface

This method of allocating resources allows application code running on the
host to locate the board using only a 16-bit address, which the device driver
translates to the correct physical address (no matter where PCI assigned the
board in its address space). Thus, the 16-bit address remains static since itis
just an offset into the 64K address window of PCI address space. This 16-bit
offsetis referred to as the host address in this guide. For example, assume the
PCI BIOS located the SDB at the PCI address of OXFFBF0000. The device
driver translates a 16-bit host address of 0x1234 to a physical location of
0xFFBF1234 on the PCI bus.

SDB Hardware 2-65

PCI Interface

2.8.5 Host Address Space

The host address space of the SDB is a 64K byte window into the PCl address
space. All host addresses to the SDB are specified as 16-bit offsets into this
window; the host device driver takes care of the translation (see subsection
2.8.4, PCI Plug and Play). The 64K address space of the SDB is partitioned
into several areas as depicted in Figure 2-11. Following the diagram is a de-
scription of each partition.

Figure 2—11. Host Address Space

Host address

0x0000
| —] 0x1800
MAIL OX1FFF
1o 0x2000
space
OX3FFF
FIFO 0x4000
header
2K x 32
OX5FFF
64K-byte FIFO 0x6000
window 2}??(0;2
into PCI OX7EFE
address 0x8000
space
FIFO
data
8K x 32
v OXFFFF

2-66

0x0000

0x1800

0x2000 — Ox3FFF

0x4000 — OX5FFF

PCI Interface

PCISTAT. This location is the PCI status register
and is visible only to the host. (See Section 2.8.1,
PCI Status Register, for more information.)

MAIL . This 32-bit location is the port into the FIFO
mailboxes and is visible only from the host. Read-
ing this location reads the SDB-to-host mailbox
(mailbox2), whereas writes to this location write to
the host-to-SDB mailbox (mailbox1). The host
should never attempt to read this location when the
SDB-to-host mailbox is empty, and the host should
never attempt to write to this location when the
host-to-SDB mailbox is full. You can determine
these conditions by checking the MB1 and MB2
bits in the PCISTAT register.

I/O space . The entire /0O bus on the SDB is acces-
sible in this address range. Special state machines
are implemented that use the FIFO mailboxes to
complete 1/0O bus accesses. The host cannot ac-
cess the SDB’s I/O bus unless both FIFO mail-
boxes are empty. The transfer is actually a 2-step
process handled by the host device driver.

FIFO header (2K x 32). This range of addresses
maps to the PCI data FIFOs. This range is write-
only. A host write to anywhere in this range per-
forms a write to the host-to-SDB data FIFO. The
host should not attempt to write to an almost full or
full FIFO. The intention of this range is to have a
separate FIFO header space to write command
server header information. Host reads from this
range return the PCI status register (PCISTAT)
contents.

SDB Hardware 2-67

PCI Interface

0x6000 — OX7FFF FIFO boot (2K x 32). This range of addresses
maps to the PCI data FIFOs. This range is write-
only. A host write to anywhere in this range per-
forms a write to the host-to-SDB data FIFO. The
host should not attempt to write to an almost full or
full FIFO. This range provides a separate FIFO
boot space to supply boot code to the 'C80. Host
reads from this range return the PCI status register
(PCISTAT) contents.

0x8000 — OXFFFF FIFO data (8K x 32). This range of addresses
maps to the PCI data FIFOs. A host read from any-
where in this range performs a read from the SDB-
to-host data FIFO; a host write to anywhere in this
range performs a write to the host-to-SDB data
FIFO. The host should not attempt to read an
empty FIFO or attempt to write to an almost full or
full FIFO. This range provides space for normal
FIFO data transfers.

2.8.6 PCI Bus Mastering

2-68

The SDB supports bus master writes to the PCI bus. This means that the SDB
has the ability to take control of the PCI bus (master) and write to devices
(slaves) on the bus. The destination address of the bus master write is a physi-
cal address on the PClI bus. This physical address differs from logical address-
es used in PC operating systems such as Windows NT. Translation of a logical
address into a physical address and vice versa is beyond the scope of this
guide.

Three registers are used to perform bus mastering:

(1 Bus master address low (BMAL)
(1 Bus master address high (BMAH)
[Bus master control (BMCTRL)

The application should place the host physical address into BMAL and BMAH
(the lower 16 bits into BMAL and the upper 16 bits into BMAH). Once the ad-
dress registers are configured, setting the BMEN bit of the BMCTRL register
starts the bus master transfer. The address registers are autoincrementing
during the transfer, but you can disable this feature by setting the increment
disable (IDIS) bit of the BMCTRL register.

PCI Interface

The bus mastering registers are accessible on the I/0 bus. They are accessed
using 16-bit reads or writes. You should use direct external accesses (DEAS)
to bypass the MP’s data cache. Table 2—13 lists the PCI bus mastering regis-
ters. Following the table are diagrams of the register formats and descriptions
of the registers and their fields.

Table 2-13. PCI Bus Mastering Registers Summary

Register 'C80 Host Size

Name Access Address Address (Bits) Description

BMAL Read/write OXEOOOOAOO 0x3400 16 Bus master address low register
BMAH Read/write OXEOOO0AO02 0x3404 16 Bus master address high register
BMCTRL Read/write 0xE0000104 0x2208 8 Bus master control register

BMAL register

'C80 / host addresses: 0OXEO0O0OAQ0 0x3400
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bus master address low register

BMAL is the bus master address low register. This register is loaded with the
lower 16 bits of the physical PCl address of the target of the bus master opera-
tion.

BMAH register

'C80 / host addresses: OXEO000A02 0x3404
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bus master address high register

BMAH is the bus master address high register. This register is loaded with the
upper 16 bits of the physical PCl address of the target of the bus master opera-
tion.

SDB Hardware 2-69

PCI Interface

BMCTRL register

2.8.7 Bootstrapping

2-70

'C80 / host addresses: 0XE0000104 0x2208

6 5 4 3 2 1 0

Reserved BMEN IDIS b0

BMCTRL controls the bus mastering feature of the SDB.

Reserved

BMEN

IDIS

bO

Each of these bits should always be cleared to 0.

Bus mastering enable . This bit enables bus mastering. When
set, the SDB begins transferring data from the SDB-to-host
FIFO to the PCI physical address contained in BMAL and
BMAH. The transfer operation continues until this bit (BMEN)
is cleared. If the FIFO becomes empty, the SDB relinquishes
master control of the PCI bus until the 'C80 puts more data into
the FIFO, at which point the SDB becomes master again and
transfers the data. It is important that you do not clear this bit
to complete the bus master operation until all of the data in the
FIFO has been transferred.

BMEN =0 Bus mastering disabled
BMEN =1 Bus mastering enabled

Increment disable . This bit disables the address auto-
increment feature of the bus mastering hardware.

IDIS=0 Address autoincrement enabled
IDIS=1 Address autoincrement disabled

Bit 0. The bus master hardware requires this bit to be set.

The term bootstrapping refers to the process of resetting the board and provid-
ing it some code to run. The SDB is bootstrapped from the host via the PCI
FIFO. The 'C80 can be reset by writing a 0 then a 1 to the MRST bit of the
PCISTAT register. After it is reset, the 'C80 is halted because the HREQ pin
on the SDB is tied high. To unhalt the 'C80 at this point, the EINT3 signal on
the 'C80 must be asserted. The host asserts EINT3 by setting up the interrupt
controller and then triggering EINT3 (remember that the host can access the
I/O bus without intervention from the 'C80).

PCI Interface

When the 'C80 unhalts, it first executes the instruction at OXFFFFFFF8. Since
the MP’s instruction cache is empty, however, the 'C80 must first do an i-cache
subblock fill beginning at address OxFFFFFFCO (a subblock is 64 bytes). This
address falls into the address space of the PCI FIFO; therefore, 64 bytes of
MP code must be in the FIFO. This means that the host has to put the data in
the FIFO from the host side. The MP code then finishes the boot process.

SDB Hardware 2-71

2-72

Chapter 3

Audio Capture and Playback API

This chapter discusses the audio macros and data types. It also describes, in
alphabetical order, the application programming interface (API) functions

associated with the audio capture and playback drivers for the TMS320C8x
software development board (SDB).

Topic Page
3.1 Audio Capture and Playback APl Macros and Data Types 3:2
3.2 Audio BUfferingo 3-5
3.3 Audio Capture and Playback API Functions 3-9

3-1

Audio Capture and Playback API Macros and Data Types

3.1 Audio Capture and Playback API Macros and Data Types

Table 3—1 describes the macros used by the audio API and lists the API func-
tions that use each macro. Figure 3—1 provides definitions for the audio API
data types. These macros and data types, as well as the API function proto-
types, are defined in <audio.h>. The object code resides in sdbdrvs.lib.

Table 3—1. Audio APl Macros

(a) Audio operation mode

Macro Value Description

#define AUDIO_CAPTURE 0x02 DMA capture mode
#define AUDIO_PLAYBACK 0x03 DMA playback mode

#define AUDIO_PIO 0x04 Programmed 1/0 mode

Note: These macros are used by the function Audio_Install().

(b) Audio stereo mode

Macro Value Description

#define AUDIO_MONO FALSE Mono mode

#define AUDIO_STEREO TRUE Stereo mode

Note: These macros are used by the function Audio_Install().

(c) Audio data coding format

Macro Value Description

#define AUDIO_PCM16 0x21 16-bit pulse code modulation (signed)
#define AUDIO_PCM8 0x12 8-bit pulse code modulation (unsigned)
#define AUDIO_ALAWS 0x13 8-bit A-Law

#define AUDIO_ULAWS 0x14 8-bit p-Law

Note: These macros are used by the function Audio_Install().

(d) Audio analog input source

Macro Value Description

#define AUDIO_LINE 0x00 Line input

#define AUDIO_AUX1 0x01 Auxiliary 1 input

#define AUDIO_MIXED 0x03 Line input with post-DAC mixing

Note: These macros are used by the function Audio_Programinputs().

3-2

Audio Capture and Playback API Macros and Data Types

Table 3—1. Audio API Macros (Continued)

(e) Boolean mute flags for the audio codec

Macro Value Description

#define AUDIO_UNMUTE FALSE Unmute channel

#define AUDIO_MUTE TRUE Mute channel

Note: These macros are used by the following functions:
Audio_ProgramAux1()
Audio_ProgramDacs()

Figure 3-1. Audio API Data Types

(a) Stereo buffer-pointer structure definition

typedef struct {
void *L; /* pointer to left buffer */
void *R; /* pointer to right buffer */
} AUDIO_PTR;

(b) Audio metrics structure definition

typedef struct {
BYTE Mode; /* audio mode */
BYTE Stereo; /* stereo flag */
BYTE Format; /* data format */
float Fs; [* sample rate */
BYTE Bps; [* bytes per sample */

BYTE BlockCt; /* number of subblocks in a buffer — */
BYTE BlockSz; /* number of samples in a subblock */

BYTE BUuffCt; /* number of buffers in a queue */

ULONG BuffSz; [* size of buffer in samples */

ULONG ByteSz; /* size of buffer in bytes */
} AUDIO_MET;

Audio Capture and Playback API 3-3

Audio Capture and Playback API Macros and Data Types

3.1.1 AUDIO_PTR Data Type

By encapsulating left and right buffer pointers into one data structure, the
AUDIO_PTR data type simplifies argument passing to audio API functions.
The two members of AUDIO_PTR are L and R, which are both void pointers.
Because they are void pointers, the members can point to 8- or 16-bit data buff-
ers. The audio APl internally performs the correct type casting of the void point-
ers to match the buffer data size.

3.1.2 Audio Metric Parameters

3-4

The type definition for AUDIO_MET defines metric parameters of the current
audio state. Define a variable of this type, then pass a pointer to it as an argu-
ment to Audio_GetMetrics(). Audio_GetMetrics() fills in the structure mem-
bers.

Audio Buffering

3.2 Audio Buffering

This section describes the structure and operation of the internal buffering that
is managed by the audio driver. An internal variable of type BUFFS, which is
local to the audio API module, manages the actual buffers. Figure 3—2 shows
the BUFFS data type. An application does not have scope into this data type,
but it may be important for you to understand the internal workings of the buff-
ering.

Figure 3-2. Internal Audio Buffer Structure

typedef struct {

BYTE Mode; /* current audio mode */

BYTE Format; /* current audio format */

float Fs; /* current audio sample rate */

BYTE BlockSz; /* size of each buffer subblock in number of samples */
BYTE BlockCt; /* number of subblocks in each buffer */
BYTE BuffCt; /* number of buffers in each queue */
ULONG ByteSz; /* size of each buffer in bytes */
ULONG BuffSz; /* size of each buffer in samples */
BYTE Bps; /* bytes per sample (1=8-bit, 2=16-bit) */
BOOL Stereo; /* stereo flag (FALSE=mono, TRUE=stereo) */
BYTE Capp; /*applications buffer index into the capture queue */
BYTE Cisr; /*ISRs buffer index into the capture queue */
BYTE Papp; /* applications buffer index into the playback queue */
BYTE Pisr; /* ISRs buffer index into the playback queue */
BYTE Cidx; /* capture subblock index */

BYTE Pidx; /* playback subblock index */

ULONG SubSize; /* size of one subblock in bytes */
ULONG Coffset; /* subblock offset into capture buffer in bytes */
ULONG Poffset; /* subblock offset into playback buffer in bytes */
void **CL; /* pointer to left capture queue

void **CR; /* pointer to right capture queue */

void **PL; /* pointer to left playback queue */

void **PR; /* pointer to right playback queue */

} BUFFS;

The audio buffering structure is created dynamically on the system heap when
the application calls Audio_Install() and remains intact until the application
calls Audio_Unlinstall(). Audio_Uninstall() destroys the queue structure
created by Audio_Install() and frees up all relative heap storage.

Audio Capture and Playback API 3-5

Audio Buffering

Figure 3-3 illustrates the buffering structure. The main component of the en-
tire buffering mechanism is the queue structure. Individual queues are created
for left capture (CL), right capture (CR), left playback (PL), and right playback
(PR), depending on the mode (stereo or mono, capture or playback). All point-
ers within a queue are void pointers that allow 8-bit or 16-bit sample data. The
driver takes care of correct type casting of these pointers. Each queue is ac-
cessed using one of the void ** members of the BUFFS structure. The left cap-
ture queue is accessed using CL. Figure 3-3 illustrates the left capture queue
only, but the other queues (CR, PL, and PR) have the same structure. The fol-
lowing subsections provide details about the individual queue, individual buff-
er, and individual subblock depicted in Figure 3-3.

Figure 3-3. Buffering Queue Structure

3-6

(a) Individual queue

BuffCt

Capp Cisr

cLlet— o 9 o] <+« [0][o 0]

oo o BuffSz (samples)
ByteSz (bytes)

Buffer
(b) Individual buffer (¢) Individual subblock
Bps
—
Sample
Sub- | cigy B
block . BlockSz (samples)
. . SubSz (bytes)
BlockCt .
Coffset

Audio Buffering

3.2.1 Individual Queue

Figure 3—3(a) shows an individual queue structure, the left capture queue. The
CL member of BUFFS points to an array of void pointers, each of which point
to a data buffer. BuffCt indicates the number of such buffers. Each buffer has
a size of BuffSz (in number of samples) and ByteSz (in number of bytes). If the
audio data is 8 bit (one byte), then the BuffSz is equal to ByteSz.

The Capp and Cisr members of BUFFS are queue indexes into the array of
buffer pointers, which range from 0 to BuffCt— 1. These indexes continuously
advance when audio is running (enabled). When the audio ISR has completed
filling a buffer, it advances the Cisr index. If the index overflows (>= BuffCi),
it wraps back to 0. The application advances the Capp index each time
Audio_GetCaptureBuffs() is called. The ISR fills the bufferindexed by Cisr; the
buffer returned to the application through a call to Audio_GetCaptureBuffs()
is indexed by Capp. The Capp buffer is locked from the ISR, which gives the
application exclusive access to it. When the application calls
Audio_GetCaptureBuffs(), the Capp index is advanced, then a pointer to the
indexed buffer is returned.

The Capp and Cisr indexes cannot be equal; that is, the application cannot
have access to the same buffer as the ISR. If the application and the ISR were
to both have access to the same buffer, the application would read from the
buffer as it is being filled by the ISR. This condition introduces the possibility
of an index collision. If the ISR tries to advance the Cisr index onto the Capp
index, the advance does not take place and the ISR fills the same buffer again.
The resultis that one buffer of captured audio is skipped. If the application tries
to advance the Capp index onto the Cisrindex through a call to Audio_GetCap-
tureBuffs(), the advance does not take place and the same buffer pointer is
returned as the last call. As a result, the application receives the same buffer
twice in a row. The only way to prevent index collisions is to have the applica-
tion advance the Capp index at the same rate (on average) that the ISR
advances the Cisr index.

The capture operation described here also applies, in general, to playback op-
eration. The ISR advances Pisr while the application advances Papp through
callsto Audio_GetPlaybackBuffs(). Collisions are handled in a similar fashion.

Audio Capture and Playback API 3-7

Audio Buffering

3.2.2 Individual Buffer

Figure 3-3(b) shows the structure of an individual buffer. Bps, or bytes per
sample, is the width of the buffer in number of bytes. This value is 1 for 8-bit
samples and 2 for 16-bit samples. The application only deals with complete
buffers, but the ISR must operate on partitioned buffers. Each partition is called
a subblock, and there are BlockCt of them in one buffer.

The ISR manages the index Cidx, which is the subblock index into the current
capture buffer. Audio data is packet transferred from the audio FIFO into the
audio buffer in chunks equal in size to the subblock. When the audio FIFO be-
comes almost full (captured audio from the codec), it triggers an interrupt that
is handled by the audio capture ISR. This ISR advances the Cidx index, then
transfers the new FIFO data into the capture buffer starting at the new sub-
block offset (Coffset). When the Cidx index overflows, it wraps back to 0 and
the next buffer is obtained (Cisr is advanced). The Coffset member is just a
byte offsetinto the buffer used to calculate the destination address of the pack-
et transfer. Each time Cidx is advanced, Coffset is computed. An overview is
that the ISR fills up the buffer in chunks and, when it is full, the next one is ob-
tained.

3.2.3 Individual Subblock

3-8

Figure 3-3(c) depicts the individual subblock. Its size is BlockSz (in number
of samples) and SubSz (in number of bytes). Data is transferred from the audio
FIFO in chunks equal in size to the subblock size.

3.3 Audio Capture and Playback API Functions

Audio Capture and Playback API Functions

Listed below in alphabetical order are the audio capture and playback API
functions. Use this list as a table of contents to the audio API functions.

Function Page

Audio_CaptureToMemory 3-10
Audio_CodecStat.............. 3-12
Audio_Disable 3-13
Audio Enable 3-14
Audio_FifoStat 3-15
Audio_FillBuffs 3-16
Audio_GetCaptureBuffs 3-17
Audio_GetCodecRegs 3-18
Audio_GetFifoRegs 3-19
Audio_GetMetrics 3-20
Audio_GetPlaybackBuffs 3-21
Audio_Init, 3-22
Audio_Install 3-23

Function Page
Audio_InstallSema 3-25
Audio_Pioln 3-26
Audio PioQut 3-27
Audio_PioTest 3-28
Audio_PlaybackFromMemory ... 3-29
Audio_ProgramAux1 3-31
Audio_ProgramDacs 3-32
Audio_ProgramDigitalMix 3-33
Audio_Programlnputs 3-34
Audio_SetBufferindexes 3-35
Audio_SetSampleRate 3-36
Audio_Unlnstall 3-37

Audio Capture and Playback API 3-9

Audio_CaptureToMemory

Function Name

Syntax

Arguments

Return Value

Description

Example

3-10

Audio_CaptureToMemory

void Audio_CaptureToMemory(AUDIO_PTR *P, ULONG NumBuffs);

AUDIO_PTR *P Pointer to a buffer pointer structure whose elements
point to preallocated buffers of memory in which the
captured audio is stored

ULONG NumBuffs Amount of audio to capture; value specified as an inte-
gral number of DMA buffers as set up by Audio_Install()

None

This function captures a specified amount of audio data into buffers pointed
to by the members of P. Before calling Audio_CaptureToMemory(), you must
first call Audio_Install() to set up the audio hardware for DMA capture. The
NumBuffs argument specifies how much audio to capture in number of buffers.
The buffer size is determined when you call Audio_Install(). If the audio is set
up for mono mode, the L member of P is ignored.

Notes:
1) Do not call Audio_CaptureToMemory() while audio is enabled.

2) Audio_CaptureToMemory() must be called from a task other than the de-
fault task because it waits on a semaphore.

void AudioTask(void *P) {
AUDIO_PTR Cptr;
AUDIO_MET AM;
BYTE Format = AUDIO_PCM16;
BOOL Stereo = AUDIO_STEREO;
float Fs =48.0;
BYTE BlockCt =20;
BYTE BlockSz =50;
BYTE BuffCt =8;
ULONG NumBuffs = Fs*10;

/* dummy install to set audio metrics */
Audio_Install(AUDIO_CAPTURE, Format, Stereo, Fs, BlockCt,
BlockSz, BuffCt);

/* get the metrics of the new settings */
Audio_GetMetrics(&AM);

/* allocate some DRAM storage for captured audio */
Cptr.L = (void*)memalign(64,AM.ByteSz*NumBuffs);
if (Stereo)

Cptr.R = (void*)memalign(64,AM.Byte Sz*NumBuffs);

/* capture some audio into the allocated buffers */
Audio_CaptureToMemory(&Cptr, NumBuffs);

Audio_CaptureToMemory

/* uninstall the audio settings */
Audio_Unlnstall();

I* process the captured audio here */

[* free up the buffer storage */
free((void*)Cptr.L);
if (Stereo)
free((void*)Cptr.R);

Audio Capture and Playback API 3-11

Audio_CodecStat

Function Name

Syntax

Arguments

Return Value

Description

Example

3-12

Audio_CodecStat

BYTE Audio_CodecStat();

None

BYTE Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit O

CU/L
CL/R
CRDY
SOUR
PU/L
PL/R
PRDY
INT

Capture upper/lower byte
Capture left/right channel
Capture ready

Sample overrun/underrun
Playback upper/lower byte
Playback left/right channel
Playback ready

Interrupt status

This function reads the audio codec status byte by performing a direct read of
the memory-mapped codec status register (CDCSTAT).

BYTE stat;

/* read audio codec status */
stat= Audio_CodecStat();

Function Name

Syntax
Arguments
Return Value

Description

Example

Audio_Disable

Audio_Disable

void Audio_Disable();
None
None

This function disables the audio subsystem by disabling the audio codec and
disabling any associated events.

Audio_Install(AUDIO_PLAYBACK, AUDIO_PCM16, AUDIO_STEREO,
48, 16, 64, 4);
Audio_Enable();

/* do some audio processing here */

Audio_Disable();
Audio_UnlInstall();

Audio Capture and Playback API 3-13

Audio_Enable

Function Name

Syntax
Arguments
Return Value

Description

Example

3-14

Audio_Enable

void Audio_Enable();
None
None

This function enables the audio subsystem by enabling the audio codec and
enabling any associated events.

Audio_Install(AUDIO_PLAYBACK, AUDIO_PCM16, AUDIO_STEREO, 48,
16, 64, 4);
Audio_Enable();

/* do some audio processing here */

Audio_Disable();
Audio_Unlinstall();

Function Name

Syntax

Arguments

Return Value

Description

Example

Audio_FifoStat

Audio_FifoStat

USHORT Audio_FifoStat();

None
USHORT Bit 15 Capture almost empty flag (AEF)
Bit 14 Capture FIFO empty flag (FEF)
Bit 13 Playback almost full flag (AFF)
Bit 12 Playback FIFO full flag (FFF)
Bit 11 Status register format (1)
Bit 10 Read parity error
Bit 9 Write parity error
Bit 8 Odd byte valid bit
Bit 7 Capture AFF
Bit 6 Capture FFF
Bit 5 Playback AEF
Bit 4 Playback FEF
Bit 3 DMA direction (0 = capture)
Bit 2 Reserved
Bit 1 Reserved
Bit O Reserved

This function returns the status of the audio FIFO by performing a direct read
of the memory-mapped audio FIFO command register (AFIFOCMD).

Note:

Bits 8 and 11 are not used by the software but do occupy bit positions in the
status word.

USHORT stat;

/* read audio FIFO status */
stat= Audio_FifoStat();

Audio Capture and Playback API 3-15

Audio_FillBuffs

Function Name Audio_FillBuffs

Syntax void Audio_FillBuffs(USHORT val);

Arguments USHORT val This specifies the fill value. For 8-bit buffers, this value
will be cast into a byte.

Return Value None

Description This function fills the internal audio buffers created by Audio_Install() with the

value specified.

Note:

Do not call Audio_FillBuffs() while audio is enabled.

Example Audio_Install(AUDIO_PLAYBACK, AUDIO_PCM16, AUDIO_MONO, 8.0,
16, 64, 8);
Audio_FillBuffs(0x0000);
Audio_Enable();

/* do audio processing here */
Audio_Disable();

3-16

Function Name

Syntax

Arguments

Return Value

Description

Example

Audio_GetCaptureBuffs

Audio_GetCaptureBuffs

BOOL Audio_GetCaptureBuffs(AUDIO_PTR *P);

AUDIO_PTR *P Pointer to buffer pointer structure that will be filled in by
this function with pointers to the captured audio buffers

BOOL TRUE Internal buffers advanced
FALSE Internal buffers did not advance

For DMA audio capture, this function is used to get pointers to buffers of cap-
tured audio. This function first advances the application index into the capture
buffer queue(s), then returns pointers to the newest capture buffers (left and
right). If the audio is in mono mode, the R member of P is assigned NULL. If
the buffers cannot advance because the ISR is using the next buffers in the
queue, this function returns FALSE and pointers to the buffers before advance-
ment are returned. For DMA capture mode, this function must be called, on
average, at the same rate the ISR is capturing buffers.

AUDIO_PTR Cptr,;

Audio_lInstall(AUDIO_CAPTURE, AUDIO_PCM16, AUDIO_STEREO, 8.0,
16, 64, 8);

Audio_FillBuffs(0x0000);

Audio_Enable();

/* loop forever */

while (1) {
TaskWaitSema(AudioSemald);
Audio_GetCaptureBuffs(&Cptr)

[* Cptr.L now points to left captured audio DMA buffer */
/* Cptr.R now points to right captured audio DMA buffer */

/* do audio processing here */

Audio Capture and Playback API 3-17

Audio_GetCodecRegs

Function Name

Syntax

Arguments

Return Value

Description

Example 1

Example 2

3-18

Audio_GetCodecRegs

void Audio_GetCodecRegs(BYTE *CodecRegs);

BYTE *CodecRegs Pointer to a preallocated array of 16 bytes (un-
signed characters) that will be filled with the codec
register values

None

This function reads the internal audio codec registers and stores these values
into the array pointed to by the CodecRegs argument. The pointer must point
to 16 bytes of preallocated memory (16-byte array). The index into the array
corresponds to the codec internal register number. None of the internal codec
registers are changed. The following list describes the indexes into the codec:

Index: [0x00] Left input control
[0x01] Right input control
[0x02] Left auxiliary 1 input control
[0x03] Right auxiliary 1 input control
[0x04] Left auxiliary 2 input control
[0x05] Right auxiliary 2 input control
[0x06] Left DAC control
[0x07] Right DAC control
[0x08] Clock and data format register
[0x09] Interface configuration register
[OX0A] Pin control register
[0x0B] Test and initialization register
[0xOC] Miscellaneous control register
[OxOD] Digital mix control register
[OXOE] Upper base count register
[OXOF] Lower base count register

Note:

Use this function for debugging purposes.

BYTE Cregs[16];
Audio_GetCodecRegs(Cregs);

BYTE *Cregs = (BYTE *)malloc(16 * sizeof(BYTE));
Audio_GetCodecRegs(Cregs);

Function Name
Syntax

Arguments

Return Value

Description

Example 1

Example 2

Audio_GetFifoRegs

Audio_GetFifoRegs

void Audio_GetFifoRegs(USHORT *FifoRegs);

USHORT *FifoRegs Pointer to a preallocated array of 6 USHORTS
(unsigned shorts) that will be filled with the FIFO
configuration register values

None

This function reads the internal audio FIFO configuration registers and stores
these values into the array pointed to by the FifoRegs argument. The pointer
must point to preallocated memory (6 USHORT array). The index into the array
corresponds to the FIFO configuration register number. None of the FIFO con-
figuration registers are changed. The following list describes the indexes into
the FIFO:

Index: [0x00] Playback FIFO almost empty flag (AEF) offset
[0x01] Playback FIFO almost full flag (AFF) offset
[0x02] Capture FIFO AEF offset
[0x03] Capture FIFO AFF offset
[0x04] FIFO flag pin assignment register
[0x05] FIFO interface configuration register

Note:

Use this function for debugging purposes.

USHORT Fregs[6];
Audio_GetFifoRegs(Fregs);

USHORT *Fregs = (USHORT *)malloc(6 * sizeof(USHORT));
Audio_GetFifoRegs(Fregs);

Audio Capture and Playback API 3-19

Audio_GetMetrics

Function Name Audio_GetMetrics

Syntax void Audio_GetMetrics(AUDIO_MET *M);

Arguments AUDIO_MET *M Pointer to AUDIO_MET structure that will be filled in by
this function
AUDIO_MET consists of the following members:

BYTE Mode; /* audio mode */
BYTE Stereo; [*stereo flag */
FBYTE Formats; /* data format */
float Fs; /* sample rate */
BYTE Bps; /* bytes per sample */

BYTE BlockCt; /* number of subblocks in a buffer */
BYTE BlockSz; /* number of samples in a subblock */
BYTE BuffCt; /* number of buffers in a queue */

ULONG BuffSz; /*size of buffer in samples */
ULONG ByteSz; [*size of buffer in bytes */
Return Value None
Description This function returns the current operating metrics of the audio subsystem.

The AUDIO_MET structure pointed to by M is filled in with the metrics values.

Note:

You can call Audio_GetMetrics() whether audio is enabled or not.

Example AUDIO_MET M;
Audio_GetMetrics(&M);

3-20

Function Name

Syntax

Arguments

Return Value

Description

Example

Audio_GetPlaybackBuffs

Audio_GetPlaybackBuffs

BOOL Audio_GetPlaybackBuffs(AUDIO_PTR *P);

AUDIO_PTR *P Pointer to buffer pointer structure whose members (L and
R) will be assigned pointers to buffers that need to be filled
with audio playback data

BOOL TRUE Internal buffers advanced
FALSE Internal buffers did not advance

For DMA audio playback, this function is used to get buffers for audio playback.
This function first advances the application index into the playback buffer
queue(s), then returns pointers to the playback buffers (left and right). If the
audio is in mono mode, the R member of P is assigned NULL. If the buffers
cannot advance because the ISR is using the next buffers in the queue, this
function returns FALSE and pointers to the buffers before advancement are
returned. For DMA playback mode, this function must be called, on average,
at the same rate the ISR is playing buffers.

AUDIO_PTR Pptr;

Audio_Install(AUDIO_PLAYBACK, AUDIO_PCM16, AUDIO_STEREO, 8.0,
16, 64, 8);

Audio_FillBuffs(0x0000);

Audio_Enable();

[* loop forever */

while (1) {
TaskWaitSema(AudioSemald);
Audio_GetPlaybackBuffs(&Pptr);

/* Pptr.L now points to the left playback audio buffer */
[* Pptr.R now points to the right playback audio buffer */

/* do audio processing here */

Audio Capture and Playback API 3-21

Audio_Init

Function Name

Syntax
Arguments

Return Value

Description

Example

3-22

Audio_Init

BOOL Audio_Init();

None

BOOL

Initialization succeeded
Initialization failed

This function initializes the audio codec and audio FIFO to a default state by
resetting the FIFO circuitry. Upon reset, all previous codec and FIFO settings
are lost. The codec will go through autocalibration twice during this call, which
could require up to 800 sample periods.

Default codec values:

data format

16-bit, PCM (pulse code modulation), mono

sampling rate
interface
autocalibration
capture
playback

left input

right input

AUX1 left input
AUX1 right input
AUX2 left input
AUX2 right input
left DAC output
right DAC output
interrupt control
digital mix control
base count

Default FIFO values:
DMA direction
capture AEF offset
capture AFF offset
playback AEF offset
playback AFF offset
flag pin A (CdcInt0)
flag pin B (Cdclintl)
flag pin C (CdcErr0)
flag pin D (CdcErrl)

/* initialize audio hardware */
Audio_Init();

8.0 kHz

Single-channel DMA

on

P10, disabled

P10, disabled

LINE, +4.5 dB gain

LINE, +4.5 dB gain

0.0 dB attenuation, mute on
0.0 dB attenuation, mute on
0.0 dB attenuation, mute on
0.0 dB attenuation, mute on
0.0 dB attenuation, mute off
0.0 dB attenuation, mute off
Interrupt disabled

0.0 dB attenuation, disabled
0x0000

Capture

0x0200

0x0200

0x0200

0x0200

0xOD - capture almost empty flag (AEF)
OxOF - capture almost full flag (AFF)
0x09 - playback AEF

0x0B - playback AFF

Function Name

Syntax

Arguments

Return Value

Description

Audio_Install

Audio_Install

BOOL Audio_Install(BYTE Mode, BYTE Format, BOOL Stereo, float Fs,
BYTE BlockCt, BYTE BlockSz, BYTE BuffCt);

BYTE Mode AUDIO_CAPTURE Installs DMA capture mode
AUDIO_PLAYBACK Installs DMA playback mode

AUDIO_PIO Installs PIO mode
BYTE Format AUDIO_PCM16 16-bit PCM (signed)
AUDIO_PCMS8 8-bit PCM (unsigned)
AUDIO_ALAWS 8-bit A-Law compression
AUDIO_ULAWS 8-bit u-Law compression
BOOL Stereo TRUE Set up stereo mode
FALSE Set up mono mode
float Fs Sampling frequency (kHz):
5.5125 22.0500
6.6150 27.4286
8.0000 32.0000
9.6000 33.0750
11.0250 37.8000
16.0000 44.1000
18.9000 48.0000

BYTE BlockCt Number of subblocks in a buffer
BYTE BlockSz Number of samples in a subblock
BYTE BuffCt Number of buffers in a queue

BOOL TRUE Function succeeded
FALSE Function failed (check heap size)

This function is used to install audio subsystem settings for a particular mode.
This function does not enable the audio. When the mode is setto AUDIO_PIO,
no DMA FIFO transfers or events are set up. The last three arguments,
BlockCt, BlockSz, and BuffCt, are used to create the buffer queues as
described in Section 3.2. Because these buffer queues are created on the sys-
tem heap, it is possible to run out of heap space, in which case the function
returns FALSE. If this happens, check the heap size setting in the linker com-
mand file.

This function performs the following actions:

Disables audio

Creates internal buffer queues
Programs audio FIFO
Programs audio codec

Sets up events

oo o

Audio Capture and Playback API 3-23

Audio_Install

Example BOOL success;

success = Audio_Install(AUDIO_CAPTURE, AUDIO_PCM16,
AUDIO_STEREDO, 48.0, 8, 64, 4);

if (success) {
* do audio stuff */
}

3-24

Function Name
Syntax

Arguments

Return Value

Description

Example

Audio_InstallSema

Audio_InstallSema

long Audio_InstallSema(long Semald);

long Semald ID of semaphore to install returned by TaskOpenSema()

long Old semaphore ID

This function installs a semaphore into the audio subsystem. The application
must open the semaphore by calling TaskOpenSema(). Only
AUDIO_CAPTURE and AUDIO_PLAYBACK modes use the semaphore.
These modes use DMA and the audio FIFO that triggers an event. The ISR
for this event manages the buffers and, when a new buffer is captured or
played back, the semaphore is signaled. The semaphore allows an application
to synchronize with the audio ISR.

void AudioTask(void *p) {
BOOL success;
long AudioSemald;
AUDIO_PTR P;

AudioSemald = TaskOpenSema(-1,0);

Audio_InstallSema(AudioSemald);

success = Audio_Install(AUDIO_CAPTURE, AUDIO_PCM16,
AUDIO_STEREO, 48.0, 8, 64, 4);

if (success) {
Audio_Enable();
while (1) {
TaskWaitSema(AudioSemald);
Audio_GetCaptureBuffs(&P);
/* process captured audio here */

Audio Capture and Playback API 3-25

Audio_Pioln

Function Name
Syntax

Arguments

Return Value

Description

Example

3-26

Audio_Pioln

void Audio_Pioln(void *feft, void *right);

void *left Pointer to left sample storage
void *right Pointer to right sample storage
None

This function performs the following actions:

1 Inputs samples from the audio codec when the codec is programmed for
programmed input/output (PIO) capture mode

[Automatically detects the data format (8- or 16-bit, stereo or mono)
[Waits until the codec is ready with samples before reading them

If the codec is in mono mode, only the left sample is captured. If the codec
capture mode is not PIO or if capture is not enabled, the function returns
immediately without waiting or reading from the codec.

USHORT I,r;

/* ... other processing ... */

/* capture sample in PIO mode */
Audio_Pioln((void*)&I, (void*)&r);

/* ... other processing ... */

Function Name
Syntax

Arguments

Return Value

Description

Example

Audio_PioOut

Audio_PioOut

void Audio_PioOut(void *left, void *right);

void *left Pointer to left sample storage
void *right Pointer to right sample storage
None

This function performs the following actions:

(1 Outputs samples from the audio codec when the codec is programmed for
programmed input/output (P1O) playback mode

[Automatically detects the data format (8- or 16-bit, stereo or mono)
[J Waits until the codec is ready for samples before writing them out

If the codec isin mono mode, only the left sample is used. If the codec playback
mode is not PIO or if playback is not enabled, the function returns immediately
without waiting or writing to the codec. This function does not modify the
sample values.

USHORT I,r;

[* ... other processing ... */

[* playback sample in PIO mode */
Audio_PioOut((void*)&l, (void*)&r);

[* ... other processing ... */

Audio Capture and Playback API 3-27

Audio_PioTest

Function Name

Syntax

Arguments

Return Value

Description

Example

3-28

Audio_PioTest

void Audio_PioTest(BYTE Format, BOOL Stereo, float Fs, ULONG Ct);

BYTE Format AUDIO_PCM16 16-bit PCM (signed)
AUDIO_PCMS8 8-bit PCM (unsigned)
AUDIO_ALAWS8 8-bit A-Law compression
AUDIO_ULAWS8 8-bit y-Law compression

BOOL Stereo TRUE Set up stereo mode

FALSE Set up mono mode
float Fs Sampling frequency (kHz):

5.5125 22.0500

6.6150 27.4286

8.0000 32.0000

9.6000 33.0750

11.0250 37.8000

16.0000 44.1000

18.9000 48.0000
ULONG Ct Number of loopback samples to run through
None

This function tests the audio subsystem by running in full-duplex loopback
AUDIO_PIO mode for Ct samples. If audio has already been installed using
Audio_Install(), it should be uninstalled using Audio_Unlnstall() before calling
this function. Audio should not be enabled when this function is called.

/* loopback 60 seconds of audio */
Audio_PioTest(AUDIO_PCM16, AUDIO_STEREO, 48.0, 48000*60);

Function Name

Syntax

Arguments

Return Value

Description

Example

Audio_PlaybackFromMemory

Audio_PlaybackFromMemory

void Audio_PlaybackFromMemory(AUDIO _PTR *P, ULONG NumBuffs);

AUDIO_PTR *P Pointer to a buffer pointer structure whose elements
pointto preallocated buffers of memory that are filled with
audio playback data

ULONG NumBuffs Amount of audio to play back; value specified as an inte-
gral number of DMA buffers as set up by Audio_Install()

None

This function plays back a specified amount of audio data from buffers pointed
to by the members of P. Before calling Audio_PlaybackFromMemory(), you
must first call Audio_Install() to set up the audio hardware for DMA playback.
The NumBuffs argument specifies how much audio to play in number of buff-
ers. The buffer size is determined when you call Audio_Install(). If the audio
is set up for mono mode, the L member of P is ignored.

Note:

1) Do not call Audio_PlaybackFromMemory() while audio is enabled.

2) Audio_PlaybackFromMemory() must be called from a task other than
the default task because it waits on a semaphore.

void AudioTask(void *P) {
AUDIO_PTR Pptr;
AUDIO_MET AM;
BYTE Format =AUDIO_PCM16;
BOOL Stereo = AUDIO_STEREO;
float Fs =48.0;
BYTE BlockCt = 20;
BYTE BlockSz =50;
BYTE BuffCt =38;
ULONG NumBuffs = Fs*10;
/* dummy install to set audio metrics */
Audio_Install(AUDIO_PLAYBACK, Format, Stereo, Fs, BlockCt,
BlockSz, BuffCt);

/* get the metrics of the new settings */
Audio_GetMetrics(&AM);
/* allocate some DRAM storage for the playback audio */
Pptr.L = (void*)memalign(64,AM.ByteSz*NumBuffs);
if (Stereo)

Pptr.R = (void*)memalign(64,AM.ByteSz*NumBuffs);
/* fill up the allocated playback buffers here */
[* playback some audio from the allocated buffers */
Audio_PlaybackFromMemory(&Pptr, NumBuffs);

Audio Capture and Playback API 3-29

Audio_PlaybackFromMemory

3-30

/* uninstall the audio settings */
Audio_Unlinstall();

[* free up the buffer storage */
free((void*)Pptr.L);
if (Stereo)

free((void*)Pptr.R);

Function Name
Syntax

Arguments

Return Value

Description

Example

Audio_ProgramAux1

Audio_ProgramAux1

void Audio_ProgramAux1(BOOL /mute, BOOL rmute, float Ig, float rg);

BOOL /Imute AUDIO_MUTE Left auxiliary 1 mute on
AUDIO_UNMUTE Left auxiliary 1 mute off

BOOL rmute AUDIO_MUTE Right auxiliary 1 mute on
AUDIO_UNMUTE Right auxiliary 1 mute off

float Ig Left auxiliary 1 gain in dB
—-34.5dB <=Ig <= +12.0 dB (in 1.5 dB steps)

float rg Right auxiliary 1 gain in dB
—-34.5dB <=rg <=+12.0 dB (in 1.5 dB steps)

None

This function sets up auxiliary 1 analog mixing. The aux1 inputs are mixed in
the analog domain with the outputs of the digital-to-analog converters (DACS).
These mixed signals appear on the codec analog outputs. If mute is turned on,
no mixing takes place. Otherwise, the aux1 inputs are run through a gain stage
and then mixed. The codec does not go through autocalibration.

Note:

This function does not affect the aux1 inputs to the analog-to-digital convert-
ers (ADCs). You must program the input gains to the ADCs by using
Audio_Programinputs().

/* unmute aux1 inputs and set +3.0 dB gain */
Audio_ProgramAux1(AUDIO_UNMUTE, AUDIO_UNMUTE, +3.0, +3.0);

[* unmute aux1 inputs and set -3.0 dB gain */
[* which is +3.0 dB attenuation */
Audio_ProgramAux1(AUDIO_UNMUTE, AUDIO_UNMUTE, -3.0, -3.0);

Audio Capture and Playback API 3-31

Audio_ProgramDacs

Function Name Audio_ProgramDacs

Syntax void Audio_ProgramDacs(BOOL /mute, BOOL rmute, float Ig, float rg);
Arguments BOOL Imute AUDIO_MUTE Left DAC mute on
AUDIO_UNMUTE Left DAC mute off
BOOL rmute AUDIO_MUTE Right DAC mute on
AUDIO_UNMUTE Right DAC mute off
float Ig Left DAC gain in dB
—-94.5dB <=1g <= 0.0 dB (in 1.5 dB steps)
float rg Right DAC gain in dB
—94.5dB <=rg <= 0.0 dB (in 1.5 dB steps)
Return Value None
Description This function sets up the digital-to-analog converter (DAC) outputs of the audio

codec. The codec does not go through autocalibration.

Example /* unmute both codec DACs and set 0 dB gain */
Audio_ProgramDacs(AUDIO_UNMUTE, AUDIO_UNMUTE, 0.0, 0.0);

/* unmute both codec DACs and set -9.0 dB gain */
/* which is +9.0 dB attenuation */
Audio_ProgramDacs(AUDIO_UNMUTE, AUDIO_UNMUTE, -9.0, -9.0);

3-32

Function Name
Syntax

Arguments

Return Value

Description

Example

Audio_ProgramDigitalMix

Audio_ProgramDigitalMix

void Audio_ProgramDigitalMix(BOOL enable, float gain);
BOOL enable TRUE Digital mix enabled
FALSE Digital mix disabled

float gain ADC gain to DAC in dB
-94.5 dB <= gain <= 0.0 dB (in 1.5 dB steps)

None

This function sets up the digital mix capabilities of the audio codec. With digital
mixing enabled, the output of the analog-to-digital converters (ADCSs) is run
through a gain stage and then digitally mixed with the input to the digital-to-
analog converters (DACs). The codec does not go through autocalibration.

[* enable digital mixing and set -6.0 dB gain */
Audio_ProgramDigitalMix(TRUE, -6.0);

Audio Capture and Playback API 3-33

Audio_Programinputs

Function Name Audio_Programlnputs

Syntax void Audio_ProgramInputs(BYTE Isrc, BYTE rsrc, float Ig, float rg);
Arguments BYTE Isrc Selects which input source to use for the left input to the
audio codec:

AUDIO_LINE Select line input
AUDIO_AUX1 Select auxiliary 1 input
AUDIO_MIXED Select line input with post-mixed DAC

BYTE rsrc Selects which input source to use for the right input to the
audio codec:

AUDIO_LINE Select line input
AUDIO_AUX1 Select auxiliary 1 input
AUDIO_MIXED Select line input with post-mixed DAC

float Ig Sets the audio codec’s left input gain in decibels
0.00dB <=1g <=+22.5dB (+1.5 dB steps)

float rg Sets the audio codec’s right input gain in decibels
0.00dB <=rg<=+22.5dB (+1.5 dB steps)

Return Value None
Description This function programs the inputs to the audio codec.
Example /* program both inputs to LINE with +4.5 dB gain */

Audio_Programinputs(AUDIO_LINE, AUDIO_LINE, 4.5, 4.5);

3-34

Function Name

Syntax

Arguments

Return Value

Description

Example

Audio_SetBufferindexes

Audio_SetBufferIndexes

BOOL Audio_SetBufferindexes(BYTE Capp, BYTE Cisr, BYTE Papp,
BYTE Pisr);

BYTE Capp Application index into capture buffer queue(s)
BYTE Cisr ISR index into capture buffer queue(s)
BYTE Papp Application index into playback buffer queue(s)
BYTE Pisr ISR index into playback buffer queue(s)
BOOL TRUE Success

FALSE Failure, indexes are invalid

This function sets the internal indexes into the buffer queue(s) and allows the
application to specify custom starting points for the indexes. Before calling this
function, you must first call Audio_Install(). Remember that Cisr cannot equal
Capp, and Pisr cannot equal Papp; if these indexes are equal, this function re-
turns FALSE. Also, none of the indexes can exceed or equal the number of
buffers in the queue as specified in the call to Audio_Install(). All four indexes
must be specified, even though only one set (either capture or playback) is
used. See Section 3.2, Audio Buffering, for more information regarding the
buffering structure.

Note:
1) Do not call Audio_SetBufferindexes() while audio is enabled.

2) Thisfunction normally is not needed unless the application requires cus-
tom settings.

Audio_Install(AUDIO_PLAYBACK, AUDIO_PCM8, AUDIO_MONO, 16.0, 8,
100, 6);
Audio_SetBufferindexes(1,5,1,5);

Audio Capture and Playback API 3-35

Audio_SetSampleRate

Function Name Audio_SetSampleRate

Syntax void Audio_SetSampleRate(float Fs);
Arguments float Fs Desired sampling rate in kHz:
5.5125 22.05
6.615 27.4286
8.0 32.0
9.6 33.075
11.025 37.8
16.0 44.1
18.9 48.0
Return Value None
Description This function sets the sample rate of the audio codec. The codec must go

through autocalibration when the sample rate is changed, which could take up
to 400 sample periods.

Example /* set 8.0kHz sampling rate */
Audio_SetSampleRate(8.0);

3-36

Audio_Uninstall

Function Name Audio_Unlnstall

Syntax void Audio_UnlInstall();
Arguments None
Return Value None

Description This functions performs the following actions:

Uninstalls settings set up by Audio_Install()
Disables audio

Frees up buffer queue storage

Disables all audio events

Disables audio codec

Uoooo

Example Audio_Uninstall();

Audio Capture and Playback API 3-37

3-38

Chapter 4

Video Display API

This chapter discusses the video display macros and data types. It also
describes, in alphabetical order, the application programming interface (API)
functions associated with the video display driver for the TMS320C8x software
development board (SDB).

Topic Page
4.1 Video Display APl Macros and Data Types —ccovuun.n. 4-2
4.2 Video OVErlaY 4-8
4.3 Video Display WIiNdOW o 4-9
4.4 Video Display APl Functionsc.cciiiiiiiiiiiinnann.. 4-10

4-1

Video Display APl Macros and Data Types

4.1 Video Display API Macros and Data Types

Table 2—1 describes the macros used by the video display APl and lists the API
functions that use each macro. Figure 4-1 provides definitions for the video
display API data types. These macros and data types, as well as the API func-
tion prototypes, are defined in <display.h>. The object code resides in
sdbdrvs.lib.

Table 4-1. Video Display APl Macros

(a) SDB pixel formats

Lookup Data Overlay

Macro Name Key Description of Pixel Bits Bits Bits

#define DISPLAY_P8 s19 8-bit pseudocolor: 8 0
dddddddd

#define DISPLAY_DXRGB d2 32-bit direct color graphics with overlay field: 24 8
XXXXXXXXITrrrrrrggggggggbbbbbbbb

#define DISPLAY_DBGRX d4 32-bit direct color graphics with overlay field: 24 8
bbbbbbbbggggggggrrrrrrrrx X X X XX X X

#define DISPLAY_D565 d7 16-bit direct color graphics: 16 0
rrrrrggggggbbbbb

#define DISPLAY_D555 d10 16-bit direct color graphics: 15 1
xrrrrrgggggbbbbb

#define DISPLAY_D664 di3 16-bit direct color graphics: 16 0
rrrrrrggggggbbbb

#define DISPLAY_D444 di6 16-hit direct color graphics with overlay field: 12 4
rrrrggggbbbbx x x x

#define DISPLAY_TXRGB t2 32-bit true color graphics: 24 0
XXXXXXXXITITITrggggggggbbbbbbbb

#define DISPLAY_TBGRX t4 32-bit true color graphics: 24 0
bbbbbbbbggggggggarrrrrrrrxxxxxxxx

#define DISPLAY_T565 t7 16-bit true color graphics: 16 0
rrrrrggggggbbbbb

#define DISPLAY_T555 t10 16-bit true color graphics: 15 0
xrrrrrgggggbbbbb

#define DISPLAY_T664 t13 16-bit true color graphics: 16 0
rrrrrrggggggbbbb

#define DISPLAY_T444 t16 16-hit true color graphics: 12 0

rrrrggggbbbbxxxx

Legend: d data bits
g bits of green field
r bits of red field

Note:

4-2

b bits of blue field
x bits of do not care field

These macros are used by the function Display_SetMode().

Video Display APl Macros and Data Types

Table 2-1. Video Display API Macros (Continued)

(b) Output modes of the SDB graphics

Macro Name Value Description

#define DISPLAY_PASSTHROUGH 0x01 Set the graphics output to VGA pass-through. The pass-
through cable must be connected for this mode.

#define DISPLAY_VIDEO 0x02 Set the graphics output to video mode (that is, the output of
the RAMDAC).
#define DISPLAY_OVERLAY 0x03 Set the graphics output to mixed overlay mode. The input

fromthe VGA pass-through cable is mixed with the RAMDAC
output to form video overlaid onto VGA. The pass-through
cable must be connected for this mode.

Notes: 1) For information on how to connect the VGA pass-through cable, refer to the TMS320C8x Software Development
Board Installation Guide.

2) These macros are used by the function Display_SetMode().

(c) Display buffer identifiers

Macro Name Value Description

#define DISPLAY_INACTIVE 0x01 Inactive display buffer
#define DISPLAY_ACTIVE 0x02 Active display buffer
#define DISPLAY_BUFF1 0x03 Display buffer number 1
#define DISPLAY_BUFF2 0x04 Display buffer number 2

Note: These macros are used by the following functions:
Display_GetBuffer()
Display_SetPixel()

Video Display API 4-3

Video Display APl Macros and Data Types

Figure 4-1. Video Display API Data Types

(a) Monitor timing parameters for the 'C80 frame timer controller

typedef struct {

char active;
USHORT Rh;
USHORT Ryv;

/* Active: 0O=don’t use, 1=can use, —1=end of table *

~

* Horizontal resolution (in pixels) */
/* Vertical resolution (in pixels) */

float
float
float
float
float
float
float

Fv;
Fh;
Fd;
Ths;
Thbp;
Tvs;
Tvbp;

/* Vertical frequency, refresh rate (in Hz) */

/* Horizontal frequency, line rate (in kHz) */

/* Pixel frequency, dot clock (in MHz) */
[* Horizontal sync interval (in Us)

/* Horizontal back porch interval (in us)
* Vertical sync interval (in us)

/* Vertical back porch interval (in Us)

BYTE Sh;
BYTE Sv;

} DISPLAY_MT;

/* Horizontal sync polarity: 0=—, 1=+ */
/* Vertical sync polarity: 0=—, 1=+ */

*/
*/
*/
*/

(b) Type definition of DISPLAY _MET

typedef struct {

BYTE
BYTE
BYTE
BYTE BPP;
USHORT Rh;
USHORT Ry;
ULONG Vram;
ULONG

FtNumber;
FclkRatio;
RclkRatio;

VramLen,;

ULONG
ULONG
ULONG
ULONG

Buff1;
Buff2;
Pitch;
CurBuff;

USHORT x;
USHORT v;
USHORT dx;
USHORT dy;
float Fv;
float Fh;
float Fd;
float Ths;
float Thbp;
float Tvs;
float Tvbp;

} DISPLAY_MET;

[*’C80 frame timer used: 0 or 1 */
[* DCLK/FCLK ratio (default = 8) */
/* DCLK/RCLK ratio */
[* Bits per pixel: 8, 16, or 32 */
/* Horizontal resolution (in pixels) */
[* Vertical resolution (in pixels) */
/* Address of the start of VRAM */
/* Length of VRAM (in bytes) */
[* Frame buffer 1 address */
[* Frame buffer 2 address */
[* Frame buffer pitch (in bytes) */
[* Current frame buffer address */
[* X-coordinate of display window (in pixels) */
[* Y-coordinate of display window (in pixels) */
[* Width of display window (in pixels) */
[* Height of display window (in pixels) */
[* Vertical frequency, refresh rate (in Hz) */
/* Horizontal frequency, line rate (in kHz) */
/* Pixel frequency, dot clock (in MHz) */
/* Horizontal sync interval (in us)
[* Horizontal back porch interval (in us)
/* Vertical sync interval (in Us)
[* Vertical back porch interval (in us)

*
*/
*
*/

4-4

4.1.1 Color Modes

Video Display APl Macros and Data Types

The pixel bit descriptions in Table 2—1(a) refer to three color modes: pseudo,
direct, and true. Pseudocolor mode uses an 8-bit color value as a lookup index
into the three color palette RAMs (one each for red, green, and blue) of the dis-
play RAMDAC. Pseudocolor mode is sometimes referred to as grayscale col-
or. True color mode is similar to pseudocolor mode except three separate in-
dexes are extracted from the color value and are used to index the color palette
RAMSs, one each for the red, green and blue. Direct color mode extracts the
red, green, and blue indexes from the color value, bypasses the color palette
RAMSs, and outputs these values directly to the color digital-to-analog convert-
ers (DACs).

4.1.2 Monitor Timing Parameters

The structure type definition in Figure 4—1(a) defines the monitor timing pa-
rameters for programming the frame timer controller in the 'C80. Generally,
you define a table of such structures with one entry for each display mode.

The parameters defined in the MT (monitor timing) structure derive the timing
register values of the 'C80 frame timer controller. Figure 4—2 shows the layout
of a typical video frame. All of the graphic modes defined in this API are non-
interlaced, that is, each frame consists of a single vertical field and all of the
lines in the frame are scanned out sequentially, one right after the other. This
method of scanning is also called a progressive scan.

Figure 4-2. Relationship Between the Display Resolution and the Video Frame

Blanking ——

R Total vertical
frame height

Active area

«—— Ry, —»

¢ Total horizontal N
frame width

Video Display API 4-5

Video Display APl Macros and Data Types

Figure 4-3.

A typical value of Ry is 640 pixels and a typical value of R, is 480 pixels.
Generally, the horizontal active area is about 76% of the total horizontal frame
width, and the vertical active area is about 94% of the total vertical frame
height.

Because the MT structure does not define the total frame size, you must derive
it by calculating pixels per line for the total horizontal frame width and lines per
frame for the total vertical frame height. These calculations assume MHz
frequencies:

Fy (million pixels/s) F,

Total horizontal frame width = F. (million lines/s) F, (pixels/line)
. . _ Fy, (million pixels/s) F, .
Total vertical frame height = F, (million frames/s) o= (lines/frame)

Figure 4-3 illustrates the horizontal sync and porch times in relation to the
frame. The intervals tj,g and thbp correspond to the sync and back porch inter-
vals of the horizontal sync and blanking signals. Similarly, t,s and typp have the
same relationship to the vertical sync and blanking signals. For more details
on the video timing signals, refer to the TMS320C80 (MVP) Video Controller
User’s Guide.

Horizontal Sync and Porch Times of the Video Frame

Start of line
Horizontal : ;
sync signal ' |
Horizontal Front , Sync , Back porch Active
blanking porch | area
signal | |
F ths_‘ :

! < thpp —V

Video Display APl Macros and Data Types

The frame timer registers derived from the data in the MT structure for both
horizontal and vertical signals are:

HESYNC (horizontal end sync)
HEBLNK (horizontal end blank)
HSBLNK (horizontal start blank)
VESYNC (vertical end sync)
VEBLNK (vertical end blank)
VSBLNK (vertical start blank)

Uouooo

The following calculations are generalized. In the actual code, rounding is
done and the horizontal registers are adjusted for the FCLK (frame clock) ratio.
These calculations assume MHz frequencies and time intervals in ps times:

HESYNC = tyq* Fq (pixels)

HEBLNK = (ths * thpp) * Fq (pixels)
HSBLNK = (thg+ thbp) * Fq + Ry, (pixels)
VESYNC = tyg + Fp (lines)

VEBLNK = (tys * typp) * Fp (lines)
VSBLNK = (tys * typp) * Fh + Ry (lines)

Remember that you use a table of MT structures to obtain the monitor timing
parameters. You supply Ry, Ry, and Fy; then the software uses these values
tofind amatch inthe table. Once a match is found, Fy, Fy, ths, thpp. tys, and typp
are read from the table.

To create a custom table, copy the default table to your own code, modify it as
needed, and pass a pointer to it to the Display_InstallTimingTable() function.
Then all timing parameters will be read from this custom table. Example 4-1
illustrates an MT table of custom timing parameters. The values shown in
Example 4-1 are the default values, but the structure array MyTimingTable is
a separate entity from the default table. Once you create your custom table,
you modify the default values.

Video Display API 4-7

Video Display APl Macros and Data Types / Video Overlay

Example 4-1. Sample MT Table of Custom Timing Parameters

/*
/*

e et arn et Lan Tate LatnLan)

A

PRPPRPRPPRRR

Rh
pels

640,
640,
800,
1024,
1024,
1280,
1600,
0000,

static DISPLAY_MT MyTimingTable[] ={

Rv Fv Fh Fd Ths Thbp Tvs Tvbp Sh Sv ¥/
pels Hz kHz MHz us us us us */
480, 60.0, 31.4, 25.2, 1.00, 2.00, 100.0, 600.0, O, O},

480, 72.0, 37.7, 31.2, 1.00, 3.00, 100.0, 600.0, O, O},
600, 60.0, 37.8, 40.0, 1.00, 2.00, 100.0, 400.0, 0, 0},
768, 60.0, 48.3, 65.0, 1.00, 2.75, 100.0, 350.0, O, O},
768, 70.0, 56.4, 75.0, 1.00, 2.00, 100.0, 350.0, 0, 0},
1024, 60.0, 63.9, 114.0, 1.00, 2.40, 100.0, 400.0, 0, 0},
1200, 60.0, 76.2, 156.0, 1.00, 2.00, 100.0, 600.0, 0O, 0},
0000, 00.0, 00.0, 000.0, 0.00, 0.00, 000.0, 000.0, O, O}

In the application code, call Display_InstallTimingTable(MyTimingTable) to de-
fine your custom table.

4.1.3 Metric Parameters

The type definition for DISPLAY_MET in Figure 4—1(b) defines metric parame-
ters of the current display state. Define a variable of this type, then pass a
pointer to itas an argument to Display _GetMetrics(). Display _GetMetrics() fills
in the structure members.

4.2 Video Overlay

Use the Display_SetOverlayParams() function to set up the video overlay fea-
ture of the SDB. Because of the way video overlay is achieved on the SDB, it
is important that the ‘C80-RAMDAC timing match with the timing of the VGA
pass-through input. Generally, the VGA inputis the VGA output of the graphics
card that is currently installed in your PC. The timing of one VGA card differs
from another VGA card, so you must adjust the overlay timing for each card
that you use. Some trial and error may be necessary to get the right settings.

Video Display Window

4.3 Video Display Window

The API supplies functions for setting up a display window by calculating the
timing parameters for full resolution and then adjusting the blanking parame-
ters to produce the window. The default is a window with the same dimensions
as the resolution of the display. Figure 4—4 illustrates the window feature. Seri-
al register transfer (SRT) cycles are generated only during active time and not
during blanking. This means that pixels are shifted out of the VRAMs only
when the raster beam is within the specified window. The active areais defined
by blanking.

Unsupported Resolutions Could Damage Your Monitor

Some monitors do not support the higher resolutions. Check your monitor
specifications before attempting to drive it at a high resolution. Some
monitors do not support resolutions greater than 1024 x 768. Remember
also to verify the supported refresh rates.

If you have only 2M bytes of VRAM, you cannot set up a 1024 x 768 display
with 32 BPP (bits per pixel) because that would require 1024 x 768 x 4 =
3 145 728 bytes, which is more than 2M bytes. You can, however, set up a win-
dow of 512 x 512 at 32 BPP within the 1024 x 768 display. This would require
only 512 x 512 x 4 =1 048 576 bytes, which is much less than 2M bytes.

Figure 4—-4. Video Display Driver Window Feature

— x —»
— dx —p
4 N T
Y : :
v ' '
? : ; Total vertical
- otal vertica
dy | 'Dgé\ge ' Rv frame height
L :
T]
])
Blanking - .:\

Maximum window
size and position

Total horizontal
frame width — |

Video Display API 4-9

Video Display API Functions

4.4 Video Display API Functions

4-10

Listed below in alphabetical order are the video display API functions. Use this
list as a table of contents to the video display API functions.

Function Page

Display_Disable
Display Enable
Display_FillBuffs
Display_GetBuffer
Display_GetMetrics
Display_GetTvpRegs
Display Init
Display_InstallSema
Display_InstallTimingTable
Display_MoveWindow
Display ReadPalette
Display_SetBufferAddresses
Display_SetDotClock
Display_SetGreyScalePalette ...

Function
Display_SetMode
Display_SetOverlayParams . ..
Display_SetPaletteAddress . ..
Display_SetPitch
Display_SetPixel
Display_SetSyncPolarities
Display_SetVgaPalette
Display_SetWindow
Display_ToggleBuffers
Display_TvpRegIn
Display_TvpRegOut
Display_WaitEndOfFrame
Display_WritePalette

Page
4-25
4-27
4-29
4-30
4-31
4-32
4-33
4-34
4-35
4-36
4-37
4-38

Function Name

Syntax
Arguments
Return Value

Description

Example

Display_Disable

Display_Disable

void Display_Disable();
None
None

This function disables the display hardware by turning off the frame timer con-
troller and the serial-data clock inputs to the 'C80.

BOOL success;

Display_Init();

success = Display_SetMode(640, 480, 60, Display_P8,
DISPLAY_VIDEO);

if (success) {
Display_Enable();
/* ... do main programming ... */

}
Display_Disable();

Video Display API 4-11

Display Enable

Function Name

Syntax
Arguments
Return Value

Description

Example

4-12

Display_Enable

void Display_Enable();
None
None

This function enables the display hardware by turning on the frame timer con-
troller and the serial-data clock inputs to the 'C80.

When you call Display_SetMode(), the display hardware is disabled, so you
must call Display_Enable() after Display_SetMode() to enable the display
hardware. This allows you to make other display adjustments after calling
Display_SetMode() and before enabling the display. Making adjustments
while the display is disabled eliminates flicker. For example, you would call
Display_SetWindow() after calling Display_SetMode() but before calling
Display_Enable().

BOOL success;
Display_Init();

success = Display_SetMode(640, 480, 60, DISPLAY_P8,
DISPLAY_VIDEO);

if (success) {
Display_Enable();
[* ... do main programming ... */

}
Display_Disable();

Function Name

Syntax

Arguments
Return Value

Description

Example

Display_FillBuffs

Display_FillBuffs

void Display_FillBuffs(ULONG val);

ULONG val Value to fill display buffers with
None

This function fills both display buffers with the value specified. The unit of stor-
age is a ULONG. Therefore, if the display is 16 BPP, the val argument must
have the fill value in both the upper and lower 16 bits.

Display_SetMode(640,480,60,DISPLAY_T555,DISPLAY_VIDEO);
Display_FillBuffs(Ox001F001F); /* fill with blue */

Video Display API 4-13

Display GetBuffer

Function Name

Syntax

Arguments

Return Value

Description

Example

4-14

Display_GetBuffer

ULONG Display_GetBuffer(BYTE buffid);

BYTE buffid DISPLAY_INACTIVE Return address of inactive display buffer
DISPLAY_ACTIVE Return address of active display buffer
DISPLAY_BUFF1 Return address of display buffer number 1

DISPLAY_BUFF2 Return address of display buffer number 2

ULONG Address of the specified buffer

This function returns the address of one of the display buffers. The display driv-
er manages two display buffers, Buffl and Buff2. When double buffering is in
use, one of these buffers is active and the other is inactive. A call to
Display_ToggleBuffers() reverses the buffers. The active buffer is the one that
the RAMDAC is receiving pixels from. An application should avoid writing to
the active buffer because this may cause unwanted visual effects. Generally,
an application calls Display_ToggleBuffers(), then immediately calls this func-
tion.

ULONG InActiveBuff;
Display_SetMode(640,480,60,DISPLAY_T555,DISPLAY_VIDEO);
InActiveBuff = Display_GetBuffer(DISPLAY_INACTIVE);

Function Name
Syntax

Arguments

Return Value

Description

Example

Display _GetMetrics

Display_GetMetrics

void Display_GetMetrics(DISPLAY_MET *M);

DISPLAY_MET *M Pointerto the DISPLAY_MET structure of metric param-
eters

DISPLAY_MET consists of the following members:

BYTE FtNumber /*’C80 frame timer used: O or 1 */

BYTE FclkRatio /* DCLK/FCLK ratio (default = 8) */

BYTE RclkRatio /* DCLK/RCLK ratio */
BYTE Bpp [* Bits per pixel: 8, 16, or 32 */

USHORT Rh [* Horizontal resolution (in pixels) */

USHORT Rv [* Vertical resolution (in pixels) */

ULONG Vram /* Address of the start of VRAM */

ULONG VramLen /* Length of VRAM (in bytes) */
ULONG Buffl [* Frame buffer 1 address */
ULONG Buff2 [* Frame buffer 2 address */
ULONG Pitch /* Frame buffer pitch (in bytes) */

ULONG CurBuff /* Current frame buffer address */

USHORT x /* X-coord of display window (in pixels) */

USHORT y /* Y-coord of display window (in pixels) */

USHORT dx [* Width of display window (in pixels) */

USHORT dy [* Height of display window (in pixels) */

float Fv [* Vertical frequency, refresh rate (in Hz) */

float Fh /* Horizontal frequency, line rate (in kHz) */

float Fd [* Pixel frequency, dot clock (in MHz) */

float Ths /* Horizontal sync interval (in us) */
float Thbp [* Horizontal back porch interval (in ps) */
float Tvs /* Vertical sync interval (in us) */
float Tvbp [* Vertical back porch interval (in Us) */
None

This function fills in the DISPLAY_MET structure pointed to by M with the cur-
rent display state metrics.

BOOL success;
ULONG Pitch;
DISPLAY_MET M;

Display_Init();
success = Display_SetMode(640, 480, 60, DISPLAY_PS,
DISPLAY_VIDEO);

if (success) {
Display_GetMetrics(&M);
Pitch = M.Pitch;
Display_Enable();
/* ... do main programming ... */

}
Display_Disable();

Video Display API 4-15

Display GetTvpRegs

Function Name

Syntax
Arguments

Return Value

Description

Example

4-16

Display_GetTvpRegs

void Display_GetTvpRegs(BYTE *R);
BYTE *R Pointer to a preallocated array of 64 bytes

None

This function reads the 64 internal RAMDAC registers and stores them into the
array pointed to by R. The R argument must point to 64 bytes of preallocated
memory. This function does not alter any of the registers. Refer to the
TVP3020 Video Interface Palette Data Manual for register descriptions.

BYTE TvpRegs[64];
/* ... other setup ... */
Display_GetTvpRegs(R);

/* ... other processing ... */

Function Name

Syntax

Arguments

Return Value

Description

Example

Display_Init

BOOL Display_Init();

None

BOOL TRUE Initialization succeeded
FALSE Initialization failed

This function initializes the display hardware as follows:

Disables the 'C80 frame timer controller
Disables the RAMDAC

Writes all of the RAMDAC registers with zero
Programs the RAMDAC palette for grayscale
Sets the output mode to DISPLAY_VIDEO

Uoooo

Display_Init();

[* ... other processing ... */

Video Display API 4-17

Display _InstallSema

Function Name

Syntax
Arguments

Return Value

Description

Example

4-18

Display_InstallSema

long Display_InstallSema(long Semald);
long Semald ID of an open semaphore as returned by TaskOpenSema()

long Previous semaphore 1D

This function installs a semaphore into the display driver. The semaphore sig-
nals the application when a display buffer toggle request has completed. Tog-
gling display buffers is only suitable during vertical blanking. Therefore, when
the application calls Display_ToggleBuffers(), the toggle does not occur right
away; rather, the toggle occurs at the next vertical blanking period. When the
toggle occurs, the semaphore is signaled. This protocol allows the application
to request a buffer toggle via Display_ToggleBuffers(), then wait until the
toggle actually happens via TaskWaitSema(Semald).

Note:

The application must open the semaphore before calling this function. The
semaphore is signaled only when the display is enabled.

long DisplaySemald;
ULONG Buff;

DisplaySemald = TaskOpenSema(-1,0);

Display_Init();

Display_InstallSema(DisplaySemald);
Display_SetMode(640,480,60,DISPLAY_T555,DISPLAY_VIDEO);
Display_Enable();

while (1) {
Display_ToggleBuffers();
TaskWaitSema(DisplaySemald);
Buff = Display_GetBuffer(DISPLAY_INACTIVE);

[* do some processing here */

Function Name

Syntax

Arguments
Return Value

Description

Example

Display_InstallTimingTable

Display_InstallTimingTable

void Display_InstallTimingTable(DISPLAY_MT *Table);

DISPLAY_MT *Table Pointer to a table of monitor timing structures.
None

This function installs a custom monitor timing table. If you wish to install a cus-
tom table into the driver, call this function before calling Display_SetMode().
Care must be taken when driving monitors with custom timing settings. You
could copy the default table from the display driver module into an application
and then modify it.

DISPLAY_MT MyTimingTable[] = {
{... table data ... },
{... table data ... },
{... table data ... },
3
Display_Init();
Display_InstallTimingTable(MyTimingTable);

Display_SetMode(640,480,60,DISPLAY_T555,DISPLAY_VIDEO);
Display_Enable();

Video Display API 4-19

Display MoveWindow

Function Name

Syntax

Arguments

Return Value

Description

Example

4-20

Display_MoveWindow

void Display_MoveWindow(USHORT x, USHORT y);

USHORT x X-coordinate (top left corner) of display window (in pixels)
USHORT y Y-coordinate (top left corner) of display window (in pixels)

None
This function moves the display window to a new location on the screen.

If the display hardware is enabled when you call this function, the function will
wait until vertical blanking occurs before modifying any registers. No checking
is done on the arguments, so your application must make sure the window is
valid (that is, within full-screen resolution). Also, the horizontal pixel granularity
is dependentonthe FCLK (frame clock) ratio. The defaultis 4, so the horizontal
window coordinate must be evenly divisible by 4.

Before calling Display_ MoveWindow(), you must first call
Display_SetWindow(). See page 4-34 for more information about
Display_SetWindow(). Both Display_Init() and Display SetMode() reset the
window parameters to their default state (x = 0, y = 0, dx = Rh, dy = Rv).

BOOL success;
Display_Init();

success = Display_SetMode(1024, 768, 60, DISPLAY_TXRGB,
DISPLAY_VIDEO);

if (success) {
Display_SetWindow(0, 0, 512, 512);
Display_MoveWindow(256, 128);
Display_Enable();
[* ... other processing ... */

}
Display_Disable();

Function Name

Syntax

Arguments

Return Value

Description

Example

Display_ReadPalette

Display_ReadPalette

void Display_ReadPalette(BYTE *R, BYTE *G, BYTE *B);

BYTE *R Pointer to the variable that will receive a red value
BYTE *G Pointer to the variable that will receive a green value
BYTE *B Pointer to the variable that will receive a blue value
None

This function reads an RGB triple (that is, three successive bytes of RGB data)
from the current palette address in the RAMDAC. After each call, the palette
address increments automatically. Normally, you should call
Display_SetPaletteAddress() and then call Display ReadPalette()
repeatedly to read out the RAMDAC palette RAM. See page 4-29 for more
information on Display_SetPaletteAddress(). You do not have to enable the
display hardware in order to use Display ReadPalette().

Note:

See page 4-33 for a listing of the RAMDAC palette RAM values for VGA col-
ors (in RGB triples).

BYTE R,G,B;

Display_SetPaletteAddress(0x00);

[* auto-address increment */

Display_ReadPalette(&R, &G, &B);
Display_ReadPalette(&R, &G, &B);
Display_ReadPalette(&R, &G, &B);

Video Display API 4-21

Display SetBufferAddresses

Function Name

Syntax

Arguments

Return Value

Description

Example

4-22

Display_SetBufferAddresses

void Display_SetBufferAddresses(ULONG Buffl, ULONG Buff2);

ULONG Buffl VRAM address of frame buffer 1
ULONG Buff2 VRAM address of frame buffer 2

None

Call this function if your application requires frame buffers to be located differ-
ently than the default. By default (by calling Display_SetMode()) the address
of frame buffer 1 is set to the start of VRAM, and the address of frame buffer
2 is set to the midpoint in VRAM. Each time you call Display_ToggleBuffers(),
the active display buffer toggles between these two buffers. See page 4-35 for
more information on Display_ToggleBuffers().

Note: If you want to change the default frame buffer addresses, you must
call Display_SetBufferAddresses():

[aftercalling Display_SetMode() (see page 4-25 for more information)
(1 before calling Display_Enable() (see page 4-12 for more information)

BOOL success;

success = Display_SetMode(800, 600, 60, DISPLAY_T565,
DISPLAY_VIDEO);

if (success) {
Display_SetBufferAddresses(0xC0000000, 0xC0100000);
Display_Enable();
/* ... other processing ... */

}
Display_Disable();

Function Name

Syntax

Arguments

Return Value

Description

Example

Display_SetDotClock

Display_SetDotClock

float Display_SetDotClock(float Fd);

float Fd The desired dot clock frequency:
10 MHz <= F4 <= 170 MHz

float The actual dot clock frequency setting (in MHz)

This function programs the pixel clock generator for the desired frequency (Fg).
Because the clock generator operates at quantum levels, the actual frequency
may differ slightly from the desired frequency. Generally, this difference is in-
significant. The clock doubling input of the RAMDAC is used so the dot clock
is actually programmed to half of that specified, then doubled. You should ig-
nore this clock doubling and treat both the dot clock argument and return value
as the true dot clock frequency.

For example, if you require a dot clock of 64 MHz, you should call Display_Set-
DotClock(64.0). In this case, the function programs the pixel clock generator
for 32.0 MHz so that the frequency is doubled in the RAMDAC to 64.0 MHz.
The return value of this function would then be 64.0 MHz £ quantization error.

Notes:

1) Generally, you should not call Display SetDotClock() because it is
called by Display_SetMode(). See page 4-25 for more information on
Display_SetMode().

2) Call Display_SetDotClock() only for custom displays.

float ActualFrequency;

/* Program the dot clock to 63.7 MHz */
ActualFrequency = Display_SetDotClock(63.7);

Video Display API 4-23

Display SetGreyScalePalette

Function Name

Syntax
Arguments
Return Value

Description

Example

4-24

Display_SetGreyScalePalette

void DisplaySetGreyScalePalette();
None
None

This function programs the RAMDAC palette RAM for grayscale by setting
each color cell in the palette array to its offset in the array. For instance, the
cell at offset Ox7F is set to 0x7F. This is done for all three RAM arrays: red,
green, and blue. The grayscale palette is the default.

Notes:
1) This function is called by Display_Init() and Display_SetMode().

2) The display does not have to be enabled to call this function, but you
must call Display_SetMode() first. See page 4-25 for more information
on Display_SetMode().

Refer to the following API functions for customizing the color palette:

Function See Page
Display_ReadPalette() 4-21
Display_SetPaletteAddress() 4-29
Display_WritePalette() 4-39

BOOL success;

success = Display_SetMode(800, 600, 60, DISPLAY_T565,
DISPLAY_VIDEO);

if (success) {
Display_SetGreyScalePalette();
Display_Enable();
[* ... other processing ... */

}
Display_Disable();

Function Name

Syntax

Arguments

Return Value

Description

Display_SetMode

Display_SetMode

BOOL Display_SetMode(USHORT Rh, USHORT Ry, float Fv, char *PixFmt,
BYTE Output);

USHORT Rh
USHORT Rv
float Fv

char *PixFmt

BYTE Output

BOOL

Horizontal resolution (in pixels)
Vertical resolution (in pixels)
Vertical frequency refresh rate (in Hz)

Pixel format designator (see Table 2—1 on page 2-8 for
more detailed descriptions):

DISPLAY_P8 8 BPP
DISPLAY_DXRGB 32 BPP
DISPLAY_DBGRX 32 BPP
DISPLAY_D565 16 BPP
DISPLAY_D555 16 BPP
DISPLAY_D664 16 BPP
DISPLAY_D444 16 BPP
DISPLAY_TXRGB 32 BPP
DISPLAY_TBGRX 32 BPP
DISPLAY_T565 16 BPP
DISPLAY_T555 16 BPP
DISPLAY_T664 16 BPP
DISPLAY_T444 16 BPP

Display output mode:
DISPLAY_PASSTHROUGH Select VGA pass-through

DISPLAY_VIDEO Select RAMDAC output
DISPLAY_OVERLAY Select overlaid video output

TRUE Mode is supported by monitor timing table.
FALSE Mode is not supported by monitor timing table.

This function sets up a particular display mode. Itis the mostimportant function
in the display API. For most applications, you need to use only the following
functions to set up your display.

(1 Display_Init()

(1] Display_SetMode()
(1 Display_Enable()
(1 Display_Disable()

Note:

Because Display_SetMode() disables the display hardware, you must call
Display_Enable() after Display_SetMode() to reenable the display hard-

ware.

Video Display API 4-25

Display SetMode

Example

4-26

Remember that a table of MT structures is used to obtain the monitor timing
parameters. You supply Ry, Ry, and F; then the software uses these values
to find a match in the table.

No argument checking is done to ensure that the parameters are valid. There-
fore, your application must supply valid parameters.

Unsupported Resolutions Could Damage Your Monitor

Some monitors do not support the higher resolutions. Check your monitor
specifications before attempting to drive it at a high resolution. Some
monitors do not support resolutions greater than 1024 x 768. Remember
also to verify the supported refresh rates.

If you have only 2M bytes of VRAM, you cannot set up a 1024 x 768 display
with 32 BPP (bits per pixel) because that would require 1024 x 768 x 4 =
3 145 728 bytes, which is more than 2M bytes. You can, however, set up win-
dow of 512 x 512 at 32 BPP within the 1024 x 768 display. This would require
only 512 x 512 x4 =1 048 576 bytes, which is much less than 2M bytes.

BOOL success;

success = Display_SetMode(640, 480, 60, DISPLAY_T565,
DISPLAY_VIDEO);

if (success) {
Display_Enable();
/* ... other processing ... */

}
Display_Disable();

Function Name

Syntax

Arguments

Return Value

Description

Display_SetOverlayParams

Display_SetOverlayParams

void Display_SetOverlayParams(short adx, short ady, short bdx, short bady,
float dThbp, float dTvbp, float Fd, float dFd);

short adx Signed offset to HSAREA (in pixels)
short ady Signed offset to VSAREA (in pixels)
short bdx Signed offset to HEBLNK (in pixels)
short bdy Signed offset to VEBLNK (in pixels)
float dThbp Signed offset to thbp (in ps)

float dTvbp Signed offset to tybp (in ps)

float Fd Replacement dot clock (in MHz)

float dFd Signed offset to the dot clock (in MHz)
None

This function sets the video overlay parameters used when
DISPLAY_OVERLAY mode is specified in a call to Display_SetMode(). The
driver sets up the display like normal, then adjusts certain parameters to ac-
count for timing differences between the RAMDAC graphics and the VGA
graphics input from the VGA pass-through cable. The AREA and BLNK signals
are adjusted according to adx, ady, bdx, and bdy. The back porch timing pa-
rameters are adjusted according to dThbp and dTvbp. The Fd argument is
special in that, if it is zero, the default dot clock is used. If Fd is nonzero, the
Fd parameter is used instead of the default dot clock. Generally, the default dot
clock is close to that of the VGA input from the PC graphics card, so Fd can
be set to zero. The dFd parameter is a signed offset to the dot clock whether
itis the default dot clock or the dot clock defined by the Fd parameter. A display
window must be used when the display hardware is in overlay mode. The dis-
play resolution specified in Display_ SetMode() should be the same as the
VGA graphics card input.

Video Display API 4-27

Display SetOverlayParams

Example

4-28

/* set up an overlay window onto a 640x480 display */

[*adx = -16 pixels */
[*ady =0 pixels */
bdx =0 pixels */
[*bdy = 12 pixels */
/*dThbp = 1.0 us */
/*dTvbp = -0.5 us */
/*Fd = 0.0 MHz (use default dot clock) */
/*dFd = 1.051 MHz */
Display_Init();
Display_SetOverlayParams(-16, 0, 0, 12, 1.0, —0.5, 0.0,

1.051);

Display_SetMode(640,480,60,DISPLAY_T555,DISPLAY_OVERLAY);
Display_SetWindow(96,96,128,64);
Display_Enable();

Function Name
Syntax

Arguments
Return Value

Description

Example

Display_SetPaletteAddress

Display_SetPaletteAddress

void Display_SetPaletteAddress(BYTE ad);

BYTE ad Offset into the RAMDAC palette RAM

None

This function sets the read and write pointers of the color palette RAM to the
specified address. Once these pointers are set, you can call one of the follow-
ing functions:

Function Description See Page

Display_ReadPalette() To read the color palette data 4-21
Display_WritePalette() To modify the color palette data 4-39

BYTE R,G,B;

Display_SetPaletteAddress(0x00);
Display_ReadPalette(&R, &G, &B);

Video Display API 4-29

Display SetPitch

Function Name
Syntax

Arguments
Return Value

Description

Example

4-30

Display_SetPitch

void Display_SetPitch(ULONG pitch);

ULONG pitch Desired frame buffer pitch (in bytes)
None

This function sets the pitch of the display frame buffer. The pitchis the number
of bytes from the start of one line to the start of the next line. By default, the
pitch is set to the line width in bytes. For instance, if you call Display_Set-
Mode(1024, 768, 60, DISPLAY_T565, DISPLAY_ VIDEO), then the pitch is
1024 pixels x 2 bytes/pixel = 2048 bytes, or 0x0800 by default.

Make sure that you do not try to set a pitch that is less than the line width (in
bytes). Setting a pitch that is less than the line width may result in
semiomnipresent pixels on the screen; that is, a particular pixel will appear to
be at two locations on the screen at once. The number of lines in the active
frame times the pitch is the amount of VRAM needed for a single frame buffer.
For example, 1024 x 2048 = 2 097 152 bytes = 2M bytes.

BOOL success;

success = Display_SetMode (1024, 768, 60, DISPLAY_T565,
DISPLAY_VIDEO);

if (success) {
Display_SetPitch(0x0800);
Display_Enable();
[* ... other processing ... */

}
Display_Disable();

Function Name

Syntax

Arguments

Return Value

Description

Example

Display_SetPixel

Display_SetPixel

void Display_SetPixel(USHORT x, USHORT y, ULONG val, BYTE buffid);

USHORT x
USHORT y
ULONG val
BYTE buffid

None

x (horizontal) position of pixel to set

y (vertical) position of pixel to set

Value to store at pixel location

Which display buffer to store value into:
DISPLAY_INACTIVE Inactive display buffer
DISPLAY_ACTIVE Active display buffer
DISPLAY_BUFF1 Display buffer number 1
DISPLAY_BUFF2 Display buffer number 2

This function is a utility used to set a single pixel in one of the display buffers.
The function detects whether the display is set up for 8, 16, or 32 BPP and uses
only that part of the val argument. This function is inefficient and should be
used only for a test.

USHORT x,y;

Display_SetMode(640,480,60,DISPLAY_T555,DISPLAY_VIDEO);

Display_Enable();

[* fill entire active buffer with blue pixels one pixel at */

/* a time

*/

for (x=0; x<640; x++) {
for (y=0; y<480; y++) {
Display_SetPixel(x, y ,0x001F, DISPLAY_ACTIVE);

}

Video Display API 4-31

Display SetSyncPolarities

Function Name
Syntax

Arguments

Return Value

Description

Example

4-32

Display_SetSyncPolarities

void Display_SetSyncPolarities(BYTE Sh, BYTE Sy, BYTE Pen);

BYTE Sh Horizontal sync polarity: 0 =—, 1 = +
BYTE Sv Vertical sync polarity: 0 =—, 1 = +
BYTE Pen Pixel clock enable polarity: 0=—, 1=+
None

This function sets the polarities of the horizontal and vertical sync signals. By
default, the sync polarities are set according to the parameters in the monitor
timing (MT) table. (See Figure 4-1(a) on page 4-4 for the definition of the MT
data structure.) Set an argument to 0 to invert the sync signal (negative sync)
or setitto 1 for positive sync. The Pen argumentis used to invert the pixel clock
generator enable signal.

BOOL success;

success = Display_SetMode(640, 480, 60, DISPLAY_T565,
DISPLAY_VIDEO);

if (success) {
Display_SetSyncPolarities(0,1,0);
Display_Enable();
[* ... other processing ... */

}
Display_Disable();

Function Name

Syntax
Arguments
Return Value

Description

Example

Display _SetVgaPalette

Display_SetVgaPalette

void Display_SetVgaPalette();
None
None

This function programs the RAMDAC palette RAM for VGA colors. Only 16
VGA colors are defined, so they are repeated 16 times to fill the color palette
RAM (16 x 16 = 256). The display does not have to be enabled before you call
this function, but you must call Display_SetMode() first. See page 4-25 for
more information on Display_SetMode().

The following table lists the RAMDAC's palette RAM values for VGA colors (in
RGB triples):

Color Red Green Blue

0 Black 0x00 0x00 0x00
1 Blue 0x00 0x00 0x80
2 Green 0x00 0x80 0x00
3 Cyan 0x00 0x80 0x80
4 Red 0x80 0x00 0x00
5 Magenta 0x80 0x00 0x80
6 Brown 0x80 0x80 0x00
7 Grey 0x40 0x40 0x40
8 Light Grey 0x80 0x80 0x80
9 Light Blue 0x00 0x00 OxFF
10 Light Green 0x00 OxFF 0x00
11 Light Cyan 0x00 OxFF OxFF
12 Light Red OxFF 0x00 0x00
13 Light Magenta OxFF 0x00 OxFF
14 Yellow OxFF OxFF 0x00
15 White OxFF OxFF OxFF

BOOL success;

success = Display_SetMode(800, 600, 60, DISPLAY_P8,
DISPLAY_VIDEO);

if (success) {
Display_SetVgaPalette();
Display_Enable();
/* ... other processing ... */

}
Display_Disable();

Video Display API 4-33

Display _SetWindow

Function Name

Syntax

Arguments

Return Value

Description

Example

4-34

Display_SetWindow

void Display_SetWindow(USHORT x, USHORT y, USHORT dx,
USHORT dy);

USHORT x X-coordinate (top left corner) of the display window (in pixels)
USHORT y Y-coordinate (top left corner) of the display window (in pixels)

USHORT dx Width of window (in pixels)
USHORT dy Height of window (in pixels)

None

This function sets the display window. If the display hardware is enabled when
you call this function, the function waits until vertical blanking occurs before
modifying any registers. No checking is done on the arguments, so you must
make sure the window is valid. Both Display_Init() and Display_SetMode() re-
set the window parameters to their default state (x =0, y=0, dx = Rh,
dy = Rv).

Note:

The horizontal pixel granularity is dependent on the FCLK (frame clock) ratio.
The defaultis 4, so the horizontal window coordinate must be evenly divisible
by 4.

BOOL success;

Display_Init();

success = Display_SetMode (1024, 768, 60, DISPLAY_TXRGB,
DISPLAY_VIDEO);

if (success) {
Display_SetWindow(0, 0, 512, 512);
Display_MoveWindow(256, 128);
/* ... other processing ... */

}
Display_Disable();

Function Name

Syntax
Arguments
Return Value

Description

Example

Display_ToggleBuffers

Display_ToggleBuffers

void Display_ToggleBuffers();
None
None

This function tells the display driver to toggle the active display buffer at the
next vertical blanking period. When the toggle takes place, the driver signals
the display semaphore. The display driver manages two display buffers, Buffl
and Buff2. When double buffering is in use, one of these buffers is active and
the other is inactive. A call to Display_ToggleBuffers() reverses the buffers.
The active buffer is the one that the RAMDAC is receiving pixels from. An ap-
plication should avoid writing to the active buffer because this may cause un-
wanted visual effects. Generally, an application calls Display_ToggleBuffers(),
then waits on the display semaphore before calling Display GetBuffer() to get
the new inactive buffer.

long DisplaySemald;
ULONG Buff;

DisplaySemald = TaskOpenSema(-1,0);

Display_Init();

Display_InstallSema(DisplaySemald);
Display_SetMode(640,480,60,DISPLAY_T555,DISPLAY_VIDEO);
Display_Enable();

while (1) {
Display_ToggleBuffers();
TaskWaitSema(DisplaySemald);
Buff = Display_GetBuffer(DISPLAY_INACTIVE);

/* do some processing here */

Video Display API 4-35

Display _TvpRegin

Function Name
Syntax
Arguments

Return Value

Description

Example

4-36

Display_TvpRegIn

BYTE Display_TvpRegIn(BYTE reg);
BYTE reg Palette internal register number

BYTE Value of register

This function reads a value from one of the RAMDAC internal registers. Refer
to the TVP3020 Video Interface Palette Data Manual for a listing of the regis-
ters.

BYTE val;

val = Display_TvpRegIn(0x1B);

Display_TvpRegOut(0x1B, val | 0x80);

Function Name
Syntax

Arguments

Return Value

Description

Example

Display_TvpRegOut

Display_TvpRegOut

void Display_TvpRegOut(BYTE reg, BYTE val);

BYTE reg Palette internal register number
BYTE val Value of register
None

This function writes a value to one of the RAMDAC internal registers. Refer to
the TVP3020 Video Interface Palette Data Manualfor a listing of the registers.

BYTE val;
val = Display_TvpRegIn(0x1B);
Display_TvpRegOut(0x1B, val | 0x80);

Video Display API 4-37

Display WaitEndOfFrame

Function Name

Syntax
Arguments
Return Value

Description

Example

4-38

Display_WaitEndOfFrame

void Display_WaitEndOfFrame();
None
None

This function waits until vertical blanking occurs and then returns.
Display_WaitEndOfFrame() first clears the frame timer interrupt pending bit
and then polls it until the bit is set. If the display hardware is disabled, this func-
tion returns without waiting.

BOOL success;
Display_Init();

success = Display_SetMode (1024, 768, 60, DISPLAY_TXRGB,
DISPLAY_VIDEO);

if (success) {
Display_Enable();
[* ... other processing ... */
Display_WaitEndOfFrame();
[* ... other processing ... */

}
Display_Disable();

Function Name
Syntax

Arguments

Return Value

Description

Example

Display_WritePalette

Display_WritePalette

void Display_WritePalette(BYTE R, BYTE G, BYTE B);

BYTE R Red value
BYTE G Green value
BYTE B Blue value
None

This function writes an RGB triple to the current palette address in the
RAMDAC. After each call, the palette address automatically increments. Nor-
mally, you would call Display SetPaletteAddress() and then call
Display_WritePalette() repeatedly to fill the palette RAM. See page 4-29 for
more information on Display_SetPaletteAddress().

Note:

The display hardware does not have to be enabled before you use this func-
tion.

Display_SetPaletteAddress(0x50);

Display_WritePalette(0x20, 0x10, 0x80);
Display_WritePalette(0x40, 0x20, 0x40);

Video Display API 4-39

4-40

Chapter 5

Video Capture API

This chapter discusses the video capture macros and data type. It also
describes, in alphabetical order, the application programming interface (API)
functions associated with the video capture driver for the TMS320C8x soft-
ware development board (SDB).

Topic Page
5.1 Video Capture API Macros and Data Types 5-2
5.2 Video Capture Buffering o 5-5
5.3 Video Capture API Functions — i, 5-8

5-1

Video Capture APl Macros and Data Types

5.1 Video Capture API Macros and Data Types

Table 5-1 describes the macros used by the video capture API and lists the
API functions that use each macro. Figure 5-1 provides the definition for the
video capture API data type. These macros and the data type, as well the API
function prototypes, are defined in <capture.h>. The object code resides in

sdbdrvs.lib.

Table 5-1. Video Capture APl Macros

(a) Input source constants

Macro Name Value Description

#define CAPTURE_SVHS 0x00 S-VHS input source
#define CAPTURE_VID1 0x01 CVBS input source 1
#define CAPTURE_VID2 0x03 CVBS input source 2

Note: These macros are used by the function Capture_SetinputSource().

(b) Input format constants

Macro Name Value Description
#define CAPTURE_NTSC 0x01 Select NTSC setting
#define CAPTURE_PAL 0x02 Select PAL setting

Note: These macros are used by the function Capture_Install().

(c) Scaling constants

Macro Name Value

Description

#define CAPTURE_640x480 0x01

#define CAPTURE_512x512 0x02

#define CAPTURE_CIF 0x03
#define CAPTURE_CIFK 0x04
#define CAPTURE_QCIF 0x05

#define CAPTURE_SQCIF 0x06

640 x 480 interlaced
512 x 512 interlaced
352 x 288 interlaced
352 x 240 even fields only
176 x 144 even fields only

128 x 96 even fields only

Note: These macros are used by the function Capture_Install().

5-2

Video Capture APl Macros and Data Types

Table 5-1. Video Capture API Macros (Continued)

(d) Output format constants

Macro Name Value Description

#define CAPTURE_YUV422 0x01 Multiplexed YUV 4:2:2 format:
YUYVYUYV ...

#define CAPTURE_RGB888 0x02 RGB 8,8,8,X format: RGBXRGBX ...
#define CAPTURE_RGB555 0x03 RGB a,5,5,5 format: aRGBaRGB ...

#define CAPTURE_MONOS8 0x04 8-bit monochrome (luminance only)
format: YYYYYYY ...

Note: These macros are used by the function Capture_Install().

Figure 5-1. Video Capture API Data Type (Metrics Parameter Structure CAPTURE_MET)

typedef struct {
BYTE Fps; /* frames per second */
ULONG Size; [* buffer size in bytes */
USHORT Rbh; /* horizontal capture resolution in pixels */
USHORT Ryv; /* vertical resolution in lines */
BYTE Bpp; /* bits per pixel */
ULONG Pitch; [* buffer pitch, number of bytes from one line to next*/
BOOL Interlace; /* interlaced flag (TRUE = interlaced) */

} CAPTURE_MET;

Video Capture API 5-3

Video Capture APl Macros and Data Types

5.1.1 Supported Scaling Resolutions

The six APIl-supported video capture scaling resolutions are listed in
Table 5-1(c). Two of these resolutions have special limitations:
CAPTURE_512x512 (which has a pixel resolution of 512 x 512) and
CAPTURE_CIFK (which has a pixel resolution of 352 x 288). The video cap-
ture hardware captures video at a resolution of 640 x 480 pixels in interlaced
mode. The hardware scaler does not have the ability to upscale the image; it
can only downscale. Because of this upscaling limitation, 512 lines of video,
as needed by CAPTURE_512x512, cannot be created from 480 lines. Howev-
er, because 512 x 512 is a common video resolution, the API simulates it by
capturing 512 x 480 into a 512 x 512 buffer. Thus, the application gets a
512 x 512 buffer, but only the first 480 lines contain video—the other 32 lines
are undefined. You can clear out the entire buffer via Capture_FillBuffs(), then
the 32 lines at the bottom of the buffer will remain cleared unless the applica-
tion modifies them.

The 352 x 288 resolution faces the same limitation for noninterlaced mode,
which uses only half of the captured image (a maximum of 480 lines / 2 or 240
lines). The same method used to overcome the 512 x 512 limitation is also ap-
plied to the 352 x 288 resolution. The API creates buffers that are 352 x 288
but only captures 352 x 240 noninterlaced video into the buffers.

5.1.2 Video Capture Metric Parameters

5-4

To get information about the current video capture subsystem, call
Capture_GetMetrics() to get a pointer to a CAPTURE_MET structure.
Figure 5-1 gives the type definition for CAPTURE_MET. Refer to page 5-16
for more information on Capture_GetMetrics().

Video Capture Buffering

5.2 Video Capture Buffering

The video capture driver manages a double buffering scheme internal to the
driver. When the application calls Capture_Install(), the driver creates aninter-
nal buffering structure that contains two storage buffers: Buffl and Buff2.
These two buffers are dynamically allocated on the heap and are used to store
the captured video as it comes in one line at a time. At any given time, one of
these buffers is the active buffer and the other one is the inactive buffer. The
active buffer is the one currently receiving new lines of video. The application
cannot access the active buffer.

The video capture hardware generates an interrupt every time a new frame is
detected by an odd-to-even field transition of the video input. The interrupt ser-
vice routine (ISR) toggles the active and inactive buffers; that is, the active buff-
er becomes inactive and the inactive buffer becomes active. This behavior is
effectively a ping-pong action in which the buffers are toggled each frame. As
a result, the active buffer always receives incoming video, and the inactive
buffer has the most recent frame of video. This behavior continues, free-run-
ning, until the application interferes by requesting a buffer.

When the application needs a frame of newly captured video, it calls
Capture_GetBuffer(), which returns the address of the inactive buffer. This
interferes with the ISR ping-ponging because the application cannot use a
buffer atthe same time thatthe ISR usesiit. For this reason, the driver manages
the InUse flag, which is set when the application calls Capture_GetBuffer().
The ISR does not toggle the buffers when the InUse flag is set. The result is
the active buffer does not change and all new frames of incoming video get
stored into the same buffer (the active one). Ping-ponging then stops. The ap-
plication has effectively locked the inactive buffer. The locking of the inactive
buffer allows the application to modify the contents of the buffer as necessary.
When the application is finished with the buffer, the buffer operation needs to
be put back to normal. The application must return the buffer acquired from
GetCaptureBuffer() to the ISR by calling Capture FreeBuffer(). The
Capture_FreeBuffer() function clears the InUse flag and ISR ping-ponging re-
sumes.

Video Capture API 5-5

Video Capture Buffering

5-6

The buffering mechanism just described has a hazard that occurs when the
application performs the following sequence of events:

1) Calls Capture_GetBuffer(), which returns the inactive buffer
2) Modifies the contents of the inactive buffer
3) Calls Capture_FreeBuffer(), which returns the buffer to the ISR

4) Calls Capture_GetBuffer() again before a new frame has arrived since the
call to Capture_FreeBuffer()

After this sequence of events, the buffer obtained by calling Capture_GetBuf-
fer() in step 4 contains corrupted data that was modified in step 2. This hap-
pens because the Capture_GetBuffer() function was called in step 4 before an
actual new frame of video was captured by the hardware. Because modifying
the buffer contents is a common practice (color space conversion, for exam-
ple), a mechanism has been built into the API to avoid corrupted buffers being
passed to the application. The built-in fix causes the Capture_GetBuffer()
function, as called in step 4, to stall until a new frame arrives.

The driver manages a second flag, Requested. Whenever the ISR toggles the
buffers, it clears the Requested flag. The Capture_GetBuffer() function spins
until the Requested flag is cleared by the ISR. Then, the function sets the
Requested flag. As a result, a call to Capture_GetBuffer() will wait until a new
buffer is ready before obtaining the inactive buffer. The only time this wait
occurs is when the application is trying to obtain buffers faster than they are
available.

Figure 5-2 better illustrates the double buffering using flow charts. These flow
charts show the general flow and program logic; the actual variable names and
identifiers may differ in the driver code. Also, nonrelated parts of the code are
not shown.

Video Capture Buffering

Figure 5-2. Video Capture Double Buffering Logic

Capture_FreeBuffer IsrCAP
Disable
interrupts Yes
InUse=FALSE No
Requested=
Enable FALSE
interrupts il
Make
inactive
buffer
active
Capture_GetBuffer J'
Make
active
buffer
inactive
Signal
semaphore
Disable
interrupts
InUse=TRUE
Requested=
TRUE
Enable
interrupts
Return
inactive
buffer

Video Capture API 5-7

Video Capture API Functions

5.3 Video Capture API Functions

Listed below in alphabetical order are the video capture API functions. Use this
list as a table of contents to the video capture API functions.

Function Page

Capture_CardPresent 5-9
Capture_Disable 5-10
Capture_Enable 5-11
Capture_FillBuffs 5-12
Capture_FreeBuffer............ 5-13
Capture_GetBuffer 5-14
Capture_GetDecoderRegs 5-15
Capture_GetMetrics 5-16
Capture_GetScalerRegs 5-17
Capture_Init 5-18
Capture_Install 5-19
Capture_InstallSema 5-21
Capture_SetlnputSource 5-22
Capture_SetScaling 5-23
Capture_Uninstall 5-24

5-8

Function Name

Syntax

Arguments

Return Value

Description

Example

Capture_CardPresent

Capture_CardPresent

BOOL Capture_CardPresent();

None

BOOL TRUE Video capture card detected
FALSE Video capture card not detected

This function reads the video capture card ID register (CAPID) and returns
TRUE if it is present; otherwise, it returns FALSE.

Capture_lInit();

if (Capture_CardPresent()) {
Capture_lInstall(arguments);

Capture_Enable();

[*...do main programming...*/
Capture_Disable();
Capture_Uninstall();

Video Capture API 5-9

Capture_Disable

Function Name Capture_Disable

Syntax void Capture_Disable();

Arguments None

Return Value None

Description This function disables video capture by disabling frame and row hardware
events.
INote: I

Before calling Capture_Disable(), you must first call Capture_Install(). See
page 5-19 for more information on Capture_Install().

Example BOOL B;
Capture_lInit();

if (Capture_CardPresent()) {
B = Capture_Install(arguments);

it (B) {
Capture_Enable();
[* ... do main programming ... */
Capture_Disable();
Capture_UnlInstall();

5-10

Capture_Enable

Function Name Capture_Enable

Syntax void Capture_Enable();

Arguments None

Return Value None

Description This function enables video capture by enabling frame and row hardware
events.
INote: I

Before calling Capture_Enable(), you must first call Capture_Install(). See
page 5-19 for more information on Capture_Install().

Example BOOL B;
Capture_Init();

if (Capture_CardPresent()) {
B = Capture_Install(arguments);

if (B) {
Capture_Enable();
/* ... do main programming ... */
Capture_Disable();
Capture_Unlinstall();

Video Capture API 5-11

Capture_FillBuffs

Function Name Capture_FillBuffs

Syntax void Capture_FillBuffs(ULONG val);

Arguments ULONG val 32-bit value used to fill the buffers

Return Value None

Description This function fills the two internal capture buffers (active and inactive) with the

value specified.

Note:

Do not call Capture_FillBuffs() while video capture is enabled.

Example Capture_lInstall(CAPTURE_NTSC, CAPTURE_YUV422, CAPTURE_QCIF);
Capture_FillBuffs(0x00000000);
Capture_Enable();

5-12

Function Name
Syntax
Arguments
Return Value

Description

Example

Capture_FreeBuffer

Capture_FreeBuffer

void Capture_FreeBuffer();
None
None

This function frees the buffer obtained by the last call to Capture_GetBuffer().
Freeing the buffer allows the video capture ISR to start ping-ponging between
two buffers again. Once an application has called Capture_GetBuffer(), it can-
not call it again until it has called Capture_FreeBuffer(). For a more detailed
explanation of the video capture buffers, see Section 5.2.

long CaptureSemald;

ULONG Buff;

Capture_Init();

CaptureSemald = TaskOpenSema(-1,0);

Capture_lInstallSema(CaptureSemald);
Capture_Enable();

while (1) {
TaskWaitSema(CaptureSemald);
Buff = Capture_GetBuffer();

/* do processing here */

Capture_FreeBuffer();

Video Capture API 5-13

Capture_GetBuffer

Function Name

Syntax

Arguments

Return Value

Description

Example

5-14

Capture_GetBuffer

ULONG Capture_GetBuffer();

None

ULONG Address of inactive buffer

This function returns the address of the inactive video capture buffer and locks
the buffer for exclusive use by the application. The application can modify the
contents of the buffer. When the application is finished using the buffer, it must
call Capture_FreeBuffer() to return the buffer to the driver. For a more detailed
explanation of the video capture buffers, see Section 5.2.

long CaptureSemald;
ULONG Buff;

Capture_lInit();
Capture_Instal(CAPTURE_NTSC,CAPTURE_RGB888,CAPTURE_640x480);
CaptureSemald = TaskOpenSema(-1,0);
Capture_lInstallSema(CaptureSemald);

Capture_Enable();

while (1) {
TaskWaitSema(CaptureSemald);
Buff = Capture_GetBuffer();

/* do processing here */

Capture_FreeBuffer();

Function Name
Syntax

Arguments

Return Value

Description

Example

Capture_GetDecoderRegs

Capture_GetDecoderRegs

void Capture_GetDecoderRegs(BYTE *DR);

BYTE *DR Pointer to a preallocated array of 25 bytes that will be filled
in with video decoder register values

None

This function fills in the array of bytes pointed to by DR with the current video
decoder register settings. Because there are a total of 25 decoder registers,
DR must point to 25 bytes of preallocated memory. Although the decoder reg-
isters cannot be read directly, the hardware layer of the software keeps track
of register writes and maintains a registry of the current register values.

Notes:
1) Use this function for reference and debugging purposes.

2) Before calling Capture_GetDecoderRegs(), you must first call
Capture_Init(). See page 5-18 for more information on Capture_Init().

BYTE Dregs|[25];
BYTE *buff;
BOOL B;

Capture_Init();

if (Capture_CardPresent()) {
B = Capture_Install(arguments);

if (B) {
Capture_GetDecoderRegs(Dregs);
Capture_Enable();
/* ... do main programming ... */
Capture_Disable();
Capture_Uninstall();

Video Capture API 5-15

Capture_GetMetrics

Function Name
Syntax

Arguments

Return Value

Description

Example

5-16

Capture_GetMetrics

void Capture_GetMetrics(CAPTURE_MET *M);

CAPTURE_MET *M Pointer to the CAPTURE_MET structure of video
capture metric parameters

CAPTURE_MET consists of the following members :

BYTE Fps; /* frames per second */
ULONG Size; [* buffer size in bytes */
USHORT Rh; /* horizontal capture resolution in pixels*/
USHORT Ryv; /* vertical resolution in lines */

BYTE Bpp; /* bits per pixel */
ULONG Pitch; [* buffer pitch, number of bytes from one

line to next */
BOOL Interlace; /* interlaced flag (TRUE = interlaced) */

None

This function fills in the CAPTURE_MET structure that is pointed to by M with
the current capture state metrics.

Note:

Before calling Capture_GetMetrics(), you must first call Capture_Install().
See page 5-19 for more information on Capture_Install().

CAPTURE_MET cmet;
BOOL B;

Capture_Init();

if (Capture_CardPresent()) {
B = Capture_lInstall(arguments);

it (B) {
Capture_GetMetrics(&cmet);
Capture_Enable();
[* ... do main programming ... */
Capture_Disable();
Capture_UnlInstall();

Function Name
Syntax

Arguments

Return Value

Description

Example

Capture_GetScalerRegs

Capture_GetScalerRegs

void Capture_GetScalerRegs(BYTE *SR);

BYTE *SR Pointer to a preallocated array of 17 bytes (unsigned char-
acters) that will be filled in with scaler register values

None

This function fills in the array of bytes that is pointed to by SR with the current
video scaler register settings. Because there are a total of 17 scaler registers,
SR must point to 17 bytes of preallocated memory. Although the scaler regis-
ters cannot be read directly, the hardware layer of the software keeps track of
register writes and maintains a registry of the current register values.

Notes:
1) Use this function for reference and debugging purposes.

2) Before calling Capture GetScalerRegs(), you must first call
Capture_Init(). See page 5-18 for more information on Capture_Init().

BYTE Sregs[25];
BYTE *buff;
BOOL B;

Capture_Init();

if (Capture_CardPresent()) {
B = Capture_Install(arguments);

if (B) {
Capture_GetScalerRegs(Sregs);
Capture_Enable();
/* ... do main programming ... */
Capture_Disable();
Capture_Uninstall();

Video Capture API 5-17

Capture_Init

Function Name

Syntax

Arguments

Return Value

Description

Example

5-18

Capture_Init

BOOL Capture_Init();

None

BOOL TRUE Initialization succeeded
FALSE Initialization failed

This function initializes the video capture hardware to a known state. General-
ly, this function should be called only once—at the beginning of a program.

Note:

You must call Capture_Init() before calling any other video capture function
listed in this API.

BOOL B;

Capture_lInit();

if (Capture_CardPresent()) {
B = Capture_lInstall(arguments);
Capture_Enable();
[* ... do main programming ... */
Capture_Disable();
Capture_Unlnstall();

Function Name
Syntax

Arguments

Return Value

Description

Capture_Install

Capture_Install

BOOL Capture_InstallBYTE InFormat, BYTE OutFormat, BYTE Scaling);

BYTE InFormat Video input format:

CAPTURE_NTSC
CAPTURE_PAL

BYTE OutFormat Video output format:

CAPTURE_YUV422
CAPTURE_RGB888
CAPTURE_RGB555
CAPTURE_MONOS

BYTE Scaling Scaling constant:

CAPTURE_640x480
CAPTURE_512x512
CAPTURE_CIF
CAPTURE_CIFK
CAPTURE_QCIF
CAPTURE_SQCIF

BOOL TRUE Success

Select NTSC setting
Select PAL setting

Multiplexed YUV 4:2:2 format
RGB 8,8,8,X format

RGB a,5,5,5 format

8-bit monochrome (luminance

only)

640 x 480 interlaced

512 x 512 interlaced

352 x 288 interlaced

352 x 240 even fields only
176 x 144 even fields only
128 x 96 even fields only

FALSE Failure (check heap size)

This function installs the video capture subsystem settings and events as fol-

lows:

] Creates the buffer structure

[Sets up but does not enable video capture events

Note:

Before calling Capture_Install(), you must first call Capture_Init(). See page
5-18 for more information on Capture_Init().

Video Capture API 5-19

Capture_Install

Example BOOL B;
Capture_lInit();

if (Capture_CardPresent()) {
B = Capture_Install[CAPTURE_NTSC, CAPTURE_YUV422,
CAPTURE_CIF);

if (B) {
Capture_Enable();
[* ... do main programming ... */
Capture_Disable();
Capture_Unlinstall();

5-20

Function Name

Syntax
Arguments

Return Value

Description

Example

Capture_InstallSema

Capture_InstallSema

long Capture_InstallSema(long Semald);
long Semald ID of an opened semaphore (TaskOpenSema())

long Old semaphore value

This function installs the video capture semaphore. The semaphore ID argu-
ment must be obtained from calling TaskOpenSemay(). The video capture ISR
signals this semaphore whenever a new frame of video is ready.

long CaptureSemald;

ULONG Buff;

Capture_lInit();
Capture_InstallCAPTURE_NTSC,CAPTURE_RGB888,CAPTURE_640x480);
CaptureSemald = TaskOpenSema(-1,0);

Capture_InstallSema(CaptureSemald);
Capture_Enable();

while (1) {
TaskWaitSema(CaptureSemald);
Buff = Capture_GetBuffer();

/* do processing here */

Capture_FreeBuffer();

Video Capture API 5-21

Capture_SetlnputSource

Function Name
Syntax

Arguments

Return Value

Description

Example

5-22

Capture_SetlnputSource

void Capture_SetlnputSource(BYTE InSrc);

BYTE InSrc Input source:

CAPTURE_SVHS Decode SVHS input from VID1 and VID2
inputs

CAPTURE_VID1 Decode CVBS input from VID1 input

CAPTURE_VID2 Decode CVBS input from VID2 input

None

This function selects the input source to the video decoder. There are two RCA
input jacks labeled VID1 and VID2. A composite input source can be con-
nected to either one of these, or both of them may be used for an S-VHS input.
An on-board analog multiplexer takes care of routing, and glue logic (that is,
intermediate interface logic) takes care of multiplexing on the high-speed ana-
log-to-digital converters (ADCSs).

Note:

Before calling Capture_SetinputSource(), you must first call Capture_Init().
See page 5-18 for more information on Capture_Init().

BOOL B;
Capture_Init();

if (Capture_CardPresent()) {
B = Capture_Install(CAPTURE_NTSC,CAPTURE_YUV422,CAP-
TURE_CIF);

if (B) {
Capture_SetlnputSource(CAPTURE_VID1);
Capture_Enable();
[* ... do main programming ... */
Capture_Disable();
Capture_UnlInstall();

Function Name

Syntax

Arguments

Return Value

Description

Example

Capture_SetScaling

Capture_SetScaling

BOOL Capture_SetScaling(BYTE Scaling);

BYTE Scaling New scaling value, one of the following:

CAPTURE_640x480 640 x 480 interlaced
CAPTURE_512x512 512 x 512 interlaced
CAPTURE_CIF 352 x 288 interlaced
CAPTURE_CIFK 352 x 240 even fields only
CAPTURE_QCIF 176 x 144 even fields only
CAPTURE_SQCIF 128 x 96 even fields only

BOOL TRUE Success
FALSE Failure (check heap size)

This function sets the video capture scaling. When you first call
Capture_Install(), you specify a scaling constant. However, if there is a need
to change the scaling size dynamically, use this function. This function must
not be called when video capture is enabled. This function first frees any buffer
memory allocated from the previous settings. New buffers are allocated from
the heap to match the new scaling size. An application can call
Capture_GetMetrics() after calling this function to get the dimensions and buff-
er sizes.

long CaptureSemald;
ULONG Buff;

Capture_lInit();
Capture_Install[CAPTURE_NTSC,CAPTURE_RGB888,CAPTURE_640x480);
CaptureSemald = TaskOpenSema(-1,0);
Capture_InstallSema(CaptureSemald);

Capture_Enable();

while (1) {
TaskWaitSema(CaptureSemald);
Buff = Capture_GetBuffer();

/* do processing here */
Capture_FreeBuffer();

if (some condition) {
Capture_Disable();
Capture_SetScaling(CAPTURE_SQCIF);
Capture_Enable();

Video Capture API 5-23

Capture_Uninstall

Function Name

Syntax
Arguments
Return Value

Description

Example

5-24

Capture_Unlnstall

void Capture_UnlInstall();
None
None

This function performs the following actions:

[Disables video capture
[d Uninstalls all video capture events that were set up by Capture_Install()
(O Frees any memory allocated for buffer storage

BOOL B;
Capture_lInit();

if (Capture_CardPresent()) {
B = Capture_lInstall(CAPTURE_NTSC, CAPTURE_YUV422,
CAPTURE_CIF);

if (B) {
Capture_SetlnputSource(CAPTURE_VID1);
Capture_Enable();
[* ... do main programming ... */
Capture_Disable();
Capture_Uninstall();

Chapter 6

Host Communications API

This chapter discusses the host communications data types and macros. It
also describes, in alphabetical order, the application programming interface
(API) functions associated with the host communications drivers for the
TMS320C8x software development board (SDB).

Two host communications driver libraries exist: one links into a host applica-
tion and the other links into an SDB application. The host library contains a
complete set of primitives used to communicate to the board plus a set of client
management functions. The SDB driver contains a set of server management
functions. Together, with the host acting as the client and the SDB acting as
the server, the two libraries allow a host application to send commands to an
SDB application. The libraries do not define the context of the com-
mands—they just provide the means to transmit them and synchronize the two
applications. This guide refers to the host library as the client library and the
corresponding SDB library as the server library.

Topic Page
6.1 Host Communications APl Macros and Data Types — 6-2
6.2 Interaction Between the Client APl and the Server APl 6-6
6.3 Bootstrapping the SDB fromthe Host ~ 6-10
6.4 Host Communications API Functions 6-11

6-1

Host Communications APl Macros and Data Types

6.1 Host Communications APl Macros and Data Types

Table 6-1 describes the macros used by the host communications API and
lists the API functions that use each macro. Figure 6—1 provides the definition
for the host communications API data type. The macros, data type, and func-
tion prototypes for the client API are defined in <hclient.h>. The client API ob-
ject code resides in hsdbdrvs.lib. The macros and the function prototypes for
the server API are defined in <sserver.h>. The server API object code resides
in sdbdrvs.lib.

Table 6—-1. Host Communications APl Macros

6-2

(a) Client status bits

Macro Name Value Description

#define CLIENT_STATOK 0x0000 Status okay

#define CLIENT_TIMEOUT 0x0001 Time-out occurred
#define CLIENT_DEAD 0x0002 Device did not respond
#define CLIENT_MAILBOXFULL 0x0004 FIFO mailbox was full
#define CLIENT_MAILBOXEMPTY 0x0008 FIFO mailbox was empty
#define CLIENT_FIFOALMOSTFULL 0x0010 FIFO was almost full
#define CLIENT_FIFOEMPTY 0x0020 FIFO was empty

#define CLIENT_CLOSED 0x0040 Device was not opened
#define CLIENT_BITSET 0x0080 Bit test result

#define CLIENT_BOOTFILE 0x0100 Could not open boot file
#define CLIENT_COFFFILE 0x0200 Could not open COFF file
#define CLIENT_BINFILE 0x0400 Could not open bin file

Note: These macros are used by all client API functions except Client_Init().

(b) PCI status bits

Macro Name Value Egsition Description

#define CLIENT_MRST 0x00000001 [00] Master reset (active low)
#define CLIENT_FRST 0x00000002 [01] FIFO reset (active low)
#define CLIENT_FSWO 0x00000004 [02] Byte swapping O
#define CLIENT_FSW1 0x00000008 [03] Byte swapping 1
#define CLIENT_FOFFO 0x00000010 [04] FIFO flag offset 0
#define CLIENT_FOFF1 0x00000020 [05] FIFO flag offset 1
#define CLIENT_IAEN 0x00000040 [06] Host interrupt enable

Host Communications API Macros and Data Types

Table 6-1. Host Communications APl Macros (Continued)

Macro Name Value Egsition Description

#define CLIENT_BLR 0x00000080 [07] Block transfer read

#define CLIENT_BLW 0x00000100 [08] Block transfer write

#define CLIENT_BDIS 0x00000200 [09] Burst disable

#define CLIENT_RO 0x00000400 [10] Reserved

#define CLIENT_GPOO 0x00000800 [11] General purpose output 0

#define CLIENT_GPO1 0x00001000 [12] General purpose output 1

#define CLIENT_R1 0x00002000 [13] Reserved

#define CLIENT_R2 0x00004000 [14] Reserved

#define CLIENT_EF2 0x00008000 [15] SDB-to-host FIFO empty
flag

#define CLIENT_EF1 0x00010000 [16] Host-to-SDB FIFO empty
flag

#define CLIENT_AF1 0x00020000 [17] SDB-to-host almost full
flag

#define CLIENT_AF2 0x00040000 [18] Host-to-SDB almost full
flag

#define CLIENT_MB1 0x00080000 [19] Host-to-SDB mailbox full
flag

#define CLIENT_MB2 0x00100000 [20] SDB-to-host mailbox full
flag

#define CLIENT_PRGD 0x00200000 [21] EPLD programming done

#define CLIENT_GPIO 0x00400000 [22] General purpose input 0

#define CLIENT_GPI1 0x00800000 [23] General purpose input 1

#define CLIENT_R3 0x01000000 [24] Reserved

#define CLIENT_R4 0x02000000 [25] Reserved

#define CLIENT_R5 0x04000000 [26] Reserved

#define CLIENT_R6 0x08000000 [27] Reserved

#define CLIENT_R7 0x10000000 [28] Reserved

#define CLIENT_R8 0x20000000 [29] Reserved

#define CLIENT_R9 0x40000000 [30] Reserved

#define CLIENT_R10 0x80000000 [31] Reserved

Note: These macros are used by the following functions:
Client_ClearConfigBit()
Client_ReadConfigBit()
Client_SetConfigBit()

Host Communications API 6-3

Host Communications APl Macros and Data Types

Table 6-1. Host Communications APl Macros (Continued)

6-4

(c) Boot and reset bits

Macro Name Value Description

#define CLIENT_RUN 0x0001 Do not run COFF filet
#define CLIENT_LOAD 0x0002 Do not load COFF filet
#define CLIENT_EPOINT 0x0004 Custom entry point specifiedt
#define CLIENT_TBCOFF 0x0008 Disable TBC emulator chip¥
#define CLIENT_EMURST 0x0010 Execute emurst.exet

#define CLIENT_VERBOSE 0x0020 Display messages$

t Macros used by the function Client_Reset()
¥ Macros used by the function Client_Boot()
8 Macro used by the functions Client_Reset() and Client_Boot()

(d) FIFO data swapping constants

Macro Name Value Description of Data Swap

#define CLIENT_NOSWAP 0x0000 0x12345678 - 0x12345678
#define CLIENT_BYTESWAP 0x0004 0x12345678 — 0x78563412
#define CLIENT_WORDSWAP 0x0008 0x12345678 - 0x56781234

#define CLIENT_BYTEWORD- 0x000C 0x12345678 — 0%x34127856
SWAP

Note: These macros are used by the function Client_SetSwapping().

(e) Client command size

Macro Name Value Description
#define CLIENT_CMNDSIZE 0x0010 Number of 32-bit words in a com-
mand

Note: This value is used internal to the API and must match SERVER_CMNDSIZE.

(f) Server command size

Macro Name Value Description

#define SERVER_CMNDSIZE 0x0010 Number of 32-bit words in a com-
mand

Note: This value is used internal to the API and must match CLIENT_CMNDSIZE.

Host Communications API Macros and Data Types

Figure 6-1. Host Communications API Data Type (CLIENT _STAT)

typedef USHORT CLIENT_STAT,;

/* CLIENT_STAT returns status information to the application: */

/* Bit

/* Position Bit Name Description */
/* [00] CLIENT_STATOK No errors occurred. */
/* [01] CLIENT_TIMEOUT The access timed out. */
/* [02] CLIENT_DEAD The SDB did not respond. */
/* [03] CLIENT_MAILBOXFULL The time-out was caused by attempting */

I* write to a full mailbox. */

/* [04] CLIENT_MAILBOXEMPTY The time-out was caused by attempting */

/* read from an empty mailbox. */
/* [05] CLIENT_FIFOALMOSTFULL The time-out was caused by attempting */

I* write to an almost full FIFO */

/* [06] CLIENT_FIFOEMPTY The time-out was caused by attempting */

I* read from an empty FIFO. */
/* [07] CLIENT_CLOSED Function could not complete because */

/* the device has not been opened. */

/* [08] CLIENT_BITSET The configuration bit tested was set. */

/* [09] CLIENT_BOOTFILE The sdbboot.out file could not be */

I* opened. */
/* [10] CLIENT_COFFFILE The COFF file to be loaded could not */

I* be opened. */
/* [11] CLIENT_BINFILE The .bin file could not be opened. */

/* [12] reserved This bit is reserved for future use. */

/* [13] reserved This bit is reserved for future use. */

/* [14] reserved This bit is reserved for future use. */

/* [15] reserved This bit is reserved for future use. */

*/

Host Communications API

6-5

Interaction Between the Client API and the Server API

6.2

Interaction Between the Client APIl and the Server API

The client API provides functions for communicating with the SDB via the SDB
device driver for Windows. These functions include simple primitives for read-
ing to and writing from the SDB'’s 1/0O space and the PCI interface FIFO. Also
included in the API is client/server command passing functionality. For the
client/server protocol to work, the host has to be running the client API, and
the SDB must be running the server API. When the client/server software is
running, the host can pass application-defined commands to the SDB.

The API does not define the context of commands, but it does define the struc-
ture. A command is nothing more than a sequence of 32-bit words. The num-
ber of 32-bit words that make up a command is defined by
CLIENT_CMNDSIZE for the client APl and by SERVER_CMNDSIZE for the
server API. These two values are the same and, if you alter them, they must
always be equal. The first 32-bit word in the command is defined to be the com-
mand ID. The remaining 32-bit words may be used however the application
wishes. The command size is set by Tl to 16. This size provides fifteen 32-bit
words for applications to use for argument passing in a command, plus one
application-defined command ID. The 'C80 server is an interrupt service rou-
tine (ISR) that, when triggered by the host, accepts the command, and then
signals the 'C80 application.

6.2.1 Client/Server Synchronization

6-6

One important aspect of the client/server operation is synchronization. Both
the clientand server APIs have a synchronization function that ensures events
occur when they are supposed to. These synchronization functions are:

[Client_Sync() in the client API for the host
(1 Server_Sync() in the server API for the SDB

When the Client_Sync() function is called, it does not return to the host ap-
plication until the SDB application calls Server_Sync(). When the Serv-
er_Sync() function is called, it does not return to the SDB application until the
host application calls Client_Sync(). The result is the Client_Sync() function
returnsto the host application at virtually the same time that the Server_Sync()
function returns to the SDB application. This mechanism synchronizes the two
applications.

Figure 6-2 illustrates, in generic terms, how the Client_Sync() function inter-
acts with the Server_Sync() function. FLAG is a bit visible to both the host and
SDB.

Interaction Between the Client APl and the Server AP

Figure 6-2. Client/Server Synchronization

ClientSync ServerSync

;)

Set FLAG

Is
FLAG

cleared
?

Clear FLAG

-

Host Communications API 6-7

Interaction Between the Client API and the Server API

6.2.2 Client to Server Protocol

6-8

Figure 63 illustrates the flow of the host client sending a command to the SDB
server. Keep in mind that the host and the SDB applications are both running
at the same time. The host issues a command that interrupts the SDB. The
SDB ISR signals a semaphore, which is received by the SDB application. The
SDB application gets the command and acts on it. As seen in the flow charts,
synchronization functions have been placed at strategic locations to ensure
both applications work in harmony.

Interaction Between the Client APl and the Server AP

Figure 6-3. Client/Server Command Flow

Host application (client) SDB application (server) Server_GetCmnd
Wait on Read
Client_ server command
IssueCmnd semaphore out of FIFO
Client_Sync Server_ Server_Sync
3 GetCmnd 2
d) Do the é
command

Client_IssueCmnd

;)

v

Server_Done

Server ISR

S

Trigger l E
SDB
interrupt Server_Sync
-y Server_Sync
J' 3
1
Client_Sync d) Signal
1 server
v semaphore
Write
command
into FIFO
Client_Sync
2

Host Communications API

6-9

Bootstrapping the SDB from the Host

6.3 Bootstrapping the SDB from the Host

6-10

Arequired and fundamental aspect of the SDB is the ability to bootstrap it from
the host. Bootstrapping is the process of bringing the 'C80 out of reset and then
providing it some code to run. The host can reset the SDB by writing a 0 then
alintothe CLIENT_MRST (master reset) bit position of the PCI status register
(PCISTAT). The 'C80 and other hardware on the board are reset, but the 'C80
comes out of reset halted. The 'C80 must be unhalted by asserting its EINT3
pin, which can be done by the host. Once unhalted after reset, the 'C80 im-
mediately begins executing the instruction located at address OxFFFFFFF8 in
the 'C80’s address space. Because the 'C80 just came out of reset, its instruc-
tion cache is empty, so it must do an instruction cache subblock fill to fetch its
first instruction. Therefore, the 'C80 must load 64 bytes into cache. Because
all cache subblocks are 64-byte aligned, 64 bytes will be loaded starting at ad-
dress OxFFFFFFCO. This address falls in the range of the PCl interface FIFO,
implying 64 bytes of instructions must be in the FIFO for the 'C80 to complete
its instruction cache fill. The host is responsible for putting this data into the
FIFO.

Two methods of bootstrapping the SDB are implemented. The first method
loads two 'C80 programs stored in binary format: miniboot.bin and
bootserv.bin. The miniboot program is bootstrapped to the 'C80, which
executes and loads the bootserv program. These are default programs that
reset the board. The host API function Client_Reset() as well as the board re-
set utility sdbrst.exe loads these two programs.

The second method of bootstrapping the SDB involves loading a boot server
program, which then loads a user-specified common object file format (COFF)
file for execution. The host API function Client_Boot() resets the board, loads
a specified COFF file, and executes it. In other words, Client_Boot() loads and
runs a 'C80 program from the host.

Included with the API libraries is a 'C80 application named sdbboot.out (in
COFF format). The Client_Boot() function bootstraps this file to the 'C80,
which runs entirely from MP cache. The sdbboot.out file is responsible for
accepting a COFF file from the host, storing it in memory on the board, and
then executing it. The boot program (sdbboot.out) is written to fit precisely into
seven MP instruction cache subblocks. This is accomplished by forcing the
'C80to do seven instruction cache subblock fills in the same order that the host
writes the subblocks into the PCl interface FIFO. The source for sdbboot.out
is included with the SDB software so that you can customize it.

Host Communications API Functions

6.4 Host Communications API Functions

Listed below in alphabetical order are the host communications API functions.
Use this list as a table of contents to the host communications API functions.

Function Page Function Page

Client_ Boot 6-12 Client_Sync 6-26
Client_ClearConfigBit 6-13 Client_WriteConfig 6-27
Client Close 6-14 Client_WriteDataFifo 6-28
Client_Init 6-15 Client Writelo 6-29
Client_IssueCmnd 6-16 Client_WriteMailbox 6-30
Client Open 6-17 Server_ Done 6-31
Client_ReadConfig 6-18 Server_ GetCmnd 6-32
Client_ReadConfigBit 6-19 Server_Init 6-33
Client_ReadDataFifo 6-20 Server_Install 6-34
Client_Readlo 6-21 Server_InstallSema 6-35
Client_ReadMailbox 6-22 Server_ReadDataFifo 6-36
Client Reset 6-23 Server_ Sync 6-37
Client_SetConfigBit 6-24 Server_Uninstall 6-38
Client_SetSwapping 6-25 Server_WriteDataFifo 6-39

Host Communications API 6-11

Client_Boot

Function Name

Syntax

Arguments

Return Value

Description

Example

6-12

Client_Boot

CLIENT_STAT Client_Boot(char *coffname, ULONG EntryPoint,
USHORT Flags, FILE *Output);

char *coffname COFF filename (may include path information)

ULONG EntryPoint Alternative program entry point

USHORT Flags CLIENT_VERBOSE Send messages to Output
CLIENT_EPOINT Address of alternative entry

point
CLIENT_LOAD Do the COFF load
CLIENT_RUN Execute the COFF file
FILE *Output Opened text stream, such as stdout

CLIENT_STAT Status information

This function bootstraps the SDB by resetting the board, loading the specified
COFF file, and then executing it. Basically, this function loads and runs a’C80
program. The function looks in the current directory for the COFF file. If an
entry point is specified, program execution begins at that point rather than the
default address in the COFF file.

Four flags can be set to alter the functionality. Setting the CLIENT_VERBOSE
flag instructs the function to output text messages to the stream pointed to by
the Output argument. If you set the CLIENT_EPOINT flag, the EntryPoint ar-
gument is used; otherwise, the argument is ignored. Setting CLIENT_LOAD
instructs the function to load the COFF file. Setting CLIENT_RUN instructs the
function to execute the COFF file.

Sometimes it may be desirable to load a COFF file but execute it at a later time.
To do this, first call this function with the load flag set but the run flag cleared.
Then, call this function later with the run flag set and the load flag cleared. This
works fine as long as the SDB is not disrupted between calls (from a reset, for
instance). If the sdbboot.out file cannot be opened, the CLIENT_BOOTFILE
flag is set in the return status. If the COFF file cannot be opened, the
CLIENT_COFFFILE flag is set in the return status.

CLIENT_STAT St;

St = Client_Boot(“myprog.out”, NULL, CLIENT_RUN|CLIENT_LOAD)|
CLIENT_VERBOSE, stdout);

if (St == CLIENT_STATOK) {
/* boot went okay */
}

Function Name
Syntax

Arguments

Return Value
Description

Example

Client_ClearConfigBit

Client_ClearConfigBit

CLIENT_STAT Client_ClearConfigBit(ULONG bit);

ULONG bit

CLIENT_MRST
CLIENT_FRST
CLIENT_FSWO0
CLIENT_FSW1
CLIENT_FOFFO
CLIENT_FOFF1
CLIENT_IAEN
CLIENT_BLR
CLIENT_BLW
CLIENT_BDIS
CLIENT_RO
CLIENT_GPOO
CLIENT_GPO1
CLIENT_R1
CLIENT_R2
CLIENT_EF2
CLIENT_EF1
CLIENT_AF1
CLIENT_AF2
CLIENT_MB1
CLIENT_MB2
CLIENT_PRGD
CLIENT_GPIO
CLIENT_GPI1
CLIENT_R3
CLIENT_R4
CLIENT_R5
CLIENT_R6
CLIENT_R7
CLIENT_R8
CLIENT_R9
CLIENT_R10

CLIENT_STAT Status information

Bit position constant:

[00]
(01]
[02]
(03]
[04]
[05]
[06]
[07]
[08]
[09]
(10]
(11]
(12]
(13]
(14]
(15]
(16]
[17]
(18]
(19]
(20]
(21]
[22]
(23]
(24]
[25]
(26]
(27]
(28]
(29]
(30]
(31]

Master reset (active low)
FIFO reset (active low)

Byte swapping 0

Byte swapping 1

FIFO flag offset 0

FIFO flag offset 1

Host Interrupt enable

Block transfer read

Block transfer write

Burst disable

Reserved

General purpose output 0
General purpose output 1
Reserved

Reserved

SDB-to-host FIFO empty flag
Host-to-SDB FIFO empty flag
SDB-to-host almost full flag
Host-to-SDB almost full flag
Host-to-SDB mailbox full flag
SDB-to-host mailbox full flag
EPLD programming done
General purpose input 0
General purpose input 1
Reserved

Reserved

Reserved

Reserved

Reserved

Reserved

Reserved

Reserved

This function clears a bit in the PCI status register (PCISTAT).

CLIENT_STAT St;

St = Client_ClearConfigBit(CLIENT_FSWO0);

if (St == CLIENT_STATOK) {
[*...okay ... */
}

Host Communications API 6-13

Client_Close

Function Name

Syntax

Arguments

Return Value

Description

Example

6-14

Client_Close

CLIENT_STAT Client_Close();

None

CLIENT_STAT Status information

This function closes the SDB device. Once itis closed, no other accesses can
occur on the SDB until it is reopened via Client_Open().

CLIENT_STAT st;
st = Client_Open();
if (st) {

[* ... do some processing ... */
Client_Close();

Client_Init

Function Name Client_lInit

Syntax BOOL Client_Init();
Arguments None
Return Value BOOL TRUE Initialization succeeded
FALSE Initialization failed
Description This function initializes the host API. It returns TRUE if the initialization
succeeded.
Notes:

1) You must call Client_Init() before calling any other host API function.
2) You must call this function only once in an application.

Example BOOL ok;
ok = Client_lInit();

if (0k) {
/* ... do some processing ... */
}

Host Communications API 6-15

Client_IssueCmnd

Function Name
Syntax

Arguments

Return Value

Description

Example

6-16

Client_IssueCmnd

CLIENT_STAT Client_IssueCmnd(ULONG *Cmnd, long TimeOut);

ULONG *Cmnd Pointer to command; must point to CLIENT_CMNDSIZE
32-bit words of preallocated memory

long TimeOut Number of attempts before timing out

CLIENT_STAT Status information

This function is the host command client responsible for sending a command
to the SDB. Success requires the 'C80 command server to be running also.
The context of the command is application defined.

#define MY_CMND_ID 0x80120001

void MyClientFunc() {

ULONG Cmnd[CLIENT_CMNDSIZE];
Cmnd[0] = MY_CMND_1ID;
Cmnd[1]= argumentl ;

Cmnd[2] = argument2 ;
[*..etc..*
Client_IssueCmnd(1000);
Client_Sync(100);

[* ... finish up command ... */

Client_Open

Function Name Client_Open

Syntax CLIENT_STAT Client_Open();

Arguments None

Return Value CLIENT_STAT Status information

Description This function opens the SDB device. Before accesses to the SDB can occur,

it must be opened. If the SDB device opens successfully, the return status
equals CLIENT_STATOK.

Note: You must call Client_Open():

[after calling Client_Init() (see page 6-15 for more information)
[0 before calling any other host API functions

Example CLIENT_STAT st;
if (Client_Init()) {
st = Client_Open();

if (st == CLIENT_STATOK) {
/* ... do some processing ... */
Client_Close();

Host Communications API 6-17

Client_ReadConfig

Function Name
Syntax

Arguments

Return Value

Description

Example

6-18

Client_ReadConfig

CLIENT_STAT Client_ReadConfig(ULONG *Val);

ULONG *Val Pointer to ULONG, which receives the PCI status register
contents

CLIENT_STAT Status information

This function reads the PCI status register (PCISTAT) and stores it into the
ULONG pointed to by Val.

ULONG PciStat;

Client_ReadConfig(&PciStat);

Function Name
Syntax

Arguments

Return Value

Description

Example

Client_ReadConfigBit

Client_ReadConfigBit

CLIENT_STAT Client_ReadConfigBit(ULONG bit);

ULONG bit

CLIENT_MRST
CLIENT_FRST
CLIENT_FSWO0
CLIENT_FSW1
CLIENT_FOFFO
CLIENT_FOFF1
CLIENT_IAEN
CLIENT BLR
CLIENT_BLW
CLIENT_BDIS
CLIENT_RO
CLIENT_GPOO
CLIENT_GPO1
CLIENT_R1
CLIENT_R2
CLIENT_EF2
CLIENT_EF1
CLIENT_AF1
CLIENT_AF2
CLIENT_MB1
CLIENT_MB2
CLIENT_PRGD
CLIENT_GPIO
CLIENT_GPI1
CLIENT_R3
CLIENT_R4
CLIENT_R5
CLIENT_R6
CLIENT_R7
CLIENT_RS
CLIENT_R9
CLIENT_R10

CLIENT_STAT Status information

Bit position constant:

[00]
[01]
(02]
(03]
[04]
[05]
[06]
[07]
[08]
[09]
(10]
(11]
(12]
(13]
(14]
(15]
(16]
(17]
(18]
(19]
(20]
(21]
[22]
(23]
(24]
[25]
[26]
[27]
(28]
[29]
(30]
(31]

Master reset (active low)
FIFO reset (active low)

Byte swapping 0

Byte swapping 1

FIFO flag offset 0

FIFO flag offset 1

Host interrupt enable

Block transfer read

Block transfer write

Burst disable

Reserved

General purpose output 0
General purpose output 1
Reserved

Reserved

SDB-to-host FIFO empty flag
Host-to-SDB FIFO empty flag
SDB-to-host almost full flag
Host-to-SDB almost full flag
Host-to-SDB mailbox full flag
SDB-to-host mailbox full flag
EPLD programming done
General purpose input 0
General purpose input 1
Reserved

Reserved

Reserved

Reserved

Reserved

Reserved

Reserved

Reserved

This function reads the PCI status register (PCISTAT) and tests the specified
bit. The CLIENT_BITSET flag in the return status indicates whether the tested
bit is set or not. CLIENT_BITSET is set if the tested bit is set.

CLIENT_STAT st;

st = Client_ReadConfigBit(CLIENT_P2H_FEF);

if (st & CLIENT_BITSET) {
/* ... bit was set ... */
}

Host Communications API 6-19

Client_ReadDataFifo

Function Name

Syntax

Arguments

Return Value

Description

Example

6-20

Client_ReadDataFifo

CLIENT_STAT Client_ReadDataFifo(ULONG *Block, ULONG ct,
long timeouf);

ULONG *Block Pointer to a block of 32-bit words
ULONG ct Number of words in a block (0 < ct < 8192)

long timeout Number of attempts before timing out

CLIENT_STAT Status information

This function reads a block of 32-bit words from the PCl interface FIFO. To pre-
vent reading an empty FIFO, a software watchdog timer is implemented. This
function checks the FIFO empty flag and, if it is not set, reads ct 32-bit words
and stores them into *Block. If the flag is set, indicating the FIFO is empty, the
function loops and tries again. If the function fails timeouttimes, it returns with-
out reading data and the CLIENT_TIMEOUT flag plus the
CLIENT_FIFOEMPTY flag is set in the return status.

Note:

Client_ReadDataFifo() only checks the FIFO empty flag initially. If the block
size is larger than the FIFO size, the 'C80 must write the entire block to the
FIFO for this function to read out. If this function tries to read more data out
of the FIFO than the 'C80 writes, the PCI bus will try to read it out forever,
literally.

ULONG Data[20];
Client_ReadDataFifo(Data,20,100);

Function Name
Syntax

Arguments

Return Value

Description

Example

Client_Readlo

Client_Readlo

CLIENT_STAT Client_Readlo(USHORT Address, ULONG *Val);

USHORT Address Host-relative I/O address

ULONG *Val Pointer to ULONG, which receives the PCI status reg-
ister contents

CLIENT_STAT Status information

This function reads a value from the SDB’s I/O bus. The address is relative to
the host address window into the SDB device. For instance, the MASKENO
register of the SDB’s interrupt controller has a host-relative address of 0x2300.
The I/O bus on the SDB is 16 bits wide, but all PCl accesses must be 32-bit
accesses. For this reason, the application should mask off the unneeded bits,
which contain unpredictable values.

Note:

This function performs an 1/O access that requires the use of both PCl inter-
face FIFO mailboxes. If either or both mailboxes are full, the access will fail
and the PCI status register (PCISTAT) is returned.

ULONG MaskEnO;

Client_Readlo(0x2300, &MaskEnO0);
MaskEnO &= 0x0000FFFF;

Host Communications API 6-21

Client_ReadMailbox

Function Name Client_ReadMailbox

Syntax CLIENT_STAT Client_ReadMailbox(ULONG *Val, long timeout);

Arguments ULONG *Val Pointer to ULONG, which receives the PCI status register
(PCISTAT) contents

long timeout ~ Number of attempts before timing out

Return Value CLIENT_STAT Status information

Description This function reads the 32-bit word from the PCI interface FIFO mailbox. To
prevent reading an empty mailbox, a software watchdog timer is implemented.
This function checks the mailbox full flag and, if it is set, reads a 32-bit word
and stores it in *Val. If the flag is not set, indicating the mailbox is empty, the
function loops and tries again. If the function fails timeouttimes, it returns with-
out reading data, 0x00000000 is written to *Val, and the CLIENT_TIMEOUT
flag plus the CLIENT_MAILBOXEMPTY flag is set in the return status.

Example ULONG Data;
Client_ReadMailbox(&Data, 100);

6-22

Function Name
Syntax

Arguments

Return Value

Description

Example

Client_Reset

Client_Reset

CLIENT_STAT Client_Reset(USHORT Flags, FILE *Output);

USHORT Flags CLIENT_VERBOSE Send messages to Output
CLIENT_TBCOFF Disable test bus controller (TBC)
emulator chip
CLIENT_EMURST Execute emurst.exe

FILE *Output ~ Opened text stream, such as stdout

CLIENT_STAT Status information

This function bootstraps the SDB by resetting the board, loading miniboot.bin,
and then loading and running bootserv.bin. The files miniboot.bin and boot-
serv.bin are the default bootstrapping files and are located in the system32
directory of the host operating system.

Three flags can be passed to this function:

(1 CLIENT_VERBOSE
(1 CLIENT_TBCOFF
(1 CLIENT_EMURST

Setting CLIENT_VERBOSE causes this function to output text messages to
the Output stream. Setting CLIENT_TBCOFF causes the on-board TBC emu-
lator chip to be disabled. Disabling this chip allows debugging using the JTAG
connector on the board and an XDS510 emulator. Setting CLIENT_EMURST
causes this function to execute the emurst.exe utility before resetting. This
only applies if you have an XDS510 installed in your PC. By performing an
emurst, you can reset the XDS510 and the SDB. The emurst.exe program is
not spawned, but rather it is called out as a system command, so the program
only needs to be in the system path.

CLIENT_STAT St;

St = Client_Reset(CLIENT_VERBOSE, stdout);

if (St == CLIENT_STATOK) {
/* reset went okay */
}

Host Communications API 6-23

Client_SetConfigBit

Function Name

Syntax

Arguments

Return Value
Description

Example

6-24

Client_SetConfigBit

CLIENT_STAT Client_SetConfigBit(ULONG bit);

ULONG bit Bit position constant:

CLIENT_MRST [00] Master reset (active low)
CLIENT_FRST [01] FIFO reset (active low)
CLIENT_FSWO [02] Byte swapping 0
CLIENT_FSW1 [03] Byte swapping 1

CLIENT FOFFO [04] FIFO flag offset 0
CLIENT_FOFF1 [05] FIFO flag offset 1

CLIENT_IAEN [06] Host interrupt enable
CLIENT_BLR [07] Block transfer read
CLIENT_BLW [08] Block transfer write
CLIENT_BDIS [09] Burst disable

CLIENT_RO [10] Reserved

CLIENT_GPOO [11] General purpose output 0
CLIENT_GPO1 [12] General purpose output 1
CLIENT_R1 [13] Reserved

CLIENT_R2 [14] Reserved

CLIENT_EF2 [15] SDB-to-host FIFO empty flag
CLIENT_EF1 [16] Host-to-SDB FIFO empty flag
CLIENT_AF1 [17] SDB-to-host almost full flag
CLIENT_AF2 [18] Host-to-SDB almost full flag
CLIENT_MB1 [19] Host-to-SDB mailbox full flag
CLIENT_MB2 [20] SDB-to-host mailbox full flag
CLIENT_PRGD [21] EPLD programming done
CLIENT_GPIO [22] General purpose input 0
CLIENT_GPI1 [23] General purpose input 1
CLIENT_R3 [24] Reserved

CLIENT_R4 [25] Reserved

CLIENT_R5 [26] Reserved

CLIENT_RG6 [27] Reserved

CLIENT_R7 [28] Reserved

CLIENT_RS8 [29] Reserved

CLIENT_R9 [30] Reserved

CLIENT_R10 [31] Reserved

CLIENT_STAT Status information
This function sets a bit in the PCI status register (PCISTAT).

CLIENT_STAT St;

St = Client_SetConfigBit(CLIENT_FSWO0);

if (St == CLIENT_STATOK) {
[* status = okay */
}

Function Name
Syntax

Arguments

Return Value

Description

Example

Client_SetSwapping

Client_SetSwapping

CLIENT_STAT Client_SetSwapping(USHORT sw);

USHORT sw CLIENT_NOSWAP 0x12345678 — 0x12345678
CLIENT_BYTESWAP 0x12345678 — 0x78563412
CLIENT_WORDSWAP 0x12345678 - 0x56781234
CLIENT_BYTEWORD- 0x12345678 — 0x34127856
SWAP

CLIENT_STAT Status information

This function configures the PCl interface FIFO byte swapping logic. The byte
swapping logic of the FIFO interface rearranges each 32-bit value that passes
through the data FIFO. The swapping logic affects the host-to-SDB FIFO and
the SDB-to-host FIFO. It does not affect the FIFO mailboxes (therefore 1/0O ac-
cesses are not affected by swapping).

Note:

If you change the FIFO swapping logic (to do a transfer, for instance), make
sureyourestoreitto CLIENT_NOSWAPPING because the client/server rou-
tines require it this way.

CLIENT_STAT St;
St = Client_SetSwapping(CLIENT_NOSWAP);

Host Communications API 6-25

Client_Sync

Function Name
Syntax
Arguments

Return Value

Description

Example

6-26

Client_Sync

CLIENT_STAT Client_Sync(long timeout);
long timeout ~ Number of attempts before timing out

CLIENT_STAT Status information

When you call this function, it waits until the 'C80 executes Server_Sync() be-
fore returning. This synchronizes the host client with the 'C80 server.

#define MY_CMND_ID 0x80120001

void MyClientFunc() {

ULONG Cmnd[CLIENT_CMNDSIZE];
Cmnd[0] = MY_CMND_1ID;

Cmnd[1] = argumentl ;

Cmnd[2] = argument2 ;

[* ... etc..*
Client_IssueCmnd(1000);
Client_Sync(100);

[* ... finish up command ... */

Function Name
Syntax
Arguments

Return Value
Description

Example

Client_WriteConfig

Client_WriteConfig

CLIENT_STAT Client_WriteConfig(ULONG Val);
ULONG Val ULONG value to be written to the PCI status register

CLIENT_STAT Status information
This function writes Val to the PCI status register (PCISTAT).

ULONG PciStat = 0x00000023;

Client_WriteConfig(PciStat);

Host Communications API 6-27

Client_WriteDataFifo

Function Name

Syntax

Arguments

Return Value

Description

Example

6-28

Client_WriteDataFifo

CLIENT_STAT Client_WriteDataFifo(ULONG *Block, ULONG ct,
long timeouf);

ULONG *Block Pointer to a block of 32-bit words
ULONG ct Number of words in a block (0 < ct < 8192)

long timeout Number of attempts before timing out

CLIENT_STAT Status information

This function writes a block of 32-bit words to the PCl interface FIFO. To pre-
vent writing to a full FIFO, a software watchdog timer is implemented. This
function checks the FIFO almost full flag and, if it is not set, writes ct 32-bit
words from *Block into the FIFO. If the flag is set, indicating the FIFO is almost
full, the function loops and tries again. If the function fails timeout times, it re-
turns without writing any data and the CLIENT_TIMEOUT flag plus the
CLIENT_FIFOALMOSTFULL flag is set in the return status.

Note:

Client_WriteDataFifo() only checks the FIFO almost full flag initially. If the
block size is larger than the FIFO size, the 'C80 must read the entire block
out of the FIFO. If this function tries to write out more data than the 'C80
reads, the FIFO will become full and the PCI bus will try to write to it forever,
literally.

ULONG Data[20];

Client_WriteDataFifo(Data,20,100);

Function Name
Syntax

Arguments

Return Value

Description

Example

Client_Writelo

Client_Writelo

CLIENT_STAT Client_Writelo(USHORT Address, ULONG Val);

ULONG Address Host-relative I/O address
ULONG Val Value to write to I/O bus

CLIENT_STAT Status information

This function writes a value to the SDB’s I/O bus. The address is relative to the
host address window into the SDB device. For instance, the MASKENO regis-
ter of the SDB’s interrupt controller has a host-relative address of 0x2300. The
I/0 bus on the SDB is 16 bits wide, but all PCI accesses must be 32-bit
accesses. Only the lower 16 bits are used.

Note:

This function performs an I/O access that requires the use of both PCl inter-
face FIFO mailboxes. If either or both mailboxes are full, the access will fail.

Client_Writelo(0x2300, 0x0800);

Host Communications API 6-29

Client_WriteMailbox

Function Name
Syntax

Arguments

Return Value

Description

Example

6-30

Client_WriteMailbox

CLIENT_STAT Client_WriteMailbox(ULONG Val, long timeout);

ULONG Val Value to be written to the FIFO mailbox

long timeout Number of attempts before timing out

CLIENT_STAT Status information

This function writes a single 32-bit word to the PCI interface mailbox. To pre-
vent writing to a full mailbox, a software watchdog timer is implemented. This
function checks the mailbox full flag and, if itis not set, writes Val to the mailbox.
Ifthe flag is set, indicating the mailbox is full, the function loops and tries again.
If the function fails timeout times, it returns without writing data and the
CLIENT_TIMEOUT flag plus the CLIENT_MAILBOXFULL flag is set in the re-
turn status.

Client_WriteMailbox(0x12345678,100);

Function Name

Syntax
Arguments
Return Value

Description

Example

Server_Done

Server_Done

void Server_Done();
None
None

This function notifies the SDB server that the application has finished servicing
the command. Once the server receives a command from the host client, it
does not accept any more commands until this function is called. Also, after
this function is called, the 'C80 application cannot call Server_GetCmnd() until
the server receives a new command.

Server_Done();

Host Communications API 6-31

Server_GetCmnd

Function Name
Syntax

Arguments

Return Value

Description

Example

6-32

Server_GetCmnd

void Server_GetCmnd(ULONG *Cmnd);

ULONG *Cmnd Pointer to a series of 32-bit words whose count is the val-
ue of SERVER_CMNDSIZE

None

This function copies the command read by the 'C80 command server into the
command pointed to by Cmnd. The Cmnd argument must point to a series of
32-bit words of preallocated memory whose count is the value of
SERVER_CMNDSIZE. The server command is copied only if the server has
one waiting and the application has not yet called Server_Done() for that com-
mand. Otherwise, *Cmnd is filled with zeros.

ULONG Cmnd[SERVER_CMNDSIZE];
Server_GetCmnd(Cmnd);
Server_Sync();

/* ... complete command ... */

Server_Init

Syntax BOOL Server_Init();
Arguments None
Return Value BOOL TRUE Initialization succeeded
FALSE Initialization failed
Description This function initializes the server API. It returns TRUE if the initialization
succeeded.
Notes:

1) You must call Server_Init() before calling any other server API function.
2) You must call this function only once in an application.

Example BOOL ok;

ok = Server_Init();

if (0k) {
/* ... do some processing ... */
}

Host Communications API 6-33

Server_Install

Function Name

Syntax
Arguments
Return Value

Description

Example

6-34

Server_Install

void Server_Install();
None
None

This function installs the server ISR. Server_Install() must be called before the
host (client) can send down any commands. Calling Server_Uninstall()
reverses the actions of this function.

Server_Init();
Server_Install();

Function Name

Syntax
Arguments

Return Value

Description

Example

Server_InstallSema

Server_|InstallSema

long Server_InstallSema(long Semald);
long Semald ID of an opened semaphore

long Old semaphore value

This function installs a semaphore into the server driver. Whenever the SDB
receives a new command from the host (client), it signals this semaphore. The
application must open the semaphore before installing it.

long ServerSemald;

ServerSemald = TaskOpenSema(-1,0);
Server_InstallSema(ServerSemald);

TaskWaitSema(ServerSemald);

Host Communications API 6-35

Server_ReadDataFifo

Function Name Server_ReadDataFifo

Syntax long Server_ReadDataFifo(ULONG *Dst, USHORT Length);

Arguments ULONG *Dst Pointer to source of transfer

USHORT Length Number of 32-bit words to read (0 < Length <= 8192)

Return Value None

Description This function transfers a block of data from the PCl interface FIFO to SDB me-
mory by setting up a packet transfer and then issuing it. The function waits on
a packet complete semaphore, so it cannot be called from the default task.

Note:
The length of the packet transfer is limited to 8192 32-bit words.

Example ULONG MyBuUff[64];

Server_ReadDataFifo(MyBuff, 64);

6-36

Function Name

Syntax
Arguments
Return Value

Description

Example

Server_Sync

void Server_Sync();
None
None

When you call this function, it waits until the host executes Client_Sync() be-
fore returning. This synchronizes the 'C80 server with the host client.

Server_Sync();

Host Communications API 6-37

Server_Uninstall

Function Name Server_Unlinstall

Syntax void Server_UnlInstall();

Arguments None

Return Value None

Description This function performs the following actions:

(O Uninstalls the server that was installed by calling Server_Install()
[Disables the server interrupt

Example Server_Unlnstall();

6-38

Function Name

Syntax

Arguments

Return Value

Description

Example

Server_WriteDataFifo

Server_WriteDataFifo

void Server_WriteDataFifo(ULONG *Src, USHORT Length);

ULONG *Src Pointer to source of transfer

USHORT Length Number of 32-bit words to read (0 < Length <= 8192)

None

This function transfers a block of data from SDB memory to the PCl interface
by setting up a packet transfer and then issuing it. The function waits on a pack-
et complete semaphore, so it cannot be called from the default task.

Note:
The length of the packet transfer is limited to 8192 32-bit words.

ULONG MyBuff[64];

/* write the contents of the buffer to the FIFO */
Server_WriteDataFifo(MyBuff, 64);

Host Communications API 6-39

6-40

Appendix A

Example Code

This appendix lists several examples of code that illustrate the effective use
of the API libraries that come with the SDB. Some of these examples may be
good starting points for developing your own applications.

The complete coding examples illustrate how to use the driver APIs. Each ex-
ample includes the following files:

[C source file for the example
(] Linker command file
(1 Batch file for building the project

The project files are located on the TMS320C8x SDB System Software CD
ROM under the samples directory. The projects on the CD have already been
builtinto a .out file and are ready to execute. If you want to rebuild the projects,
the TMS320C8x code generations tools must be installed on your system.

Topic Page
A.1 Video Capture-Process-Display Example A-2
A.2 Audio DMA Capture Example — i, A-8
A.3 Audio DMA Playback Example i, A-12
A.4 Audio Block Capture/Playback Example — A:17
A.5 Audio Programmed I/O Example A-21
A.6 Video Capture Scaling Example i, A-24
A.7 Video Display Test Example i A-30

Video Capture-Process-Display Example

A.1 Video Capture-Process-Display Example

This example provides a skeleton application that performs double-buffered
video capture and double-buffered video display. You can start with this exam-
ple and add to it by providing processing on the captured video.

Example A-1. video

(a) video.c

Copyright (C) 1995-1996 Texas Instruments Incorporated.
All Rights Reserved

video.c — TMS320C8x MP 'C’ Source Code

*kk * *kkkkk * Kkkkkkkkkkk /

*
*
*.
*
*
*
* This is the C file for the video example program.
*
\
#

include <sdbdrvs.h>

I' * * * * * * * ‘\

* Data Types, Global Variables, Constants

[* executive variables */
long VideoTaskld;

long CaptureSemald;
long DisplaySemald;
long PtSemald;

[* packet transfer table (PT is defined in sdbdrvs.h) */
PT *PtTable;

/* metrics variables */
CAPTURE_MET CM;
DISPLAY_MET DM,;

Fkkkkk * * * *kkkkkkkk * * * *kkkkkkkk * \

/
* Function Prototypes

\ Ferkkkkkokk Fekkkkkokok woxk|
void VideoTask(void *p);

void ProcessVideo(ULONG Buff);

void InitVideo(USHORT sx, USHORT sy, BYTE scale);

void InitPtTable();

A-2

Video Capture-Process-Display Example

" " " TRRERREEER " " TRRERREEEE \

* Functions

\xxxx F*hkkkkkkkkkkkkkk *% *kkkkkkkkkkhhkhhkkkhrkkk *% xxxxx/

void main() {

/* these register settings are mandatory */
REFCNTL = OxFFFF0100;

PTMIN = 0x00000100;

PTMAX = 0x00010000;

/* initialize the executive */
TaskInitTasking();
PtReqlInit();

/* initialize the drivers */
Capture_Init();
Display_Init();

/* create the task and semaphores */

VideoTaskld = TaskCreate(—1, VideoTask, (void *)NULL, 20, 1024);
CaptureSemald = TaskOpenSema(-1,0);

DisplaySemald = TaskOpenSema(-1,0);

/* install driver semaphores */
Capture_lInstallSema(CaptureSemald);
Display_InstallSema(DisplaySemald);

[* set up packet transfer table and semaphore */
PtSemald = TaskOpenSema(-1,0);
PtTable = (PT *)PtRegAlloc();

[* start the video task */
TaskResume(VideoTaskld);

while (1);
}
I* *
void VideoTask(void *p) {

int SemacCt = 0;
ULONG CaptureBuff;
ULONG DisplayBuff;

/* initialize the video settings */

if (0) InitVideo(1024, 768, CAPTURE_640x480);
if (1) InitVideo(640, 480, CAPTURE_640x480);
if (0) InitVideo(1024, 768, CAPTURE_512x512);
if (0) InitVideo(640, 480, CAPTURE_CIF);

if (0) InitVideo(640, 480, CAPTURE_CIFK);

if (0) InitVideo(640, 480, CAPTURE_QCIF);

if (0) InitVideo(640, 480, CAPTURE_SQCIF);

if (0) InitVideo(1024, 768, CAPTURE_SQCIF);

Example Code

A-3

Video Capture-Process-Display Example

/* turn on the video */
Display_Enable();
Capture_Enable();

[* video capture—process—display loop */
while (1) {

[* wait for new captured frame */
TaskWaitSema(CaptureSemald);

/* selectively process frame */
if (SemaCt++ > 0) {
SemaCt =0;

[* get buffer of most recently captured frame */
CaptureBuff = Capture_GetBuffer();

[* tell display driver to toggle buffers next display frame event */
Display_ToggleBuffers();

/* do some processing on captured buffer */
if (0) ProcessVideo(CaptureBuff);

[* wait until display driver has toggled display buffers */
TaskWaitSema(DisplaySemald);

/* get the in—active display buffer */
DisplayBuff = Display_GetBuffer(DISPLAY_INACTIVE);

[* transfer the processed capture buffer to the */
[* in—active display buffer */
PtTable—>SrcStart = CaptureBuff;
PtTable—>DstStart = DisplayBuff;
PtReqlssue((void *)PtTable,PtSemald);
TaskWaitSema(PtSemald);

/* unlock the capture buffer obtained from Capture_GetBuffer() */
Capture_FreeBuffer();
}
}
}

/*

*/

void ProcessVideo(ULONG Buff) {

USHORT x,y;
ULONG addr;

[* this processing is not practical but has a good visual effect */

A-4

Video Capture-Process-Display Example

[* for each 16-bit pixel in the captured buffer */
for (x=0; x<CM.Rh; x++) {
for (y=0; y<CM.Rv; y++) {
addr = Buff + CM.Bpp/8*x + CM.Pitch*y;
[* invert the pixel */
NOCACHE_USHORT (*(volatile USHORT*)addr) =
(OXFFFF — NOCACHE_USHORT (*(volatile USHORT*)addr));
}
}
}
I* */
void InitVideo(USHORT sx, USHORT sy, BYTE scale) {
USHORT x,y,dx,dy;

[* set up the video capture */
Capture_Instal(CAPTURE_NTSC,CAPTURE_RGB555,scale);
Capture_FillBuffs(0x00000000);

Capture_GetMetrics(&CM);

/* calculate the display window */
dx = CM.Rh;

dy = CM.Ry;

X = (sx—=dx)/2;

y = (sy-dy)/2;

[* set up the display */
Display_SetMode(sx,sy,60,DISPLAY_T555,DISPLAY_VIDEO);
Display_SetWindow(x,y,dx,dy);

Display_SetPitch(CM.Pitch);

Display_GetMetrics(&DM);

/* initialize the packet transfer table */
InitPtTable();

}

% !
void InitPtTable() {

/* Setup packet transfer table used to transfer the capture buffer to */
/* the display buffer. The two metrics variables CM and DM must already */
/* be set before calling this function. */
PtTable—>Next = (ULONG)PtTable;

PtTable—>Options = 0x80000000;

PtTable—>SrcStart = 0x00000000;

PtTable—>DstStart = 0x00000000;

PtTable—>SrcBCnt = CM.Rv-1;

PtTable—>SrcACnt = CM.Rh*CM.Bpp/8;

PtTable—>DstBCnt = CM.Rv-1;

PtTable—>DstACnt = CM.Rh*CM.Bpp/8;

PtTable—>SrcCCnt =0;

PtTable—>DstCCnt =0;

PtTable—>SrcBPitch = CM.Pitch;

PtTable—>DstBPitch = DM.Pitch;

Example Code A-5

Video Capture-Process-Display Example

PtTable—>SrcCPitch = 0;
PtTable—>DstCPitch = 0O;
PtTable—>TransO =0;
PtTable—>Transl =0;
PtTable—>Junkl =0;
PtTable—>Junk2 =0;

}

[xH* * Kk kFFKKKKK * * Kk kFFIRIKFFFII*K * * *

* End of 'video.c’

\

**/

(b) video.Ink

[FrFRFF I ST KKKk K *% *kkkkkkkhkkhkkkhhkkhrrkk *% Fkkkkkkkkkkkkkkkkkkkkkk|

* Copyright (C) 1995-1996 Texas Instruments Incorporated.
All Rights Reserved

video.Ink — TMS320C8x MP Linker Command File

“ % * * * *

—C
—X

—heap 0x00400000
—stack 0x00010000
—| mp_rts.lib

—| mp_task.lib

—I mp_int.lib

—| mp_ptreq.lib

—| sdbdrvs.lib

MEMORY

PROGMEM : origin=0x80000000 length=0x00800000
}

SECTIONS

{
text :> PROGMEM
.ptext :> PROGMEM
.cinit :> PROGMEM
.const :> PROGMEM
.switch :> PROGMEM
.data :>PROGMEM
.bss > PROGMEM
.sysmem :> PROGMEM

}

[FrFFF I I T KKKk K *% *kkkkkkkhkkhhkkhkkkhkrkk *% *kkkkkkkhkkhhkkkkkk

* End of 'video.Ink’

™\

\ * * * * * * * * *

A-6

Video Capture-Process-Display Example

(c) video.bat
@rem gFFrrrii ko kR R R R R ok
@rem# Copyright (C) 1995-1996 Texas Instruments Incorporated.

@rem # All Rights Reserved

@rem#

@rem #

@rem # video.bat — batch file to build project

@rem #

@ rEIM FHHFFHRAAIIIAAAAIIAAAFIIAAAAIIAAAFIIKAATIIAAAFIIIAASIIAAAFIIIAASIIIAAKIRK |

@mpcl —gq video.c

@mvplnk —m video.map —o video.out video.obj video.Ink

@rem #x * * * * * *kkkkkkkk * * *kkkkkkkk * ‘\
@rem # End of 'video.bat’
@rem # * * * * * * * * * * * * /

Example Code

A-7

Audio DMA Capture Example

A.2 Audio DMA Capture Example

This example shows how to use buffered DMA audio capture in real time. The
only processing done on the audio is displaying each sample on the display
in an oscilloscope fashion. When you run this example in the debugger, do not
halt the debugger. The audio FIFO generates an interrupt when itis almost full.
The ISR then issues a packet transfer to read the data out of the FIFO. If you
halt the debugger, the ISR never executes, and the FIFO is never serviced.
When this happens, the FIFO becomes full and overflows. No more events are
triggered and, therefore, audio stops.

Example A-2. audcapt

(a) audcapt.c

* * * * * * ‘\

Copyright (C) 1995-1996 Texas Instruments Incorporated.
All Rights Reserved

audcapt.c — TMS320C8x MP 'C’ Source Code

Fkkkkk *% *% * *kkdkkkkhkkkkk *% * * *kkdkkkkkkkkkk 7(/

*
*
*.
*
*
*
* This is the C file for the audcapt example.
*
\
#

include <sdbdrvs.h>

/ \
* Data Types, Global Variables, Constants

\kok Rk Rk i /
long AudioTaskld;

long AudioSemald;

AUDIO_MET AM;
DISPLAY_MET DM;

#define BG_COLOR 0x0000
#define FG_COLOR 0x03EOQ

Fkk * * Fkk * * * Fkk * \

/
* Function Prototypes
\

void AudioTask(void *p);
void ProcessAudio(AUDIO_PTR *Cptr);

/ * * * * * * *okk\

* Functions
\ Rk Hokkkkk Hkkk |
void main() {

/* these register settings are mandatory */
REFCNTL = OxFFFF0100;

A-8

Audio DMA Capture Example

PTMIN = 0x00000100;
PTMAX = 0x00010000;

/* initialize executive */
TaskInitTasking();
PtReqlInit();

[* initialize drivers */
Audio_Init();
Display_Init();

[* set up display */
Display_SetMode(1024,768,60,DISPLAY_T555,DISPLAY_VIDEO);
Display_FillBuffs(BG_COLOR);

Display_GetMetrics(&DM);

Display_Enable();

[* executive stuff */

AudioSemald = TaskOpenSema(—1,0);

AudioTaskld = TaskCreate(—1, AudioTask, (void *)NULL, 20, 1024);
Audio_InstallSema(AudioSemald);

[* start the audio task */
TaskResume(AudioTaskld);

while (1);
}
[* K
void AudioTask(void *p) {

AUDIO_PTR Cptr,

[* set up the audio */

Audio_Programinputs(AUDIO_LINE,AUDIO_LINE,15,15);
Audio_Install(AUDIO_CAPTURE,AUDIO_PCM16,AUDIO_STEREO,48.0,8,128,4);
Audio_FillBuffs(0x00000000);

Audio_GetMetrics(&AM);

Audio_Enable();

/* audio capture loop */
while (1) {
TaskWaitSema(AudioSemald);
Audio_GetCaptureBuffs(&Cptr);
ProcessAudio(&Cptr);
}
}

/* */
void ProcessAudio(AUDIO_PTR *Cptr) {

USHORT x,y,n;
static BOOL init = FALSE;

Example Code

A-9

Audio DMA Capture Example

static short L0[2048];
static short R0[2048];

n = AM.BlockSz * AM.BlockCt;

if (init) {
for (x=0; x<n; x++) {
Display_SetPixel(x,LO[x]+768/3,BG_COLOR,DISPLAY_ACTIVE);
LO[X] = ((short*)(Cptr—>L))[x]>>8;
Display_SetPixel(x,768/3,0x3C00,DISPLAY_ACTIVE);
Display_SetPixel(x,LO[x]+768/3,FG_COLOR,DISPLAY_ACTIVE);
if (AM.Stereo) {

Display_SetPixel(x,RO[x]+2*768/3,BG_COLOR,DISPLAY_ACTIVE);

RO[X] = ((short*)(Cptr—>R))[x]>>8;
Display_SetPixel(x,2*768/3,0x3C00,DISPLAY_ACTIVE);

Display_SetPixel(x,RO[x]+2*768/3,FG_COLOR,DISPLAY_ACTIVE);

}
}

else {
init=TRUE;
for (x=0; x<n; x++) {
LO[x] = RO[x] = O;

}
}

/ TRRRRRRRRRRRERER " TRRREREEEER " TRREEEEEEEN

* End of "audcapt.c’

\xxxxxxx *% *kkkkkkkhkkhhkkhhkkhrrkk *% *kkkkk xxxxxxxxx/

(b) audcapt.Ink

[FrHHF A IR * * * *kkkkkkkkkkkkk *% * * *kkdkkkkhkkkkk *\

Copyright (C) 1995-1996 Texas Instruments Incorporated.
All Rights Reserved

audcapt.Ink — TMS320C8x MP Linker Command File

*
*
*
*
*
*
s /

—C
—X

—heap 0x00100000
—stack 0x00010000
—| mp_rts.lib

—| mp_task.lib

—I mp_int.lib

—| mp_ptreq.lib

—| sdbdrvs.lib

A-10

Audio DMA Capture Example

MEMORY

PROGMEM : origin=0x80000000 length=0x00800000
}

SECTIONS

{
text :> PROGMEM
.ptext :> PROGMEM
.cinit :> PROGMEM
.const :> PROGMEM
.switch :> PROGMEM
.data :>PROGMEM
.bss >PROGMEM
.sysmem :> PROGMEM

}

I* TR " " TRREREEEER TR " " TR " TR\

* End of "audcapt.Ink’

\ kkkkkkkkkkkkkk *kkkkkkkkkkkkk 1(7(7(/

(c) audcapt.bat

@rem #Ferkkkkkkkk kR R R TR Rk koo RRR KR \
@rem# Copyright (C) 1995-1996 Texas Instruments Incorporated.
@rem # All Rights Reserved

@rem#

@rem #

@rem # audcapt.bat — batch file to build project

@rem #

@rem iRk R RRR R R IR T I Sk RRRRRRR ARk

mpcl —gq audcapt.c

mvplnk —m audcapt.map —o audcapt.out audcapt.obj audcapt.Ink

@rem #x * * * *kkkkkkkk * *kkkkkkkk * ‘\
@rem # End of 'audcapt.bat’
@rem #a * * * * * * * * * * * * /

Example Code A-11

Audio DMA Playback Example

A.3 Audio DMA Playback Example

This example shows how to use buffered DMA audio playback in real time. The
audio source for playback is simulated by generating a sine wave. The only
processing done on the audio is displaying each sample on the display in an
oscilloscope fashion. When you run this example in the debugger, do not halt
the debugger. The audio FIFO generates an interrupt when it is almost empty.
The ISR then issues a packet transfer to write the audio data out to the FIFO.
If you halt the debugger, the ISR never executes, and the FIFO is never ser-
viced. When this happens, the FIFO empties and underflows. No more events
are triggered and, therefore, audio stops.

Example A-3. audplay
(a) audplay.c

= TRRRERREEER " TEEEEN

Copyright (C) 1995-1996 Texas Instruments Incorporated.
All Rights Reserved

audplay.c — TMS320C8x MP 'C’ Source Code

* * * * * * * * /

*
*
*,
*
*
*
* This is the C file for the audplay module.
*
\
#

include <sdbdrvs.h>

[rrwRk iekekohoks ekekohoks \
* Data Types, Global Variables, Constants

\rekkdkkokok Rk koo Rk ko dkdokokok |
long AudioTaskld;

long AudioSemald;

AUDIO_MET AM;
DISPLAY_MET DM,;

#define BG_COLOR 0x0000
#define FG_COLOR 0x03EO

* * * * * *kkk * * * *kkkhkkkk * \

/
* Function Prototypes
\

* Kkkkkkkkkkkkkk Kkkkkkkkkkkkkk /

void AudioTask(void *p);
void ProcessAudio(AUDIO_PTR *Pptr);

A-12

Audio DMA Playback Example

" " " TRRERREEER " TRRRRRERERREREE TR\

* Functions
\ Frkk R Akk FrkkkkAkk /
void main() {

/* these register settings are mandatory */
REFCNTL = OXFFFF0100;

PTMIN = 0x00000100;

PTMAX = 0x00010000;

/* initialize executive */
TaskInitTasking();
PtReqlnit();

[* initialize drivers */
Audio_Init();
Display_Init();

[* set up display */
Display_SetMode(1024,768,60,DISPLAY_T555,DISPLAY_VIDEO);
Display_FillBuffs(BG_COLOR);

Display_GetMetrics(&DM);

Display_Enable();

[* executive stuff */

AudioSemald = TaskOpenSema(—1,0);

AudioTaskld = TaskCreate(—1, AudioTask, (void *)NULL, 20, 1024);
Audio_InstallSema(AudioSemald);

/* start the audio task */
TaskResume(AudioTaskld);

while (1);
}
% K
void AudioTask(void *p) {

AUDIO_PTR Pptr;

[* set up the audio */

Audio_Programinputs(AUDIO_LINE,AUDIO_LINE,15,15);
Audio_Install(AUDIO_PLAYBACK,AUDIO_PCM16,AUDIO_STEREO,48.0,8,128,4);
Audio_FillBuffs(0x00000000);

Audio_GetMetrics(&AM);

Audio_Enable();

[* audio capture loop */

while (1) {
TaskWaitSema(AudioSemald);

Example Code

A-13

Audio DMA Playback Example

Audio_GetPlaybackBuffs(&Pptr);
ProcessAudio(&Pptr);
}
}

/*

*/

void ProcessAudio(AUDIO_PTR *Pptr) {

USHORT x,y,n;

static BOOL init = FALSE;
static short L0[2048];
static short R0[2048];
static float theta = 0.0;
static float pi;

float z;

pi = 4.0*atan(1.0);
n = AM.BlockCt * AM.BlockSz;

/* erase old plot */
if (init) {
for (x=0; x<n; x++) {
Display_SetPixel(x,LO[x]+768/3,BG_COLOR,DISPLAY_ACTIVE);
if (AM.Stereo)
Display_SetPixel(x,R0[x]+2*768/3,BG_COLOR,DISPLAY_ACTIVE);

}
}

init=TRUE;

[*theta = 0.0;*/
/* draw new plot */
for (x=0; x<n; x++) {
z = 16384*sin(theta);
LO[x] = (short)z>>8;
NOCACHE_SHORT(*(volatile short *)((short*)(Pptr—>L)+x)) = (short)z;
Display_SetPixel(x,768/3,0x3C00,DISPLAY_ACTIVE);
Display_SetPixel(x,LO[x]+768/3,FG_COLOR,DISPLAY_ACTIVE);
if (AM.Stereo) {
z = 16384*sin(4*theta+pi);
RO[X] = (short)z>>8;
NOCACHE_SHORT(*(volatile short *)((short*)(Pptr—>R)+x)) = (short)z;
Display_SetPixel(x,2*768/3,0x3C00,DISPLAY_ACTIVE);
Display_SetPixel(x,R0[x]+2*768/3,FG_COLOR,DISPLAY_ACTIVE);
}
theta = theta + 4.0*2.0*pi/n;
}
}

/ kool kool il
* End of "audplay.c’
\ * * * *

A-14

Audio DMA Playback Example

(b) audplay.Ink
Pickeichoieieheieiaieieiaieieiaieiehiichiiiiiiiiiiiiiiihiisihisheheichobehaishaiaieiaiaisaeisiaieiciiciiiii \
* Copyright (C) 1995-1996 Texas Instruments Incorporated.

All Rights Reserved

audplay.Ink — TMS320C8x MP Linker Command File

— ok * o * %

* * * * * * * * * * * * * /

—C

—X

—heap 0x00100000
—stack 0x00010000
—I mp_rts.lib

—| mp_task.lib

—I mp_int.lib

—| mp_ptreq.lib

—I sdbdrvs.lib

MEMORY
{

}

SECTIONS
{

PROGMEM : origin=0x80000000 length=0x00800000

text > PROGMEM
.ptext :> PROGMEM
.cinit :> PROGMEM
.const :> PROGMEM
.switch :> PROGMEM
.data :>PROGMEM
.bss > PROGMEM
.sysmem :> PROGMEM

}

/ \
* End of "audplay.Ink’

\7(*kkkkkkkkkk * * * *kkdkkkkhkkkkk *% * * xxx/

(c) audplay.bat

@rem# \
@rem# Copyright (C) 1995-1996 Texas Instruments Incorporated.
@rem # All Rights Reserved

@rem#

@rem #

@rem # audplay.bat — batch file to build project

@rem #

@rem ke ik * KAk /

mpcl —gq audplay.c

Example Code A-15

Audio DMA Playback Example

mvplink —m audplay.map —o audplay.out audplay.obj audplay.Ink

@rem gkt RS F AR ookl
@rem # End of "audplay.bat’

@rem#xx *kkkkkkkkkkhhkkhkkkhkkkk *% *kkkkkkkhkkhhkkhkkkkkrkk

A-16

Audio Block Capture/Playback Example

A.4 Audio Block Capture/Playback Example

This example shows how to use the audio block processing functions, Au-
dio_CaptureToMemory() and Audio_PlaybackFromMemory(). The program
captures 10 seconds of audio, and then plays it back. You can insert process-
ing between the capture and playback.

Example A—4. audtest

(a) audtest.c
* Copyright (C) 1995-1996 Texas Instruments Incorporated.
All Rights Reserved

audtest.c — TMS320C8x MP 'C’ Source Code

This is the C file for the audtest module.

* 0% Ok Ok Ok X X

\ *kkkkkkkkkkkk *kkkkkkkkkkkkk 7(7(7(/

#include <sdbdrvs.h>
#include <stdlib.h>

I‘ * * * * * * * * * ‘\

* Data Types, Global Variables, Constants

[* executive stuff */
long AudioTaskld;
long AudioSemald;

/* metrics variables */
AUDIO_MET AM,;

/ * * * * * * * \

* Function Prototypes
void AudioTask(void *p);
void ProcessAudio(AUDIO_PTR *Cptr, ULONG NumBuffs);

I‘ *kk * * * * * n‘\

* Functions

void main() {

/* these register settings are mandatory */
REFCNTL = OxFFFF0100;

PTMIN = 0x00000100;

PTMAX = 0x00010000;

[* initialize executive */
TaskInitTasking();

Example Code A-17

Audio Block Capture/Playback Example

PtReqlnit();

/* initialize drivers */
Audio_Init();

/* executive stuff */

AudioSemald = TaskOpenSema(-1,0);

AudioTaskld = TaskCreate(-1, AudioTask, (void *)NULL, 20, 1024);
Audio_InstallSema(AudioSemald);

[* start the audio task */
TaskResume(AudioTaskld);

while (1);
}

/*

void AudioTask(void *p) {

AUDIO_PTR Cptr;
BYTE Format = AUDIO_PCM16;

BOOL Stereo = AUDIO_STEREO;

float Fs =48.0;

BYTE BlockCt = 20;

BYTE BlockSz =50;

BYTE BuffCt =8;

ULONG NumBuffs = Fs*10; /* 10 seconds worth (watch out for heap size) */

/* dummy install to set audio metrics */
Audio_lInstall(AUDIO_CAPTURE,Format,Stereo,Fs,BlockCt,BlockSz,BuffCt);
Audio_GetMetrics(&AM);

Audio_Unlinstall();

[* allocate some DRAM storage for captured audio */
Cptr.L = (void*)memalign(64,AM.ByteSz*NumBuffs);
Cptr.R = (void*)memalign(64,AM.ByteSz*NumBuffs);

/* set the input gain */
Audio_Programinputs(AUDIO_LINE,AUDIO_LINE,9,9);

while (1) {
[* capture audio into memory */
Audio_lInstall(AUDIO_CAPTURE,Format,Stereo,Fs,BlockCt,BlockSz,BuffCt);
Audio_CaptureToMemory(&Cptr, NumBuffs);
Audio_Uninstall();

[* process the captured audio */
ProcessAudio(&Cptr,NumBuffs);

/* playback the processed audio */
Audio_Install(AUDIO_PLAYBACK,Format,Stereo,Fs,BlockCt,BlockSz,BuffCt);

A-18

Audio Block Capture/Playback Example

Audio_PlaybackFromMemory(&Cptr, NumBuffs);
Audio_Unlnstall();
}

/* if loop exited, free up the allocated memory */
free((void*)Cptr.L);
free((void*)Cptr.R);

}

I* */
void ProcessAudio(AUDIO_PTR *Cptr, ULONG NumBuffs) {

ULONG i;
short *L,*R;

L = (short*)(Cptr—>L);
R = (short*)(Cptr—>R);

/* do some dummy processing */
/* watch out for data cache coherency */
for (i=0; i<AM.BuffSz*NumBuffs; i++) {
L[i] = —L{i];
R[i] = RJi}/2;

}

I‘x * KKKk * * * KKKk * xxx‘\

* End of "audtest.c’

\ * * * * * * * * * * /

(b) audtest.Ink

Fkkkkk Fkkkkkkkkkk kkkkkkkkk|

Copyright (C) 1995-1996 Texas Instruments Incorporated.
All Rights Reserved

audtest.lnk — TMS320C8x MP Linker Command File

*
*
*
*
*
*

\xxxx *kkkkkkkkkkkkkkk *% *kkkkkkkhkkhhkkhhkkhrrkk *kkkkkkkkkkkkrkk /

—C

—X

—heap 0x00400000
—stack 0x00010000
—I mp_ptreq.lib

—I mp_rts.lib

—| mp_task.lib

—I mp_int.lib

—I sdbdrvs.lib

MEMORY
{

Example Code A-19

Audio Block Capture/Playback Example

PROGMEM : origin=0x80000000 length=0x00800000
}

SECTIONS

{
text :> PROGMEM
.stack :> PROGMEM
.ptext :> PROGMEM
.cinit :> PROGMEM
.const :> PROGMEM
.switch :> PROGMEM
.data :> PROGMEM
.bss > PROGMEM
.sysmem :> PROGMEM

}

[" TRRRRREEEE TR " " TR " " " TEEEEN

* End of "audtest.Ink’

\7(7(7(7(7(7(R s 7(7(7(7(7(7(7(7(7(7(/

(c) audtest.bat

@rem# ARRRKKKKKKR KRS AK ARRRRKRKKKR RSN *\
@rem# Copyright (C) 1995-1996 Texas Instruments Incorporated.
@rem # All Rights Reserved

@rem#

@rem #

@rem # audtest.bat — batch file to build project

@rem #

@rem kiR R R R R R R Rk |

mpcl —qg audtest.c

mvplink —m audtest.map —o audtest.out audtest.obj audtest.Ink

@rem# *kkkkkkkhkkhk *kkkkkhkkhkkkk \
@rem # End of 'audtest.bat’
@rem# *kkkkkhkhkk *kkkkk * /

A-20

A.5 Audio Programmed I/O Example

Audio Programmed I/0O Example

This example shows how to use the PIO (programmed 1/0) mode of the audio
codec to perform full-duplex audio. Two methods are used:

[The program creates its own PIO loop.

(1 The program calls the built-in driver function Audio_PioTest().

This example tests many different audio formats.

Example A-5. piotest

(a) piotest.c

Copyright (C) 1995-1996 Texas Instruments Incorporated.

All Rights Reserved

piotest.c — TMS320C8x MP 'C’ Source Code

* * * * * *

*
*
*.
*
*
*
* This is the C file for the piotest example.
*
\
#

include <sdbdrvs.h>

/ * * *

* Functions
\N\ * *% *% * * * *% *%
void main() {

short L,R;

ULONG ct = 48000*10;

ULONG x;

/* these register settings are mandatory */
REFCNTL = OxFFFF0100;

PTMIN = 0x00000100;

PTMAX = 0x00010000;

/* initialize the executive */
TaskInitTasking();
PtReqlnit();

[* initialize the audio driver */
Audio_Init();

[* setup PIO mode */

Audio_Install(AUDIO_PIO, AUDIO_PCM16, AUDIO_STEREO, 48.0, 0,0,0);
Audio_Programinputs(AUDIO_LINE, AUDIO_LINE, 9.0, 9.0);

Audio_Enable();

Example Code A-21

Audio Programmed I/0O Example

/* do loopback for ct samples */

for (x=0; x<ct; x++) {
Audio_Pioln(&L,&R);
Audio_PioOut(&L,&R);

}

/* now use the driver built in P1O test routine */
Audio_PioTest(AUDIO_PCM16, AUDIO_STEREO, 48.0, 48000*60);

Audio_PioTest(AUDIO_PCM16, AUDIO_STEREO, 48.0, 48000*5);
Audio_PioTest(AUDIO_PCM16, AUDIO_MONO, 48.0, 48000%5);
Audio_PioTest(AUDIO_PCM16, AUDIO_STEREO, 8.0, 8000*5);
Audio_PioTest(AUDIO_PCM16, AUDIO_MONO, 8.0, 8000*5);

Audio_PioTest(AUDIO_PCM8, AUDIO_STEREO, 48.0, 48000*5);
Audio_PioTest(AUDIO_PCM8, AUDIO_MONO, 48.0, 48000*5);
Audio_PioTest(AUDIO_PCM8, AUDIO_STEREO, 8.0, 8000*5);
Audio_PioTest(AUDIO_PCM8, AUDIO_MONO, 8.0, 8000%5);

Audio_PioTest(AUDIO_ALAWS, AUDIO_STEREO, 48.0, 48000*5);
Audio_PioTest(AUDIO_ALAWS, AUDIO_MONO, 48.0, 48000*5);
Audio_PioTest(AUDIO_ALAWS, AUDIO_STEREO, 8.0, 8000*5);
Audio_PioTest(AUDIO_ALAWS, AUDIO_MONO, 8.0, 8000%5);

Audio_PioTest(AUDIO_ULAWS, AUDIO_STEREO, 48.0, 48000*5);
Audio_PioTest(AUDIO_ULAWS, AUDIO_MONO, 48.0, 48000*5);
Audio_PioTest(AUDIO_ULAWS, AUDIO_STEREO, 8.0, 8000*5);
Audio_PioTest(AUDIO_ULAWS, AUDIO_MONO, 8.0, 8000*5);

Audio_PioTest(AUDIO_PCM16, AUDIO_STEREO, 48.0, -1);

while (1);
}

I'xx *hkkkkkkkkkkkkkkkkk *hkkkkkkkkkkkkkkkkk ‘\

* End of 'piotest.c’

\ * * * * * * * * * * * /

(b) piotest.Ink

* Fkkkkk * Fkkkkkkkkkk \

Copyright (C) 1995-1996 Texas Instruments Incorporated.
All Rights Reserved

piotest.Ink — TMS320C8x MP Linker Command File

*
*
*
*
*
*
\

*kkkkkkkkkk *% *kkkkkkkhkkhhkkhkkkhrrkk *kkkkkkkhkk xxxxxxxxx/

—C
—X
—heap 0x00100000
—stack 0x00010000

A-22

Audio Programmed I/0O Example

—I mp_rts.lib

—I mp_task.lib
—I mp_int.lib

—I mp_ptreq.lib
—| sdbdrvs.lib

MEMORY

PROGMEM : origin=0x80000000 length=0x00800000
}

SECTIONS

{
text > PROGMEM
.ptext :> PROGMEM
.cinit :> PROGMEM
.const :> PROGMEM
.switch ;> PROGMEM
.data > PROGMEM
.bss :>PROGMEM
.sysmem :> PROGMEM

}

I‘ * * * * * * * * * * ‘\

* End of 'piotest.Ink
\ Fekkkdkekokok Fekkkkekokok /

(c) piotest.bat

@rem gk ook oo ook \
@rem# Copyright (C) 1995-1996 Texas Instruments Incorporated.
@rem # All Rights Reserved

@rem#

@rem #

@rem # piotest.bat — batch file to build project

@rem #

@rem gFrrrrikiiiskk ki koo ik o R ook ok

@mpcl —gq piotest.c

@mvplnk —m piotest.map —o piotest.out piotest.obj piotest.Ink

@rem# ek ieleioiaiiieieioks e}
@rem # End of 'piotest.bat’
(@IE=111F ki AAFFIRE ARSI A A AAK HAFREAAAK |

Example Code A-23

Video Capture Scaling Example

A.6 Video Capture Scaling Example

This example shows how to set up video capture and then change the scaling.
It displays each scaling setting in its own box on the display. For additional in-
formation about video capture scaling, see subsection 5.1.1, Supported Scal-
ing Resolutions, on page 5-4.

Example A—6. capttest

(a) capttest.c
Copyright (C) 1995-1996 Texas Instruments Incorporated.
All Rights Reserved

capttest.c — TMS320C8x MP 'C’ Source Code

*kkkkk Kkkkkkkkkkkkkkkkkkk Kkkkkkkkkkkkkk /

*
*
*
*
*
* This is the C file for the capttest example.
*
\
#

include <sdbdrvs.h>

I' * *kkkkk * *khkkkk ‘\

* Data Types, Global Variables, Constants
\Fdekckokokokokok * Fekkkkokk * Fekkkkk /

[* executive variables */
long VideoTaskld;

long CaptureSemald;
long DisplaySemald;
long PtSemald;

[* packet transfer table (PT is defined in sdbdrvs.h) */
PT *PtTable;

/* metrics variables */
CAPTURE_MET CM;
DISPLAY_MET DM,;

/**\

* Function Prototypes

\ ek HkkkAK * HhkRAK /
void VideoTask(void *p);

void DoCapture(ULONG frames, BYTE scale);

void InitPtTable();

void DrawScreen();

void DrawBox(USHORT dx, USHORT dy, ULONG color);

/ x Ak il
* Functions

\xx Fkkkkk *% *kkkkkkkhkkhhkkkkkk *% *% *kkkkkkkhkkhhkkkhkk x/

void main() {

A-24

Video Capture Scaling Example

/* these register settings are mandatory */
REFCNTL = OxFFFF0100;

PTMIN = 0x00000100;

PTMAX = 0x00010000;

[* initialize the executive */
TaskInitTasking();
PtReqlnit();

/* initialize the drivers */
Capture_Init();
Display_Init();

/* create the task and semaphores */

VideoTaskld = TaskCreate(-1, VideoTask, (void *)NULL, 20, 1024);
CaptureSemald = TaskOpenSema(-1,0);

DisplaySemald = TaskOpenSema(-1,0);

/* install driver semaphores */
Capture_InstallSema(CaptureSemald);
Display_InstallSema(DisplaySemald);

[* set up packet transfer table and semaphore */
PtSemald = TaskOpenSema(-1,0);
PtTable = (PT *)PtRegAlloc();

[* start the video task */
TaskResume(VideoTaskld);

while (1);
}

I* */
void VideoTask(void *p) {

/* number of seconds run each capture setting */
USHORT frames = 30*5; /* 5 seconds */

* set up the video capture */
Capture_Install(CAPTURE_NTSC,CAPTURE_RGB555,CAPTURE_SQCIF);
Capture_FillBuffs(0x00000000);

Capture_GetMetrics(&CM);

[* set up the display */
Display_SetMode(1024,768,60,DISPLAY_T555,DISPLAY_VIDEO);
Display_GetMetrics(&DM);
Display_SetBufferAddresses(0xC0000000,0xC0000000);
DrawScreen();

Display_Enable();

Example Code

A-25

Video Capture Scaling Example

[* try out different capture settings */

while (1) {
DoCapture(frames,CAPTURE_640x480);
DoCapture(frames,CAPTURE_512x512);
DoCapture(frames,CAPTURE_CIF);
DoCapture(frames,CAPTURE_CIFK);
DoCapture(frames,CAPTURE_QCIF);
DoCapture(frames, CAPTURE_SQCIF);
DoCapture(frames,CAPTURE_QCIF);
DoCapture(frames,CAPTURE_CIFK);
DoCapture(frames,CAPTURE_CIF);
DoCapture(frames,CAPTURE_512x512);

}
}

/*

void DoCapture(ULONG frames, BYTE scale) {

int SemacCt = 0;
ULONG CaptureBuff;
ULONG DisplayBuff;
ULONG dx,dy;
ULONG fct;

/* set the scaling of the capture */
Capture_SetScaling(scale);
Capture_FillBuffs(0x00000000);
Capture_GetMetrics(&CM);

[* initialize the packet transfer table */
InitPtTable();

/* draw the display background */
DrawScreen();

/* turn on the video */
Capture_Enable();

[* video capture—process—display loop */
for (fct=0; fct<frames; fct++) {

[* wait for new captured frame */
TaskWaitSema(CaptureSemald);

/* get buffer of most recently captured frame */
CaptureBuff = Capture_GetBuffer();

/* tell display driver to toggle buffers next display frame event */
Display_ToggleBuffers();

/* wait until display driver has toggled display buffers */
TaskWaitSema(DisplaySemald);

A-26

Video Capture Scaling Example

[* get the in—active display buffer */

DisplayBuff = Display_GetBuffer(DISPLAY_INACTIVE);
dx = (DM.dx—CM.Rh)/2*DM.bpp/8;

dy = (DM.dy—CM.Rv)/2*DM.Pitch;

[* transfer the processed capture buffer to the */
/* in—active display buffer */
PtTable—>SrcStart = CaptureBuff;
PtTable—>DstStart = DisplayBuff+dx+dy;
PtReqlssue((void *)PtTable,PtSemald);
TaskWaitSema(PtSemald);

/* unlock the capture buffer obtained from Capture_GetBuffer() */
Capture_FreeBuffer();

}
Capture_Disable();
}

/* !
void InitPtTable() {

/* Setup packet transfer table used to transfer the capture buffer to */
/* the display buffer. The two metrics variables CM and DM must already */
[* be set before calling this function. */
PtTable—>Next = (ULONG)PtTable;
PtTable—>Options = 0x80000000;
PtTable—>SrcStart = 0x00000000;
PtTable—>DstStart = 0x00000000;
PtTable—>SrcBCnt = CM.Rv-1;
PtTable—>SrcACnt = CM.Rh*CM.Bpp/8;
PtTable—>DstBCnt = CM.Rv-1;
PtTable—>DstACnt = CM.Rh*CM.Bpp/8;
PtTable—>SrcCCnt =0;
PtTable—>DstCCnt =0;
PtTable—>SrcBPitch = CM.Pitch;
PtTable—>DstBPitch = DM.Pitch;
PtTable—>SrcCPitch = 0;
PtTable—>DstCPitch = 0;
PtTable—>TransO =0;
PtTable—>Transl =0;
PtTable—>Junkl =0;
PtTable—>Junk2 =0;
}

% !
void DrawScreen() {

USHORT x,y;
ULONG A;
USHORT color = 0x00007C00;

Display_FillBuffs(0x0007);

Example Code A-27

Video Capture Scaling Example

[* draw full frame */

for(x=0; x<DM.dx; x++) {
Display_SetPixel(x,0,color,DISPLAY_INACTIVE);
Display_SetPixel(x,DM.dy—1,color,DISPLAY_INACTIVE);

}

for (y=0; y<DM.dy; y++) {
Display_SetPixel(0,y,color,DISPLAY_INACTIVE);
Display_SetPixel(DM.dx—1,y,color,DISPLAY_INACTIVE);

/* draw scaling boxes */
DrawBox(640,480,color);
DrawBox(512,512,color);
DrawBox(352,288,color);
DrawBox(176,144,color);
DrawBox(128,96,color);

}
/*

void DrawBox(USHORT dx, USHORT dy, ULONG color) {
USHORT x,y;

/* draw box frame */

for(x=(DM.dx—dx)/2—1; x<(DM.dx—dx)/2+dx; x++) {
Display_SetPixel(x,(DM.dy—dy)/2—1,color,DISPLAY_INACTIVE);
Display_SetPixel(x,(DM.dy—-dy)/2+dy,color,DISPLAY_INACTIVE);

}

for (y=(DM.dy—dy)/2—1; y<(DM.dy—dy)/2+dy; y++) {
Display_SetPixel((DM.dx—dx)/2—-1,y,color,DISPLAY_INACTIVE);
Display_SetPixel((DM.dx—dx)/2+dx,y,color,DISPLAY_INACTIVE);

}
}

/ \
* End of "capttest.c’

\xx *hkkkkkkkkk *kkkkk /

* * * * * * *

(b) capttest.ink
I' * *

Copyright (C) 1995-1996 Texas Instruments Incorporated.
All Rights Reserved

capttest.Ink — TMS320C8x MP Linker Command File

*
*
*
*
*
*
\

. * werasf
—C

—X
—heap 0x00400000

A-28

Video Capture Scaling Example

—stack 0x00010000
—I mp_rts.lib

—I mp_task.lib

—I mp_int.lib

—| mp_ptreq.lib

—| sdbdrvs.lib

MEMORY

PROGMEM : origin=0x80000000 length=0x00800000
}

SECTIONS

{
text > PROGMEM
.ptext :> PROGMEM
.cinit :> PROGMEM
.const :> PROGMEM
.switch :> PROGMEM
.data :>PROGMEM
.bss :>PROGMEM
.sysmem :> PROGMEM

}

/ \
* End of 'capttest.Ink’

\7(* K*kkkkkkkk * * Kkkkkkkkk * * * xxx/

(c) capttest.bat

@rem# \
@rem# Copyright (C) 1995-1996 Texas Instruments Incorporated.
@rem # All Rights Reserved

@rem#

@rem #

@rem # capttest.bat — batch file to build project

@rem #

@rem#* ik /

@mpcl —gq capttest.c

@mvplnk —m capttest.map —o capttest.out capttest.obj capttest.Ink

@rem#* \
@rem # End of 'capttest.bat’
@rem #* /

Example Code A-29

Video Display Test Example

A.7 Video Display Test Example

This example tests almost all aspects of the display hardware. You should run
this example from a debugger so you can single-step through it.

Example A—7. disptest

(a) disptest.c

Copyright (C) 1995-1996 Texas Instruments Incorporated.
All Rights Reserved

disptest.c — TMS320C8x MP 'C’ Source Code

This is the C file for the disptest module.

Some monitors do not support the higher resolutions. Check your monitor
specifications before attempting to drive it at a high resolution. Some
monitors do not support resolutions greater than 1024x768. Remember
also to verify the supported refresh rates.

*

*

*

*

*

*

*

* IINOTEM
*

*

*

*

\ /
#

include <sdbdrvs.h>

Kk kKK hkKKFK Kk KRR IIFFFIIIIFF****FH K HIRFFIIFFRAHFRAFFRFFIAK|

/
* Function Prototypes
\

void BasicTest();

void ColorTest();

void WindowTest();
void _640x480Test();
void _800x600Test();
void _1024x768Test();
void _1280x1024Test();
void TableTest();

void Fil(ULONG val);
void Delay(ULONG d);

/ * * * Fkk * * * Fkk * \

* Functions
\ /
void main() {

/* these register settings are mandatory */
REFCNTL = OxFFFF0100;

PTMIN = 0x00000100;

PTMAX = 0x00010000;

TaskInitTasking(); [* initialize the multitasking executive */
PtReqlInit(); [* needed to allow drivers to use PtRegAlloc() */

A-30

Video Display Test Example

Display_Init(); /* called before any other display functions */

if (1) BasicTest(); /* setup simple display mode */

if (1) ColorTest(); /* test all of the color modes */

if (1) _640x480Test(); /* test 640x480 resolution modes */
if (1) _800x600Test(); /* test 800x600 resolution modes */
if (1) _1024x768Test(); /* test 1024x768 resolution modes */

/* ' only enable the below test when sure monitor can handle it !l */
if (0) _1280x1024Test(); /* test 1280x1024 resolution modes */

if (1) TableTest(); [* test with custom monitor timing table */
if (1) WindowTest(); /* do some fancy display window programming */

while (1);
}

I* *
void BasicTest() {

/* Fill up display VRAM with 0xO00000FF which is blue in */

/* XRGB format. Set display mode to 640x480 pixels @ 60Hz */
/* refresh rate. True color XRGB 32bpp format. Video output */

/* mode. */

Fill(0OXO00000FF);
Display_SetMode(640,480,60,DISPLAY_TXRGB,DISPLAY_VIDEO);
Display_Enable();

}

I* */
void ColorTest() {

Display_SetMode(640,480,60, DISPLAY_P8, DISPLAY_VIDEO);
Display_SetVgaPalette();

Display_Enable();

Fill(0x00000000); /* palette offset 0x00 color */
Fill(0x01010101); /* palette offset 0x01 color */
Fill(0x02020202); /* palette offset 0x02 color */
Fill(0x03030303); /* palette offset 0x03 color */
Fill(0x04040404); /* palette offset 0x04 color */
Fill(0x05050505); /* palette offset 0x05 color */
Fill(0x06060606); /* palette offset 0x06 color */
Fill(0x07070707); /* palette offset 0x07 color */
Fill(0x08080808); /* palette offset 0x08 color */
Fill(0x09090909); /* palette offset 0x09 color */
Fill(0OXOAOAOAOQA); /* palette offset OXOA color */
Fill(OxOBOBOBOB); /* palette offset OxOB color */
Fill(OxOCOCOCOC); /* palette offset 0xOC color */
Fill(OxODODODOD); /* palette offset OxOD color */
Fill(OXOEOEOEOQE); /* palette offset OXOE color */
Fill(OXOFOFOFOF); /* palette offset 0xOF color */
Display_SetGreyScalePalette();

Example Code A-31

Video Display Test Example

Display_SetMode(640,480,60, DISPLAY_DXRGB, DISPLAY_VIDEO);
Display_Enable();

Fill(0x00000000); /* BLACK */

Fill(OXO00000FF); /* BLUE */

Fill(0OXO000FF00); /* GREEN */

Fill(OXO000FFFF); /* CYAN */

Fill(OXOOFF0000); /* RED */

Fill(OXOOFFOOFF); /* MAGENTA */

Fill(OXOOFFFF0O0); /* YELLOW */

Fill(OXOOFFFFFF); /* WHITE */

Display_SetMode(640,480,60, DISPLAY_TXRGB, DISPLAY_VIDEO);
Display_Enable();

Fill(0x00000000); /* BLACK */

Fill(OXO00000FF); /* BLUE */

Fill(0XO000FF00); /* GREEN */

Fill(OXOO00FFFF); /* CYAN */

Fill(OXOOFF0000); /* RED */

Fill(OXOOFFOOFF); /* MAGENTA */

Fill(OXOOFFFFOQO0); /* YELLOW */

Fil(OXOOFFFFFF); /* WHITE */

Display_SetMode(640,480,60, DISPLAY_DBGRX, DISPLAY_VIDEO);
Display_Enable();

Fill(0x00000000); /* BLACK */

Fill(OxFFO00000); /* BLUE */

Fill(OXOOFF0000); /* GREEN */

Fil(OXFFFF0000); /* CYAN */

Fil(OXOOOOFF00); /* RED */

Fill(OXFFOOFFQO0); /* MAGENTA */

Fill(OXOOFFFFQ0); /* YELLOW */

Fill(OXFFFFFF00); /* WHITE */

Display_SetMode(640,480,60, DISPLAY_TBGRX, DISPLAY_VIDEO);
Display_Enable();

Fill(0x00000000); /* BLACK */

Fill(OXFFO00000); /* BLUE */

Fill(OXOOFF0000); /* GREEN */

Fill(OXFFFF0000); /* CYAN */

Fill(OXO000FFOQ0); /* RED */

Fill(OXFFOOFFQ0); /* MAGENTA */

Fill(OXOOFFFFOQO0); /* YELLOW */

Fill(OXFFFFFFOO); /* WHITE */

Display_SetMode(640,480,60, DISPLAY_D565, DISPLAY_VIDEO);
Display_Enable();

Fill(0x00000000); /* BLACK */

Fill(OX001FO01F); /* BLUE */

Fil(OXO7EO07EOQ); /* GREEN */

Fill(OXO7FFO7FF); /* CYAN */

Fill(OxF100F100); /* RED */

Fil(OXF11FF11F); /* MAGENTA */

A-32

Video Display Test Example

Fil(OXFFEOFFEOQ); /* YELLOW */
Fil(OXFFFFFFFF); /* WHITE */

Display_SetMode(640,480,60, DISPLAY_T565, DISPLAY_VIDEO);
Display_Enable();

Fill(0x00000000); /* BLACK */

Fill(OX001FO01F); /* BLUE */

Fill(OXO7EO07EQ); /* GREEN */

Fill(OXO7FFO7FF); /* CYAN */

Fil(0XF100F100); /* RED */

Fill(OXF11FF11F); /* MAGENTA */

Fill(OXFFEOFFEOQ); /* YELLOW */

Fill(OXFFFFFFFF); /* WHITE */

Display_SetMode(640,480,60, DISPLAY_D555, DISPLAY_VIDEO);
Display_Enable();

Fill(0x00000000); /* BLACK */

Fill(OX001F001F); /* BLUE */

Fill(OXO3EOO3EQ); /* GREEN */

Fill(OXO3FFO3FF); /* CYAN */

Fill(0x7C007C00); /* RED */

Fill(Ox7C1F7C1F); I* MAGENTA */

Fill(Ox7FEQ7FEQ); /* YELLOW */

Fill(OX7FFF7FFF); I* WHITE */

Display_SetMode(640,480,60, DISPLAY_T555, DISPLAY_VIDEO);
Display_Enable();

Fill(0x00000000); /* BLACK */

Fill(OX001FO001F); /* BLUE */

Fill(0XO3EOO3EO); /* GREEN */

Fil(OXO3FFO3FF); /* CYAN */

Fill(0x7C007C00); /* RED */

Fill(Ox7C1F7C1F); /* MAGENTA */

Fill(0OX7FEQ7FEOQ); /* YELLOW */

Fill(OX7FFF7FFF); [* WHITE */

Display_SetMode(640,480,60, DISPLAY D664, DISPLAY_VIDEO);
Display_Enable();

Fill(0x00000000); /* BLACK */

Fill(0XO00FO0OF); /* BLUE */

Fill(0x03F003F0); /* GREEN */

Fill(OXO3FFO3FF); /* CYAN */

Fill(OXFCOOFCO00); /* RED */

Fill(OXFCOFFCOF); /* MAGENTA */

Fill(OXFFFOFFFO); /* YELLOW */

Fill(OXFFFFFFFF); /* WHITE */

Display_SetMode(640,480,60,DISPLAY_T664, DISPLAY_VIDEO);
Display_Enable();

Fill(0x00000000); /* BLACK */

Fill(OXO00FO0OF); /* BLUE */

Fill(0OXO3FO03FO0); /* GREEN */

Fill(OXO3FFO3FF); /* CYAN */

Example Code

A-33

Video Display Test Example

Fill(OXFCOOFCO0); /* RED */
Fill(OXFCOFFCOF); /* MAGENTA */
Fill(OXFFFOFFFO); /* YELLOW */
Fill(OXFFFFFFFF); /* WHITE %/

Display_SetMode(640,480,60, DISPLAY_D444, DISPLAY_VIDEO);
Display_Enable();

Fill(0x00000000); /* BLACK */

Fill(OXOOFO00FO0); /* BLUE */

Fill(0OXOFOO0F00); /* GREEN */

Fill(OXOFFOOFFO); /* CYAN */

Fill(OXFOOOF000); /* RED */

Fill(OXFOFOFOFO0); /* MAGENTA */

Fill(OXFFOOFFOQO0); /* YELLOW */

Fill(OXFFFOFFFO); /* WHITE */

Display_SetMode(640,480,60, DISPLAY_T444, DISPLAY_VIDEO);
Display_Enable();

Fill(0x00000000); /* BLACK */

Fill(OXOOFOO0FO); /* BLUE */

Fill(0OXOFOOOF00); /* GREEN */

Fill(OXOFFOOFFO); /* CYAN */

Fill(OxFOOOF000); /* RED */

Fill(OxFOFOFOFO); /* MAGENTA */

Fil(OXFFOOFF00); /* YELLOW */

Fill(OXFFFOFFFOQ); /* WHITE */

}

/*
void WindowTest() {

USHORT Rh = 640;
USHORT Rv = 480;
USHORT W =128;

float Xr = Rh/2; /* Rh/2; */
float Yr=0; /*Rv/3; */
float Xg=0; /*Rh/3; *
float Yg=Rv; [*2*Rv/3;*/
float Xb = Rh; /*2*Rh/3; */
float Yb =Rv; /*2*Rv/3; */
ULONG pitch = 4*Rh;
BYTE R,G,B;

float x,y,Rn,Rr,Rg,Rb;
ULONG A,C;

/* zero out VRAM for visual effect */
Fill(0x00000000);

/* set display mode */

Display_SetMode(Rh,Rv,60, DISPLAY_TXRGB, DISPLAY_VIDEO);

Display_Enable();

/* fill display with fancy colors */

A-34

*/

Video Display Test Example

Rn = sgrt(Rh*Rh + Rv*Rv);
for (y=0.0; y<Rv; y+=1.0) {
for (x=0.0; x<Rh; x+=1.0) {
Rr = sqrt((x=Xr)*(x=Xn)+(y=Yr)*(y=Yr))/Rn;
Rg = sqrt((x—Xg)*(x—Xg)+(y-Yg)*(y-Yg))/Rn;
Rb = sqrt((x—Xb)*(x=Xb)+(y-Yb)*(y-Yb))/Rn;

R = (BYTE)((1.0-Rr)*255.0);
G = (BYTE)((1.0-Rg)*255.0);
B = (BYTE)((1.0-Rb)*255.0);

C = (R<<16)|(G<<8)|(B);
A = 0xC0000000+(ULONG)(pitch*y+4*x);

NOCACHE_ULONG(*(volatile ULONG *)A) = C;

}
}

x=0.0;
y =0.0;

/* wait about a second */
Delay(1000);

[* set display window */
Display_SetWindow(0,0,W,W);

/* move the window around on the screen */

for (y=0; y<Rv-W; y+=8) {
Display_MoveWindow(0,y);

}

for (x=0; x<Rh-W; x+=8) {
Display_MoveWindow(x,Rv-W);
}

for (y=Rv-W; y>=0; y—=8) {
Display_MoveWindow(Rh-W.,y);

for (x=Rh-W; x>=0; x—=8) {
Display_MoveWindow(x,0);
}

/* animate window back to full size */
for (x=W; x<=Rh; x+=8)
Display_SetWindow(0,0,x,W);

for (y=W; y<=Rv; y+=8)
Display_SetWindow(0,0,Rh,y);

/* wait about a second */

Example Code A-35

Video Display Test Example

Delay(1000);
}

/*

*/

void _640x480Test() {
Fill (OXFFFFFFFF);

Display_SetMode(640,480,60, DISPLAY_P8, DISPLAY_VIDEO); Display_Enable();
Display_SetMode(640,480,60, DISPLAY_DXRGB,DISPLAY_VIDEO); Display_Enable();
Display_SetMode(640,480,60, DISPLAY_DBGRX,DISPLAY_VIDEO); Display_Enable();
Display_SetMode(640,480,60, DISPLAY_D565, DISPLAY_VIDEO); Display_Enable();
Display_SetMode(640,480,60, DISPLAY_D555, DISPLAY_VIDEO); Display_Enable();
Display_SetMode(640,480,60, DISPLAY_D664, DISPLAY_VIDEO); Display_Enable();
Display_SetMode(640,480,60, DISPLAY_D444, DISPLAY_VIDEO); Display_Enable();
Display_SetMode(640,480,60, DISPLAY_TXRGB,DISPLAY_VIDEO); Display_Enable();
Display_SetMode(640,480,60, DISPLAY_TBGRX,DISPLAY_VIDEO); Display_Enable();
Display_SetMode(640,480,60, DISPLAY_T565, DISPLAY_VIDEO); Display_Enable();
Display_SetMode(640,480,60, DISPLAY_T555, DISPLAY_VIDEO); Display_Enable();
Display_SetMode(640,480,60, DISPLAY_T664, DISPLAY_VIDEO); Display_Enable();
Display_SetMode(640,480,60, DISPLAY_T444, DISPLAY_VIDEO); Display_Enable();

Display_SetMode(640,480,72, DISPLAY_P8, DISPLAY_VIDEO); Display_Enable();
Display_SetMode(640,480,72, DISPLAY_DXRGB,DISPLAY_VIDEO); Display_Enable();
Display_SetMode(640,480,72, DISPLAY_DBGRX,DISPLAY_VIDEO); Display_Enable();
Display_SetMode(640,480,72, DISPLAY_D565, DISPLAY_VIDEO); Display_Enable();
Display_SetMode(640,480,72, DISPLAY_D555, DISPLAY_VIDEO); Display_Enable();
Display_SetMode(640,480,72, DISPLAY_D664, DISPLAY_VIDEO); Display_Enable();
Display_SetMode(640,480,72, DISPLAY_D444, DISPLAY_VIDEO); Display_Enable();
Display_SetMode(640,480,72, DISPLAY_TXRGB,DISPLAY_VIDEO); Display_Enable();
Display_SetMode(640,480,72, DISPLAY_TBGRX,DISPLAY_VIDEO); Display_Enable();
Display_SetMode(640,480,72, DISPLAY_T565, DISPLAY_VIDEO); Display_Enable();
Display_SetMode(640,480,72, DISPLAY_T555, DISPLAY_VIDEO); Display_Enable();
Display_SetMode(640,480,72, DISPLAY_T664, DISPLAY_VIDEO); Display_Enable();
Display_SetMode(640,480,72, DISPLAY_T444, DISPLAY_VIDEO); Display_Enable();

}
/*

*/

void _800x600Test() {
Fill(OXFFFFFFFF);

Display_SetMode(800,600,60, DISPLAY_P8, DISPLAY_VIDEO); Display_Enable();
Display_SetMode(800,600,60, DISPLAY_DXRGB,DISPLAY_VIDEO); Display_Enable();
Display_SetMode(800,600,60, DISPLAY_DBGRX,DISPLAY_VIDEO); Display_Enable();
Display_SetMode(800,600,60, DISPLAY_D565, DISPLAY_VIDEO); Display_Enable();
Display_SetMode(800,600,60, DISPLAY_D555, DISPLAY_VIDEO); Display_Enable();
Display_SetMode(800,600,60, DISPLAY_D664, DISPLAY_VIDEO); Display_Enable();
Display_SetMode(800,600,60, DISPLAY_D444, DISPLAY_VIDEO); Display_Enable();
Display_SetMode(800,600,60, DISPLAY_TXRGB,DISPLAY_VIDEO); Display_Enable();
Display_SetMode(800,600,60, DISPLAY_TBGRX,DISPLAY_VIDEO); Display_Enable();
Display_SetMode(800,600,60, DISPLAY_T565, DISPLAY_VIDEO); Display_Enable();
Display_SetMode(800,600,60, DISPLAY_T555, DISPLAY_VIDEO); Display_Enable();

A-36

Video Display Test Example

Display_SetMode(800,600,60, DISPLAY_T664, DISPLAY_VIDEO); Display_Enable();
Display_SetMode(800,600,60, DISPLAY_T444, DISPLAY_VIDEO); Display_Enable();

}

*/

/*
void _1024x768Test() {

Fil (OXFFFFFFFF);

Display_SetMode(1024,768,60, DISPLAY_P8, DISPLAY_VIDEO); Display_Enable();

Display_SetMode(1024,768,60, DISPLAY_D565,DISPLAY_VIDEO); Display_Enable();
Display_SetMode(1024,768,60, DISPLAY_D555,DISPLAY_VIDEO); Display_Enable();
Display_SetMode(1024,768,60, DISPLAY_D664,DISPLAY_VIDEO); Display_Enable();
Display_SetMode(1024,768,60, DISPLAY_D444,DISPLAY_VIDEO); Display_Enable();
Display_SetMode(1024,768,60, DISPLAY_T565,DISPLAY_VIDEO); Display_Enable();
Display_SetMode(1024,768,60, DISPLAY_T555,DISPLAY_VIDEO); Display_Enable();
Display_SetMode(1024,768,60, DISPLAY_T664,DISPLAY_VIDEO); Display_Enable();
Display_SetMode(1024,768,60, DISPLAY_T444,DISPLAY_VIDEO); Display_Enable();

Display_SetMode(1024,768,70, DISPLAY_P8, DISPLAY_VIDEO); Display_Enable();

Display_SetMode(1024,768,70, DISPLAY_D565,DISPLAY_VIDEO); Display_Enable();
Display_SetMode(1024,768,70, DISPLAY_D555,DISPLAY_VIDEO); Display_Enable();
Display_SetMode(1024,768,70, DISPLAY_D664,DISPLAY_VIDEO); Display_Enable();
Display_SetMode(1024,768,70, DISPLAY_D444,DISPLAY_VIDEO); Display_Enable();
Display_SetMode(1024,768,70, DISPLAY_T565,DISPLAY_VIDEO); Display_Enable();
Display_SetMode(1024,768,70, DISPLAY_T555,DISPLAY_VIDEO); Display_Enable();
Display_SetMode(1024,768,70, DISPLAY_T664,DISPLAY_VIDEO); Display_Enable();
Display_SetMode(1024,768,70, DISPLAY_T444,DISPLAY_VIDEO); Display_Enable();

}
/*

*

void _1280x1024Test() {

Fill OXFFFFFFFF);

Display_SetMode(1280,1024,60, DISPLAY_P8, DISPLAY_VIDEO); Display_Enable();

}
/*

*

/* custom monitor timing table */

DISPLAY_MT CustomTable[] ={

ARh Rv Fv Fh Fd Ths Thbp Tvs Tvbp Sh Sv?
/* pels pels Hz kHz MHz usec usec usec usec */
{1, 640, 480, 60.0, 31.4, 25.2, 1.00, 2.00, 100.0, 600.0, 0, 0},
{1, 800, 600, 60.0, 37.8, 40.0, 1.00, 2.00, 100.0, 400.0, 0, 0},
{1, 1024, 768, 60.0, 48.3, 65.0, 1.00, 2.75, 100.0, 350.0, O, O},
{1, 1152, 864, 60.0, 54.9, 82.0, 1.00, 2.30, 100.0, 500.0, 0, 0},
{-1, 0000, 0000, 00.0, 00.0, 000.0, 0.00, 0.00, 000.0, 000.0, 0, 0}

I3

/* 1152x864 is a custom display mode */

Example Code

A-37

Video Display Test Example

void TableTest() {
Fill(0X001FO001F); /* blue for T555 */

/* install the new timing table */
Display_InstallTimingTable(CustomTable);

/* Display_SetMode() will use the new timing table for now on */
Display_SetMode(1152,864,60, DISPLAY_T555, DISPLAY_VIDEO);
Display_Enable();

/* wait about 5 seconds */
Delay(5000);

}

/*
void Fill(ULONG val) {

ULONG A,
* Fills all of VRAM with val */
for (A=0xC0000000; A<0xC0200000; A+=4)

NOCACHE_ULONG(*(ULONG *)A) = val;
}

/*

void Delay(ULONG d) {
ULONG i;
/* about 1ms per d */
for (i=d*4500; i>0; i—);
}

i * * * * * KKKk * * * K*hkkkkkkk * \

* End of 'disptest.c’
\ * * *

* * * * * * * * /

(b) disptest.Ink

F*kkkkkkkkkk * Thkkkkkkkkk \

Copyright (C) 1995-1996 Texas Instruments Incorporated.
All Rights Reserved

*
*
*.
*
* disptest.lnk — TMS320C8x MP Linker Command File

*
**/
—C

—X

—heap 0x00100000
—stack 0x00010000

A-38

Video Display Test Example

—I mp_rts.lib

—I mp_task.lib
—I mp_int.lib

—I mp_ptreq.lib
—| sdbdrvs.lib

MEMORY
PROGMEM : origin=0x80000000 length=0x00800000

}

SECTIONS

{
text > PROGMEM
.ptext :> PROGMEM
.cinit :> PROGMEM
.const :> PROGMEM
.switch :> PROGMEM
.data :>PROGMEM
.bss >PROGMEM
.sysmem :> PROGMEM

}

/ Fkkkkkkkkkk * Fkkkkkkkkkk Fkkkkdkkk|

* End of 'disptest.Ink’
\ /

(c) disptest.bat

@rem kiR kR RR IR IR R T II Sk R R R AR AR
@rem# Copyright (C) 1995-1996 Texas Instruments Incorporated.
@rem # All Rights Reserved

@rem#

@rem #

@rem # disptest.bat — batch file to build project

@rem #

@rem #frwwkek kK kK /

@mpcl —gq disptest.c

@mvplnk —m disptest.map —o disptest.out disptest.obj disptest.Ink

@rem# \
@rem # End of 'disptest.bat’
@rem#* /

Example Code A-39

A-40

Appendix B

Shared Data Types and Macros

This chapter contains two header files, <sdbdrvs.h> and <hsdbdrvs.h>, which
define shared data types and macros used among the driver modules. The
'C80 driver modules all share the data types and macros defined in
<sdbdrvs.h>; the host communications driver modules share the data types
and macros defined in <hsdbdrvs.h>.

Topic Page
B.1 TMS320C80 API Library Header File <sdbdrvs.h>] B-2
B.2 Host API Library Header File <hsdbdrvs.h> B-4

B-1

TMS320C80 API Library Header File <sdbdrvs.h>

B.1 TMS320C80 API Library Header File <sdbdrvs.h>

The data types and macros shared among the 'C80 driver modules, audio, dis-
play, capture, and server, are defined in sdbdrvs.h. Following is the contents
of this header file. A 'C80 application only needs to include sdbdrvs.h to use
any of the driver modules.

Fkkkkk * * * *kkdkkkkkkkkkk *% * * *

All Rights Reserved

F*hkkkkkkhkk *\

Copyright (C) 1996 Texas Instruments Incorporated.

sdbdrvs.h — TMS320C8x MP 'C’ Header File

E I D R R R

This is the header file for the entire sdb C80 driver library.

\
#ifndef _SDBDRVS_H
#define _SDBDRVS_H

/* include commonly used header files */
#include <mvp.h>

#include <mvp_hw.h>

#include <task.h>

#include <mp_ptreq.h>

#include <stdlib.h>

#include <math.h>

/* makes for shorter and neater code */
typedef unsigned char BYTE;

typedef unsigned short USHORT;
typedef unsigned long ULONG;
typedef unsigned char BOOL;

[* simple DIM to DIM packet transfer table structure */
typedef struct {
ULONG Next;
ULONG Options;
ULONG SrcStart;
ULONG DstStart;
short SrcBCnt;
short SrcACnt;
short DstBCnt;
short DstACnt;
long SrcCCnt;
long DstCCnt;
long SrcBPitch;
long DstBPitch;
long SrcCPitch;
long DstCPitch;
ULONG Trans0;
ULONG Transi;

B-2

ULONG Junki;
ULONG Junk2;
}PT;

#ifndef TRUE
#define TRUE 1
#endif

#ifndef FALSE
#define FALSE 0
#endif

#ifndef NULL
#define NULL O
#endif

/* include the driver header files

TMS320C80 API Library Header File <sdbdrvs.h>

/* note that _SDBAPI__is only defined from within a driver module */

#if /defined _SDBAPI_
#include <audio.h>
#include <display.h>
#include <capture.h>
#include <sserver.h>

#endif

#endif /¥ _SDBDRVS_H */

/7(* Kkkkkkkkk

* End of 'sdbdrvs.h’

\ * * * * *

Shared Data Types and Macros

B-3

Host API Library Header File <hsdbdrvs.h>

B.2 Host API Library Header File <hsdbdrvs.h>

The data types and macros shared among the host client module and its sub-
modules are defined in hsdbdrvs.h. Following is the contents of this header file.
A host application only needs to include hsdbdrvs.h to use the driver module.

* * * * *

Copyright (C) 1996 Texas Instruments Incorporated.
All Rights Reserved

* \

hsdbdrvs.h — PC 'C’ Header File

This is the header file for the entire host library.

* 0% X % %k F X X T

\ * * * * * *

#ifndef HSDBDRVS_H
#define _HSDBDRVS_H

/* include some commonly used header files */
#include <windows.h>
#include <stdio.h>

/* makes for shorter and neater code */

typedef unsigned char BYTE;

typedef unsigned short USHORT;

typedef unsigned long ULONG;

typedef int BOOL; /*BOOL is an’int’ in "windef.h” */

#ifndef TRUE
#define TRUE 1
#endif

#ifndef FALSE
#define FALSE 0
#endif

#ifndef NULL
#define NULL O
#endif

/* include the driver header file */

#if ldefined _HOSTAPI_
#include <hclient.h>

#endif

#endif * _HSDBDRVS_H */

/ * * * * * * * * *

* End of 'hsdbdrvs.h’

\ * * * * * * *

B-4

Appendix C

API Functions With Arguments and Return Types

This appendix lists all the API functions in alphabetical order by function name,
including their arguments and return types. Use this list as a function protocol
list and as a reminder of argument order.

C-1

API Functions With Arguments and Return Types

Function Page
void Audio_CaptureToMemory (AUDIO_PTR *P, ULONG NumBuffs); 3-10
BYTE AUdio_CodECStat ()] .ottt ettt ettt e e e e e 3-12
VOId AUAIO_DISADIE () vttt 3-13
void Audio_Enable (), ... 3-14
USHORTAUAIO_FIfOSIAt ()] v ettt e e e et e e e e e e e e e e 3-15
void Audio_FillBuffs (USHORT Val); o e e e e e 3-16
BOOL Audio_GetCaptureBuffs (AUDIO_PTR *P); o e e 3-17
void Audio_GetCodecRegs (BYTE *COUECREQS), .« iitii ittt i 3-18
void Audio_GetFifoRegs (USHORT *FifOREQS); .« .iiiiii e e 3-19
void Audio_GetMetrics (AUDIO_MET *M); ...ttt e e e e e e 3-20
BOOL Audio_GetPlaybackBuffs ~ (AUDIO_PTR*P); ...ttt et 3-21
BOOL AUIO_INIE () ottt e 3-22
BOOL Audio_Install (BYTE Mode, BYTE Format, BOOL Stereo, float Fs,

BYTE BlockCt, BYTE BlockSz, BYTE BuffCt); e 3-23......
long Audio_lInstallSema (long Semald); ... 3-25
void Audio_Pioln (void *left, void *right); ... 3-26.......
void Audio_PioOut (void *left, void *right); ... 3-27.......
void Audio_PioTest (BYTE Format, BOOL Stereo, float Fs,ULONG Ct); 3:28.....
void Audio_PlaybackFromMemory (AUDIO_PTR *P, ULONG NumBuffs); 3-29
void Audio_ProgramAuxl (BOOL Imute, BOOL rmute, float Ig, float rg); 33L.........
void Audio_ProgramDacs (BOOL Imute, BOOL rmute, float Ig, float rg); 3-32.........
void Audio_ProgramDigitalMix (BOOL enable, float gain); 3:33...
void Audio_Programinputs (BYTE Isrc, BYTE rsrc, float Ig, float rg); 334,
BOOL Audio_SetBufferindexes (BYTE Capp, BYTE Cisr, BYTE Papp, BYPE Pisr); 3-35....
void Audio_SetSampleRate (float FS); ... 3-36
void AUudio_UNINStAll ()] oottt 3-37
BOOL Capture_CardPreSENt (), .o v ettt et et e e e e e e e e e e e e e 5-9
void Capture_Disable ()] ..ottt 5-10
void Capture_ENable () ..ottt 5-11
void Capture_FillBuffs (ULONG Val); oo e 5-12
void Capture_FreeBuffer 0 5-13
ULONGCapture_GetBUfer () o oottt e e e e e e e e e 5-14
void Capture_GetDecoderRegs (BYTE*DR); ...ttt e 5-15
void Capture_GetMetrics (CAPTURE_MET *M); it e e et 5-16
void Capture_GetScalerRegs (BYTE *SR); ...ttt e 5-17

C-2

API Functions With Arguments and Return Types

Function Page
BOOL Capture_INit () oot e e e e e e 5-18
BOOL Capture_lInstall (BYTE InFormat, BYTE OutFormat, BYTE Scaling); L0519

long Capture_InstallSema (long Semald); ..o 5-21
void Capture_SetlnputSource (BYTE INSIC); et 5-22
BOOL Capture_SetScaling (BYTE Scaling); e e 5-23

void Capture_Uninstall 0 5-24
CLIENT_STAT Client_Boot (char *coffname, ULONG EntryPoint, USHORT Flags,

FILE *OUIDUL); oo 6-12
CLIENT_STAT Client_ClearConfigBit (ULONG bit); e 6-13
CLIENT_STAT CHENt_CIOSE ()] vttt e e e e e e e e 6-14
BOOL Client_Init 0 6-15
CLIENT_STAT Client_IssueCmnd (ULONG *Cmnd, long TimeOut); 6-16
CLIENT_STAT CHENt_OPEN ()i« v eveee et e e e e e e e 6-17
CLIENT_STAT Client_ReadConfig (ULONG *Val); oo e 6-18
CLIENT_STAT Client_ReadConfigBit (ULONG bit); e e 6-19
CLIENT_STAT Client_ReadDataFifo (ULONG *Block, ULONG ct, long timeout); 6-20....
CLIENT_STAT Client_Readlo (USHORT Address, ULONG *Val); 6-21
CLIENT_STAT Client_ReadMailbox (ULONG *Val, long timeout); 6-22..
CLIENT_STAT Client_Reset (USHORT Flags, FILE *Output);o 6-23.
CLIENT_STAT Client_SetConfigBit (ULONG bit); o e 6-24
CLIENT_STAT Client_SetSwapping (USHORT SW); ...ttt 6-25
CLIENT_STAT Client_Sync (Iong timeout); ...ttt e e 6-26
CLIENT_STAT Client_WriteConfig (ULONG Val); i e e 6-27
CLIENT_STAT Client_WriteDataFifo (ULONG *Block, ULONG ct, long timeout); 6-28....
CLIENT_STAT Client_Writelo (USHORT Address, ULONG Val);, 6-29
CLIENT_STAT Client_WriteMailbox (ULONG Val, long timeout); 6-30. .
void Display_Disable () ..ot 4-11
void Display_Enable (), ..o 4-12
void Display_FillBuffs (ULONG Val); o e e e e e 4-13
ULONGDisplay_GetBuffer (BYTE buffid); 4-14
void Display_GetMetrics (DISPLAY _MET *M); oottt 4-15
void Display_GetTvpRegs (BYTE *R); ..ottt e e 4-16
BOOL Display_Init (e 4-17
long Display_lInstallSema (long Semald); R
void Display_lInstallTimingTable (DISPLAY_MT *Table); ... i 4-19

API Functions With Arguments and Return Types C-3

API Functions With Arguments and Return Types

Function Page
void Display_MoveWindow (USHORT x, USHORT Y); ...t 4-20
void Display_ReadPalette (BYTE *R, BYTE *G, BYTE *B); ..ttt 4-21
void Display_SetBufferAddresses (ULONG Buffl, ULONG Buff2); 4 -22
float Display_SetDotClock (float Fd); e A28
void Display_SetGreyScalePalette O 4-24
BOOL Display_SetMode (USHORT Rh, USHORT Ry, float Fv, char *PixFmt,

BYTE OUIPUL); oot e e e e e e e e e e e e 4-25
void Display_SetOverlayParams (short adx, short ady, short bdx, short bdy,

float dThbp,float dTvbp, float Fd, float dFd); AT
void Display_SetPaletteAddress (BYTE @d); oot e 4-29
void Display_SetPitch (ULONG pitch); e 4:30
void Display_SetPixel ~ (USHORT x, USHORT y, ULONG val, BYTE buffid); ~ 4:31. ..
void Display_SetSyncPolarities (BYTE Sh, BYTE Sv, BYTE Pen); 4:32
void Display_SetVgaPalette A 4-33
void Display_SetWindow (USHORT x, USHORT y, USHORT dx, USHORT dy); 4-34
void Display_ToggleBuffers O 4-35
BYTE Display_TvpRegin (BYTE reg); e AS36
void Display_TvpRegOut (BYTEreg, BYTEval); ... 4-37
void Display WaitEndOfFrame (), ..ot e 4-38
void Display_WritePalette (BYTER,BYTE G,BYTEB); ... 4-39
VOId SEIVEI _DONE (), oottt ettt e e e e e 6-31
void Server_GetCmnd (ULONG *CmNd);ttt 6-32
BOOL Server_INit (), ittt e e e 6-33
void Server_Install O P 6-34
long Server_InstallSema (long Semald); ... 6-35
long Server_ReadDataFifo (ULONG *Dst, USHORT Length); 6-36
VOIA SEIVEI_SYNC () ottt ettt et et et e e e e e 6-37
void Server_Unlnstall (e 6-38
void Server_WriteDataFifo (ULONG *Src, USHORT Length); ...t 6-39

C-4

Appendix D

Glossary

A-Law companding: See companded.

active time: (vs. blanking) The time intervals of a display frame that are not
in blanking. The time intervals in which pixels are displayed.

ADC: Analog-to-digital converter. A device that converts a continuously va-
rying signal (analog) to a signal represented by a series of numbers (digi-
tal).

analog mixing: The mixing together of two analog signals. The multiplexing
of two analog signals into one.

API: Application programming interface. Used for proprietary application
programs to interact with communications software or to conform to pro-
tocols from another vendor’s product.

assert: To make a digital logic device pin active. If the pin is active low, then
a low voltage on the pin asserts it. If the pin is active high, then a high
voltage asserts it.

autocalibration: Automatic adjustment of a device so that the output is with-
in a specific range for particular values of the input.

back porch: The interval of the video waveform between the end of syn-
chronization and the corresponding blanking pulse. The horizontal back
porch is specified as an integral number of FCLK periods; the vertical
back porch is specified as an integral number of lines (halflines for inter-
laced mode). See also front porch.

bit plane: A bit storage array (plane) used to store a particular bit of each
pixel of animage. The Oth bit of each pixel is stored in bit plane 0, the first
bit of each pixel is stored in bit plane 1, and so on.

D-1

Glossary

D-2

blanking: Extinguishing the scanning beam during horizontal and vertical
retrace periods. See also horizontal blanking, vertical blanking.

blanking area: The area of a display that is not active but rather blanked.
No pixels are displayed in the blanking area. Vertical and horizontal re-
trace occur during blanking.

BPP: Bits per pixel. The number of bits used to represent the color value of
each pixel in a digitized image.

capture mode: Amode ofthe audio subsystem in which DMA transfers read
audio data that has been captured by the audio codec.

chrominance: The NTSC or PAL video signal contains two pieces that
make up what you see on the screen: the black and white part (lumi-
nance) and the color part. Chrominance is the color part. See also lumi-
nance.

codec: Coder-decoder, or compression/decompression, typically of video
or audio data.

COFF: Common objectfile format. Afile format used by the 'C8x for compiler
and linker output files. A COFF file is organized into sections by the com-
piler.

companded: Compressed and expanded. A quantization scheme for audio
signals in which the input signal is compressed and then, after proces-
sing, is reconstructed at the output by expansion. There are two distinct
companding schemes used in Europe (A-Law) and the United States (u-
Law).

compositearea: The signal generated by the frame timers that can be used
to define a special area, such as an overscan boundary. This signal acts
identically in both interlaced and noninterlaced modes, defining a purely
rectangular region.

composite video: See CVBS.
CVBS: Composite video. Signal that carries video picture information for

color, brightness, and synchronization signals for both horizontal and
vertical scans.

Glossary

DAC: Digital-to-analog converter. A device that converts a signal repre-
sented by a series of numbers (digital) to a continuously varying signal
(analog).

deassert: To make a digital logic device pin inactive. If the pin is active low,
then a high voltage on the pin deasserts it. If the pin is active high, then
a low voltage deasserts it.

debugger: A window-oriented software interface that helps you to detect
and fix errors in programs running on a 'C8x.

digital mixing: ~ The mixing together of two digital signals into one. The alge-
braic sum of two digital signals.

digital signal processor: See DSP.

digitizer: The part of the video capture front end that converts the analog
video signal into a digital signal to be decoded.

display mode: The mode in which pixels are shown on a display device and
also the resolution of a display.

display window: Reducing the active area of a display creates a display
window.

DMA mode: Direct memory access mode. A mode of the audio subsystem
in which DMA transfers read audio data that has been captured by the
audio codec or in which DMA transfers supply audio data for playback.
DMA capture and playback are not possible simultaneously.

dot clock: The clock that cycles the rate at which video data is output to a
display monitor.

DRAM: Dynamic random-access memory. Memory typically used for exter-
nal memory. A special memory circuit that is dynamic in nature; it re-
quires each bit of information to be refreshed, or restored to its pro-
grammed state, on a periodic basis to maintain valid data.

DSP: Digital signal processor. A processor used for high speed data manip-
ulations of audio, video, graphical, or image information.

eventpin: Apinonthe SDB’s interrupt controller that triggers an event when
asserted.

externally initiated packet transfer: See XPT.

Glossary D-3

Glossary

FCLK: Frame clock. The clock that controls the internal video logic of the vid-
eo controller’s frame timers.

FIFO: First in, first out. A queue; a data structure or hardware buffer from
which items are taken out in the same order they were put in. A FIFO is
useful for buffering a stream of data between a sender and receiver
which are not synchronized; that is, are not sending and receiving at ex-
actly the same rate. If the rates differ by too much in one direction for too
long, the FIFO will become either full (blocking the sender) or empty
(blocking the receiver).

FIFO flag: Indicator that gets set or cleared depending on the state of the
FIFO.

FIFO status register: A register located within a FIFO device used to store
status information regarding the device.

flag: A variable or quantity that can take on one of two values. A bit, particu-
larly one that is used to indicate one of two outcomes or is used to control
which of two things is to be done.

flag offsets: The offset into a FIFO memory device that determines when
FIFO flags get set or cleared.

frame: The screen image output during a single vertical sweep.

frame timer: In the video controller (VC), a timer that provides video timing
control and indicates to the serial register transfer (SRT) controller when
an SRT is necessary.

frontporch: The interval of a video waveform between the start of blanking
and the corresponding sync pulse. The horizontal front porch is specified
as an integral number of FCLK periods; the vertical front porch is speci-
fied as an integral number of lines (halflines for interlaced mode). See
also back porch.

Glossary

gainstage: That portion of a circuit which imposes a gain onto a signal. Also
that portion of an algorithm that imposes a gain onto a digital signal.

grayscale: Or greyscale. A range of accurately known shades of gray
printed out for use in calibrating those shades on a display or printer. In
graphics, composed of discrete shades of gray. For displays, a color for-
mat in which each pixel is determined by an 8-bit value. This value maps
to RGB space with the red, green, and blue components all taking on the
8-bit value. The result is pixels which can range from black, to gray, to
pure white.

horizontal blanking: A bidirectional timing signal that enables or disables
pixel capture and display. Horizontal blanking occurs once per line and
its pulse width is defined as an integral number of FCLK periods. See
also blanking.

horizontal sync: The portion of the composite video signal that tells the re-
ceiver where to place the image in the left-to-right dimension. The hori-
zontal sync pulse tells the receiving system where the beginning of the
new scan line is. See also vertical sync.

|IEEE standard 1149.1-1990: See JTAG.

IEEE-754 floating point unit: The floating point math unit contained in the
core of the TMS320C8x’s master RISC processor.

interlaced mode: Avideo mode in which each frame consists of two vertical
fields. One field displays odd horizontal lines, and the other field displays
even horizontal lines. In effect, the number of transmitted pictures is
doubled, thus reducing flicker.

interrupt: A signal sent by hardware or software to a processor requesting
attention. An interrupt tells the processor to suspend its current opera-
tion, save the current task status, and perform a particular set of instruc-
tions. Interrupts communicate with the operating system and prioritize
tasks to be performed.

interrupt service routine: See ISR.

ISR: Interrupt service routine. A module of code thatis executed in response
to a hardware or software interrupt.

Glossary D-5

Glossary

D-6

JPEG standard: Joint Photographic Experts Group standard. A standard
used for compressed still-picture data.

JTAG: Joint Test Action Group. The Joint Test Action Group was formed in
1985 to develop economical test methodologies for systems designed
around complex integrated circuits and assembled with surface-mount
technologies. The group drafted a standard that was subsequently
adopted by IEEE as IEEE Standard 1149.1-1990, “IEEE Standard Test
Access Port and Boundary-Scan Architecture”.

kHz: Kilohertz.

line dropping: The process of eliminating lines of video from an image to
downscale the image vertically.

look-uptable: Atable, used during scan conversions of a digital image, that
converts color-map addresses into the actual color values displayed.

luminance: The NTSC or PAL video signal contains two pieces that make
up what you see on the screen: the black and white part and the color part
(chrominance). The black and white part is called the luminance. See
also chrominance.

pu-Law companding: See companded.
master processor: See MP.
member: An element or variable of a structure, union, or enumeration.

merge mode: A serial register transfer (SRT) mode for the video controller
(VC) during which an image is capture and stored in memory. Memory
locations not corresponding to the captured image are preserved. See
also capture mode, display mode.

metric parameters: A set of parameters that define state dimensions and
attributes for the audio subsystem, display subsystem, or video capture
subsystem.

Glossary

MHz: Megahertz.

monitor timing (parameters): Parameters that the display APl uses to de-
termine what signal rates are needed to drive a monitor.

mono mode: A mode of the audio codec in which only one channel of audio
exists.

MP: Master processor. A general-purpose RISC processor that coordinates
the activity of the other processors on the 'C8x. The 'C8x includes an
IEEE1-754 floating-point hardware unit.

MPEG standard: Moving Picture Experts Group standard. A proposed stan-
dard for compressed video data.

multiplexing: A process of transmitting more than one set of signals at a
time over a single wire or communications link.

multisync monitor: A monitor that adjusts itself to the horizontal and verti-
cal synchronization rate of the video signal. A multisync monitor can be
used with a variety of video adapters.

mutual exclusion: A collection of techniques for sharing resources so that
different uses do not conflict and cause unwanted interactions. One of
the most commonly used techniques for mutual exclusion is the sema-
phore. See also semaphore.

noninterlaced graphics mode: A mode for the video controller (VC) in
which each frame consists of a single vertical field. A method of scanning
out a video display where all of the lines in the frame are scanned out se-
quentially, one right after the other. Also called progressive scan.

NTSC: National Television Standards Committee. A color television broad-
cast standard wherein the image consists of a format that has 525 scan
lines; a field frequency of 60 Hz; a broadcast bandwidth of 4 MHz; a line
frequency of 15.75 kHz; a frame frequency of one—thirtieth of a second;
and a color subcarrier frequency of 3.58 MHz. See also PAL.

overlay mode: Mixed video mode. The input from the VGA pass-through
cable is mixed with the RAMDAC output to form video overlaid onto VGA.

Glossary D-7

Glossary

D-8

PAL: Phase alternation line. A European deviation of the standard U.S. tele-
vision NTSC signal; the format is 625 lines and a 50-Hz frequency. See
also NTSC.

parallel processor: See PP,

PCA: Printed-circuit assembly. A printed-circuit board on which separately
manufactured component parts have been installed in an electrical cir-
cuit that performs a defined function.

PCI: Peripheral component interconnect. High-speed local bus that sup-
ports data-transfer speeds of up to 132M bytes per second at 33 MHz.

PCM: Pulse code modulation.

P10 mode: Programmed input/output mode. A mode of the audio codec in
which DMA is not use; rather, samples are directly read from or written
to the PIO port.

pitch: The number of bytes between the start of one line to the start of the
next line in a frame of video.

pixel: One picture element (pel).

pixeldropping: The process of removing pixels from aline of video to down-
scale that line.

playback mode: A mode of the audio subsystem in which DMA transfers
supply audio data for playback.

porch: The portion of a video display signal that corresponds to the blanking
interval on either side of a horizontal or vertical sync pulse. The terms
front porch and back porch refer to the blanking intervals that precede
and follow, respectively, the sync pulse. See also back porch, front porch.

PP: Parallel processor. The 'C8x’s advanced digital signal processor that is
used for video compression/demcompression (Px64 or MPEG), still-
image compression/decompression (JPEG), 2-D and 3-D graphic func-
tions such as line draw, trapezoid fill, antialiasing, and a variety of high-
speed integer operations on image data. A ’C8x single-chip multiproces-
sor device may contain from one to eight PPs, depending on the device
version.

progressive scan: See noninterlaced graphics mode.

Glossary

quantization error: The error resulting from converting an analog signal
into a digital signal due to the fact that a digital signal can only have dis-
crete values whereas an analog signal may take on any value within dy-
namic range of the signal.

quantum levels: When a signal can only take on certain discrete values,
these values are referred to as quantum levels.

RAMDAC: Random-access memory digital-to-analog converter. Used to
convert digital RGB (red-green-blue) information to analog signals that
drive a display.

raster: The series of scan lines that comprise a television picture or a com-
puter’s display. A raster line is the same as a scan line, which is an indi-
vidual sweep across the face of the display by the electron beam that
makes the picture.

refresh rate: The speed with which a video source redisplays the screen.

RISC: Reduced instruction set computer. A computer whose instruction set
and related decode mechanism are much simpler than those of micro-
programmed complex instruction set computers. The result is a higher
instruction throughput and a faster real-time interrupt service response
from a smaller, cost-effective chip.

samplerate: The rate at which the audio codec samples audio data. Usually
specified in hertz (samples per second).

SDB: TMS320C8x software development board.

semaphore: Aclassic method for restricting access to shared resources (for
example, storage) in a multiprocessing environment. A semaphore is a
protected variable (or abstract data type) that can be accessed only by
certain operations for testing and incrementing the value of the variable.

semiomnipresent pixel: A pixel that appears to be at two locations on the
screen at once in a video display.

Glossary D-9

Glossary

D-10

serial register transfer: See SRT controller.

skew: Time differences in multiple clock signals based on physical dis-
tances between the origin of the signals and their destinations. Switching
delays caused by gates in the logic.

S-VHS: Super VHS (vertical helical scan). Similar to the VHS video record-
ing standard, except that the chrominance and luminance data are
treated as components that provide higher quality video.

SRT controller: Serial register transfer controller. Hardware that schedules
requests to the transfer controller to move data into and out of VRAM
frame memories.

status bit: A bit in a status word or register that contains a single piece of
status information.

sync: Asynchronization signal that tells the display where to put the picture.
See also horizontal sync and vertical sync.

triple: A row in a table consisting of three columns. For example, an RGB
triple contains the red, green, and blue values which define a particular
color.

VC: Video controller. The portion of the 'C8x responsible for the video inter-
face.

vertical blanking: Bidirectional vertical timing signals that occur once per
frame (once per field for interlaced systems) and have a pulse width de-
fined as an integral number of lines (halflines for an interlaced system).
Can be used to disable pixel capture and display during vertical retrace.
See also blanking.

vertical sync: A bidirectional vertical timing signal occurring once per frame
with a pulse width defined as an integral number of lines (halflines for in-
terlaced mode). The portion of the composite video signal that tells the
receiver where the top of the picture is. See also horizontal sync.

video controller: See VC.

VIP: Video interface palette. See RAMDAC.

Glossary

VRAM: Video random access memory. A portion of the microprocessor’s
memory address space reserved for the temporary storage of video data
before it is sent to the display monitor. A type of dynamic read access
memory that lets the video circuitry serially access the memory bit by bit.
VRAM has separate pins for the processor and video circuitry, is used in
high-speed video applications, and is easily interfaced to a video display.

window: A defined rectangular area of virtual space on the display.

XPT. Externally initiated packet transfer. A packet transfer initiated by an ex-
ternal device through the 'C8x’s XPT [2:0] inputs.

YUV: A color space standard in which the luminance (Y) and chrominance
(U and V) values are separate components.

Glossary D-11

D-12

#define. See individual macro entry

accessing internal configuration registers in
FIFO 2-16

active area 2-19, 2-31, 2-33
AD1848. See audio codec
AEL1 bits
in CLFAG1/RDFLAG1 register 2-56
in ENABLE? register 2-53
in STFLAG1/CNFLAGL register 2-57
AE1l event 2-50
AE2 bits
in CLFLAGO/RDFLAGO register 2-55
in ENABLEL1 register 2-52
in STFLAGO/CNFLAGO register 2-56
AE2 event 2-49
AF1 bits
in CLFLAGO/RDFLAGO register 2-55
in ENABLEL1 register 2-52
in PCISTAT register 2-59, 2-60
in STFLAGO/CNFLAGO register 2-56
AFlevent 2-49
AF2 bits
in CLFLAG1/RDFLAG1 register 2-56
in ENABLE? register 2-53
in PCISTAT register 2-59, 2-60
in STFLAG1/CNFLAG1 register 2-57
AF2 event 2-50, 2-53
AFIFOCFG register 2-8, 2-12, 2-14 to 2-18
AFIFOCMD register 2-8, 2-13, 2-14 to 2-18, 3-15
AFIFODAT register 2-8, 2-9
assistance from Tl vii
audcapt.bat file A-11to A-12
audcapt.c file A-8to A-10

Index

audcapt.Ink file A-10 to A-11

audio block capture/playback exam-
ple A-17to A-20
audio buffering 3-5to 3-8
audio capture and playback API
data types 3-3
functions, listing 3-9
macros 3-2to 3-3
audio codec
data formats 2-13
example of PIO mode A-21
in components diagram 1-3
sample rates supported 2-13
audio codec error event 0 2-50
audio codec error event 1 2-50
audio codec event 0 2-49
audio codec event 1 2-49

audio codec registers

index address (CDCIDX) 2-8, 2-10

index data (CDCDAT) 2-8, 2-10

programmed input/output (CDCPIO) 2-8, 2-12

status (CDCSTAT) 2-8, 2-11 to 2-12
audio DMA capture example A-8to A-11
audio DMA playback example A-12 to A-16
audio FIFO

accessing internal configuration registers 2-16

and the audio buffering structure 3-8

block diagram 2-9

commands supported 2-15

description 2-14to 2-18

example of reset code 2-15

flag pin configurations 2-17

flag truth table 2-18

in audio block diagram 2-7

internal configuration registers 2-16
audio FIFO registers

command/status (AFIFOCMD) 2-8, 2-13,

2-14 10 2-18

Index-1

Index

audio FIFO registers (continued)
configuration (AFIFOCFG) 2-8, 2-12,
2-14 to 2-18
data (AFIFODAT) 2-8, 2-9

audio FIFO registers, command/status (AFI-
FOCMD) 3-15

audio hardware
block diagram 2-7
description 2-7
features 2-2to 2-4
FIFO. See audio FIFO
registers summary 2-8

audio programmed 1/O (PIO) exam-
ple A-21toA-23

audio.h file 3-2
AUDIO_ALAWS8 macro 3-2
AUDIO_AUX1 macro 3-2
AUDIO_CAPTURE macro 3-2
Audio_CaptureToMemory function 3-10 to 3-11,
A-17
Audio_CodecStat function 3-12
Audio_Disable function 3-13
Audio_Enable function 3-14
Audio_FifoStat function 3-15
Audio_FillBuffs function 3-16
Audio_GetCaptureBuffs function 3-7, 3-17
Audio_GetCodecRegs function 3-18
Audio_GetFifoRegs function 3-19
Audio_GetMetrics function 3-4, 3-20
Audio_GetPlaybackBuffs function 3-7, 3-21
Audio_Init function 3-22

Audio_Install function
description 3-23to 3-24
macros used by 3-2

Audio_lInstallSema function 3-25
AUDIO_LINE macro 3-2
AUDIO_MET data type 3-3, 3-4, 3-10, 3-20, 3-29
AUDIO_MIXED macro 3-2
AUDIO_MONO macro 3-2
AUDIO_MUTE macro 3-3
AUDIO_PCM16 macro 3-2
AUDIO_PCM8 macro 3-2
AUDIO_PIO macro 3-2
Audio_Pioln function 3-26
Audio_PioOut function 3-27

Index-2

Audio_PioTest function 3-28, A-21
AUDIO_PLAYBACK macro 3-2
Audio_PlaybackFromMemory func-
tion 3-29 to 3-30, A-17
Audio_ProgramAux1 function
description 3-31
macros used by 3-3

Audio_ProgramDacs function
description 3-32
macros used by 3-3
Audio_ProgramDigitalMix function 3-33
Audio_Programlinputs function
description 3-34
macros used by 3-2

AUDIO_PTR data type 3-3to 3-4, 3-10, 3-17,
3-21, 3-29

Audio_SetBufferIndexes function 3-35

Audio_SetSampleRate function 3-36

AUDIO_STEREO macro 3-2

AUDIO_ULAWS8 macro 3-2

Audio_Unlnstall function 3-5, 3-37

AUDIO_UNMUTE macro 3-3

audplay.bat file A-15to A-17

audplay.c file A-12

audplay.Ink file A-15

audtest.bat file A-20 to A-21

audtest.c file A-17 to A-19

audtest.Ink file A-19 to A-20

autoconfiguration 2-64

bO bit 2-70
BDIS bit 2-59, 2-61
big-endian mode 2-2, 2-4, 2-45
bit notation iv
block diagram, system 2-3
block transfer (blt)
read event 2-49
read event trigger bit (BLR) 2-61
write event 2-49
write event trigger bit (BLW) 2-61
BLR bit 2-59, 2-61
BLW bit 2-59, 2-61
BMAH bits 2-68
BMAH register 2-68, 2-69, 2-70

BMAL bits 2-68
BMAL register 2-68, 2-69, 2-70
BMCTRL register 2-68, 2-69, 2-70
BMEN bit 2-68, 2-70
BMI bits
in CLFLAG1/RDFLAG1 register 2-56
in ENABLEZ2 register 2-53
in STFLAG1/CNFLAGL register 2-57
BMI event 2-50
bootserv.bin file 6-10
bootstrapping 2-70 to 2-71, 6-10
BRD bits
in CLFLAGO/RDFLAGO register 2-55
in ENABLEL1 register 2-52
in STFLAGO/CNFLAGO register 2-56

BRD event 2-49, 2-52, 2-61
buffering
audio 3-5
video capture 5-5to 5-7
buffering queue structure 3-6
BUFFS data type 3-5, 3-6, 3-7
burst disable bit (BDIS) 2-61
bus controller 2-44
bus master address high register (BMAH) 2-69
bus master address low register (BMAL) 2-69
bus master control register (BMCTRL) 2-69, 2-70
bus master event 2-50
bus mastering 2-68 to 2-70
bus mastering enable bit (BMEN) 2-70
BWR bits
in CLFLAGO/RDFLAGO register 2-55

in ENABLEL1 register 2-52
in STFLAGO/CNFLAGO register 2-56

BWR event 2-49, 2-52, 2-61

C source debugger 1-2, 1-4, A-8, A-12, A-30
'C80 bus

and the memory controller 2-45

and video capture FIFO 2-35

description 2-5

in audio block diagram 2-7

in PCl interface block diagram 2-58

in video capture block diagram 2-36

in video display block diagram 2-20

Index

'C8x DSP device 1-2, 2-2, 2-6
'C8x SDB components 1-2to 1-3

CAP bits
example of setting 2-52
in CLFLAGO/RDFLAGO register 2-55
in ENABLEDO register 2-52
in STFLAGO/CNFLAGO register 2-56

CAP event 2-35, 2-41, 2-49

CAPID register 2-37, 2-40, 5-9

CAPRST regqister 2-37, 2-43

capttest.bat file A-29 to A-30

capttest.c file A-24to A-28

capttest.Ink file A-28 to A-29

capture card ID register (CAPID) 2-37, 2-40, 5-9

capture FIFO empty flag
enable flag bit 2-41
interrupt flag bit 2-40
interrupt source bit 2-41

capture FIFO full flag
enable flag bit 2-41
interrupt flag bit 2-40
interrupt source bit 2-41

capture left/right sample bit (CL/R) 2-11
capture ready bit (CRDY) 2-11

capture upper/lower bit (CU/L) 2-11
capture.h file 5-2

CAPTURE_512x512 macro 5-2
CAPTURE_640x480 macro 5-2
Capture_CardPresent function 5-9
CAPTURE_CIF macro 5-2

CAPTURE_CIFK macro 5-2
Capture_Disable function 5-10
Capture_Enable function 5-11
Capture_FillBuffs function 5-4, 5-12
Capture_FreeBuffer function 5-5, 5-6, 5-7, 5-13
Capture_GetBuffer function 5-5, 5-6, 5-7, 5-14
Capture_GetDecoderRegs function 5-15
Capture_GetMetrics function 5-4, 5-16
Capture_GetScalerRegs function 5-17
Capture_Init function 5-18

Capture_Install function
description 5-19 to 5-20
macros used by 5-2, 5-3

Capture_lInstallSema function 5-21
CAPTURE_MET data type 5-3, 5-4, 5-16

Index-3

Index

CAPTURE_MONOS8 macro 5-3
CAPTURE_NTSC macro 5-2
CAPTURE_PAL macro 5-2
CAPTURE_QCIF macro 5-2
CAPTURE_RGB555 macro 5-3
CAPTURE_RGB888 macro 5-3

Capture_SetlnputSource function
description 5-22
macros used by 5-2

Capture_SetScaling function 5-23
CAPTURE_SQCIF macro 5-2
CAPTURE_SVHS macro 5-2
Capture_Unlinstall function 5-24
CAPTURE_VID1 macro 5-2
CAPTURE_VID2 macro 5-2
CAPTURE_YUV422 macro 5-3
category-1 events

definition 2-49

enable bits 2-52

listing 2-49
category-2 events

definition 2-49

enable bits 2-53

setting/clearing example 2-53

listing 2-50
caution, damage to monitor from unsupported reso-

lutions 4-9, 4-26
CDO bits

in CLFLAGO/RDFLAGO register 2-55

in ENABLEO register 2-52

in STFLAGO/CNFLAGO register 2-56
CDO event 2-14, 2-49, 2-55

CD1 bits
in CLFLAGO/RDFLAGO register 2-55
in ENABLEO register 2-52
in STFLAGO/CNFLAGO register 2-56

CD1 event 2-14,2-49

CDCDAT register 2-8, 2-10

CDCIDX register 2-8, 2-10

CDCPIO register 2-12

CDCPIO register 2-8

CDCSTAT register 2-8, 2-11 to 2-12, 3-12

CEO bits
in CLFLAG1/RDFLAGL1 register 2-56
in ENABLE?2 register 2-53
in STFLAG1/CNFLAGLI register 2-57

Index-4

CEO event 2-14, 2-48, 2-49, 2-50

CE1 bits
in CLFLAG1/RDFLAGLI register 2-56
in ENABLE? register 2-53
in STFLAG1/CNFLAGL1 register 2-57

CElevent 2-14,2-50, 2-53

CFIFORST register 2-37

CL/R bit 2-11

clear flag register 0 (CLFLAGO) 2-51, 2-55 to 2-56
clear flag register 1 (CLFLAG1) 2-51, 2-56
client library (host library) 6-1

client to server protocol 6-8

client/server command flow diagram 6-9
CLIENT_AF1 macro 6-3

CLIENT_AF2 macro 6-3

CLIENT_BDIS macro 6-3
CLIENT_BINFILE macro 6-2
CLIENT_BITSET macro 6-2
CLIENT_BLR macro 6-3

CLIENT_BLW macro 6-3

Client_Boot function
and bootstrapping 6-10
description 6-12
macros used by 6-4

CLIENT_BOOTFILE macro 6-2
CLIENT_BYTESWAP macro 6-4
CLIENT_BYTEWORDSWAP macro 6-4

Client_ClearConfigBit function
description 6-13
macros used by 6-2, 6-3

Client_Close function
description 6-14
macros used by 6-2

CLIENT_CLOSED macro 6-2
CLIENT_CMNDSIZE macro 6-4
CLIENT_COFFFILE macro 6-2
CLIENT_DEAD macro 6-2
CLIENT_EF1 macro 6-3
CLIENT_EF2 macro 6-3
CLIENT_EMURST macro 6-4
CLIENT_EPOINT macro 6-4
CLIENT_FIFOALMOSTFULL macro 6-2
CLIENT_FIFOEMPTY macro 6-2
CLIENT_FOFFO macro 6-2
CLIENT_FOFF1 macro 6-2
CLIENT_FRST macro 6-2

CLIENT_FSWO macro 6-2
CLIENT_FSW1 macro 6-2
CLIENT_GPIO macro 6-3
CLIENT_GPI1 macro 6-3
CLIENT_GPOO macro 6-3
CLIENT_GPO1 macro 6-3
CLIENT_IAEN macro 6-2
Client_Init function 6-15

Client_IssueCmnd function
description 6-16
macros used by 6-2

CLIENT_LOAD macro 6-4
CLIENT_MAILBOXEMPTY macro 6-2
CLIENT_MAILBOXFULL macro 6-2
CLIENT_MB1 macro 6-3
CLIENT_MB2 macro 6-3
CLIENT_MRST macro 6-2
CLIENT_NOSWAP macro 6-4

Client_Open function
description 6-17
macros used by 6-2

CLIENT_PRGD macro 6-3
CLIENT_RO macro 6-3
CLIENT_R1 macro 6-3
CLIENT_R10 macro 6-3
CLIENT_R2 macro 6-3
CLIENT_R3 macro 6-3
CLIENT_R4 macro 6-3
CLIENT_RS5 macro 6-3
CLIENT_R6 macro 6-3
CLIENT_R7 macro 6-3
CLIENT_R8 macro 6-3
CLIENT_R9 macro 6-3
Client_ReadConfig function

description 6-18

macros used by 6-2
Client_ReadConfigBit function

description 6-19

macros used by 6-2, 6-3

Client_ReadDataFifo function
description 6-20
macros used by 6-2

Client_Readlo function
description 6-21
macros used by 6-2

Index

Client_ReadMailbox function

description 6-22

macros used by 6-2
Client_Reset function

and bootstrapping 6-10

description 6-23

macros used by 6-2, 6-4
CLIENT_RUN macro 6-4
Client_SetConfigBit function

description 6-24

macros used by 6-2, 6-3
Client_SetSwapping function

description 6-25

macros used by 6-2, 6-4
CLIENT_STATOK macro 6-2
Client_Sync function

description 6-26

macros used by 6-2
CLIENT_TBCOFF macro 6-4
CLIENT_TIMEOUT macro 6-2
CLIENT_VERBOSE macro 6-4
CLIENT_WORDSWAP macro 6-4
Client_WriteConfig function

description 6-27

macros used by 6-2
Client_WriteDataFifo function

description 6-28

macros used by 6-2
Client_Writelo function

description 6-29

macros used by 6-2
Client_WriteMailbox function

description 6-30

macros used by 6-2
CNFLAGO register 2-51, 2-56
CNFLAGL1 register 2-51, 2-57
codec index address register (CDCIDX) 2-8, 2-10
codec index data register (CDCDAT) 2-8, 2-10
codec PIO data register (CDCPIO) 2-8, 2-12
codec status register (CDCSTAT) 2-8,

2-11to 2-12, 3-12
color modes

defined 4-5

direct 4-2,4-5

pseudocolor 4-2, 4-5

true 4-2,4-5
color palette RAM 2-22, 2-23

Index-5

Index

composite video 1-2, 2-38, 2-39
See also CVBS video

condition flag register 0 (CNFLAGO) 2-51, 2-56
condition flag register 1 (CNFLAG1) 2-51, 2-57

CRDY bit 2-11

CU/L bit 2-11

CVBS video 1-2, 1-4, 2-4,2-35
CVBS1 mode 2-38, 2-39
CVBS1 register 2-37, 2-38
CVBS2 mode 2-39

CVBS2 register 2-37, 2-38, 2-39

damage to monitor from unsupported resolu-
tions 4-9, 4-26
data buses 2-5
data types
audio capture and playback APl 3-3
host communications APl 6-5
video capture APl 5-3
video display APl 4-4
DATCLK bit 2-30
DESC. See SAA7196 video decoder/scaler
device pin notation iv
direct color mode 4-2, 4-5
direct memory access (DMA) mode 2-7

display control registers
DISOCON register 2-21, 2-25
DIS1CON register 2-21, 2-28, 2-30
DIS2CON register 2-21, 2-29

display EPLD block diagram 2-27
display /0 2-20, 2-34

display timing parameters 2-33, 4-5
display window 2-33
display.h file 4-2
DISPLAY_ACTIVE macro 4-3
DISPLAY_BUFF1 macro 4-3
DISPLAY_BUFF2 macro 4-3
DISPLAY_D444 macro 4-2
DISPLAY_D555 macro 4-2
DISPLAY_D565 macro 4-2
DISPLAY_D664 macro 4-2
DISPLAY_DBGRX macro 4-2
Display_Disable function 4-11

Index-6

DISPLAY_DXRGB macro 4-2
Display_Enable function 4-12
Display_FillBuffs function 4-13

Display_GetBuffer function
description 4-14
macros used by 4-3

Display_GetMetrics function 4-8, 4-15
Display_GetTvpRegs function 4-16
DISPLAY_INACTIVE macro 4-3

Display_Init function 4-17
Display_InstallSema function 4-18
Display_InstallTimingTable function 4-7, 4-8, 4-19
DISPLAY_MET data type 4-4, 4-8, 4-15
Display_MoveWindow function 4-20
DISPLAY_MT data type 4-4, 4-5 to 4-8, 4-19
DISPLAY_OVERLAY macro 4-3
DISPLAY_P8 macro 4-2
DISPLAY_PASSTHROUGH macro 4-3
Display_ReadPalette register 4-21
Display_SetBufferAddresses function 4-22
Display_SetDotClock function 4-23

Display_SetMode function
description 4-25 to 4-26
macros used by 4-2, 4-3

Display_SetOverlayParams function 4-8,
4-27 to 4-28

Display_SetPaletteAddress function, 4-29
Display_SetPitch function 4-30
Display_SetPixel function

description 4-31

macros used by 4-3

Display_SetSyncPolarities function 4-32
Display_SetVgaPalette function 4-33
Display_SetWindow function 4-34
DISPLAY_T444 macro 4-2
DISPLAY_T555 macro 4-2
DISPLAY_T565 macro 4-2
DISPLAY_T664 macro 4-2
DISPLAY_TBGRX macro 4-2
Display_ToggleBuffers function 4-35
Display_TvpRegOut function 4-37
DISPLAY_TXRGB macro 4-2
DISPLAY_VIDEO macro 4-3
Display_WaitEndOfFrame function 4-38
Display_WritePalette function 4-39

DisplaySetGreyScalePalette function 4-24
disptest.bat file A-39 to A-40
disptest.c file A-30 to A-38
disptest.Ink file A-38 to A-39
DMA (direct memory access) mode 2-7
dot 2-19,2-31
dot clock 2-32, 2-33
dot clock frequency (Fq). See dot rate
dotrate 2-19, 2-31, 2-32
DRAM
and memory controller 2-45

features 2-4
in components diagram 1-3

dynamic random-access memory. See DRAM

e0—e7 bits 2-41
EF1 bits
in CLFLAG1/RDFLAG1 register 2-56
in ENABLE? register 2-53
in PCISTAT register 2-59, 2-60
in STFLAG1/CNFLAGL register 2-57
EF1 event 2-50
EF2 bits
in CLFLAGO/RDFLAGO register 2-55
in ENABLEL1 register 2-52
in PCISTAT register 2-59, 2-60
in STFLAGO/CNFLAGO register 2-56
EF2 event 2-49
EINT bits 2-54
emurst.exe file 6-4, 6-23
ENABLEDO register 2-51, 2-52
ENABLE1 register 2-51, 2-52
ENABLE?2 register 2-51, 2-53
event
category-1 table 2-49
category-2 table 2-50
clearing, example 2-56
definition 2-48
setting/clearing category-2, example 2-53
triggering 2-48
event destination 2-48
event enable register 0 (ENABLEO) 2-51, 2-52
event enable register 1 (ENABLE1) 2-51, 2-52
event enable register 2 (ENABLE2) 2-51, 2-53

Index

event signal 2-48
event source 2-48
event state register (EVSTATE) 2-51, 2-54
event trigger 2-61

definition 2-48

example 2-42
even-to-odd field transition enable flag bit 2-41
even-to-odd field transition interrupt flag bit 2-40
even-to-odd field transition interrupt source

bit 2-41
EVSTATE register 2-51, 2-54

Fq (dot clock frequency). See dot rate
FF1 bits
in CLFLAG1/RDFLAGL1 register 2-56
in ENABLEZ2 register 2-53
in STFLAG1/CNFLAGLI register 2-57
FF1 event 2-50
FF2 bits
in CLFLAG1/RDFLAGLI register 2-56
in ENABLE?2 register 2-53
in STFLAG1/CNFLAGL1 register 2-57
FF2 event 2-50
FIFO boot location 2-68
FIFO data location 2-68
FIFO flag pin configurations 2-17
FIFO flag truth table 2-18
FIFO header location 2-67
FIFO mailbox1 full flag bit (MB1) 2-60
FIFO mailbox2 full flag bit (MB2) 2-59
FIFO swap setting bits (FSW) 2-62
FIFO1 almost empty flag event 2-50
FIFO1 almost full flag bit (AF1) 2-60
FIFO1 almost full flag event 2-49
FIFO1 empty flag bit (EF1) 2-60
FIFO1 empty flag event 2-50
FIFO1 full flag event 2-50
FIFO2 almost empty flag event 2-49
FIFO2 almost full event 2-50
FIFO2 almost full flag bit (AF2) 2-60
FIFO2 empty flag bit (EF2) 2-60
FIFO2 empty flag event 2-49
FIFO2 full flag event 2-50
FOFF bits 2-59, 2-62

Index-7

Index

frame timer registers 4-7

FRM bits
in CLFLAGO/RDFLAGO register 2-55
in ENABLEO register 2-52
in STFLAGO/CNFLAGO register 2-56

FRM event 2-35, 2-49
FRST bit 2-59, 2-62
FSW bits 2-59, 2-62

functions, listing
audio capture and playback APl 3-9
host communications APl 6-11
video capture APl 5-8
video display APl 4-10

Fy (vertical frequency). See refresh rate

general-purpose input bits (GPI) 2-59
general-purpose output bits (GPO) 2-61
general-purpose video capture event 2-49
GPI bits 2-59

GPO bits 2-59, 2-61

hardware functions list 1-4
hardware modules 2-2
hclient.h file 6-2
horizontal sync times 4-6

host communications API
data type 6-5
functions, listing 6-11
macros 6-2to 6-4

host library (client library) 6-1

hsdbdrvs.h file B-1, B-4

hsdbdrvs.lib file 6-2

HSYNCO falling edge enable flag bit 2-41
HSYNCO falling edge interrupt flag bit 2-40
HSYNCO falling edge interrupt source bit 2-41
HSYNCL invert bit (IHS1) 2-29

Index-8

I/0 bus
and IDT72520 FIFO 2-14
and the memory controller 2-46
audio registers accessible by 2-8
bus mastering registers accessible by 2-69
description 2-5
in audio block diagram 2-7
in host address space 2-67
in PCl interface block diagram 2-58
in video capture block diagram 2-36
in video display block diagram 2-20

interrupt controller registers accessible by 2-51

video capture registers accessible by 2-37
video display registers accessible by 2-21

I/O space, host 2-67

i0—-i7 bits 2-40

I2CCTRL bits 2-42

I2CCTRL register 2-37, 2-42, 2-44
I2CDAT bits 2-42

I2CDAT register 2-37, 2-42, 2-44
I2CRST register 2-37, 2-43
I2CSTAT bits 2-43

I2CSTAT register 2-37, 2-43, 2-44
IAEN bit 2-59, 2-61

ICE bit 2-25, 2-26

ICS1574. See pixel clock generator
ICS1574 clock bit (ICSC) 2-28
ICS1574 data bit (ICSD) 2-28, 2-30
ICS1574 hold bit (ICSH) 2-28
ICSC bit 2-28, 2-30

ICSD bit 2-28, 2-30

ICSH bit 2-28, 2-30

IDIS bit 2-68, 2-70

IDT72520. See audio FIFO

IEEE 1149.1 emulation support 1-3
IEEE 1149.1 standard 1-3

IHS bit 2-25

IHS1 bit 2-29

increment disable bit (IDIS) 2-70
index address bits (IXA) 2-10
individual buffer structure 3-8
individual queue buffer structure 3-7
initialization bit (INIT) 2-10

INT bit 2-10, 2-11, 2-12

INTEN register 2-37, 2-41, 2-42
interaction between client and server APIs 6-6

interrupt controller (memory/interrupt controller)
See also memory controller
and bootstrapping 2-70
and bus-matching FIFO 2-14, 2-17
description 2-48 to 2-57
events from video capture 2-35
features 2-4
in audio block diagram 2-7
in PCl interface block diagram 2-58
in video capture block diagram 2-36
registers summary 2-51

interrupt enable register (INTEN) 2-37, 2-41

interrupt flag register (INTREG) 2-37, 2-40

interrupt source register (INTSRC) 2-37,
2-41to0 2-42

interrupt status sticky bit (INT) 2-10, 2-12
INTREG register 2-37, 2-40, 2-42
INTSRC bits 2-41

INTSRC register 2-37, 2-41 to 2-42
invert horizontal sync bit (IHS) 2-25
invert pixel clock enable bit (ICE) 2-26
invert vertical sync bit (IVS) 2-25
ISRC bits 2-38

ISRC register 2-37, 2-38

IVS bit 2-25

IVS1 bit 2-29

IXA bits 2-10

kit contents 1-2

LINT bit 2-54

macros
audio capture and playback APl 3-2 to 3-3
host communications APl 6-2 to 6-4
video capture APl 5-2to0 5-3
video display APl 4-2 to 4-3

Index

MAIL location 2-67
MASKENO register 6-29
master processor (MP) 1-2
master reset bit (MRST) 2-62, 2-70
MB1 bit 2-59, 2-60, 2-67
MB2 bit 2-59, 2-67
MCE bit 2-10
MCI bits
in CLFLAG1/RDFLAGLI register 2-56

in ENABLEZ2 register 2-53
in STFLAG1/CNFLAGLI register 2-57
MCI event 2-50
memory
DRAM 2-4,2-45
RAM 2-6, 2-22, 2-23
SAM 2-46
SRAM 2-6
VRAM
and memory controller 2-46
and pixel resolution 2-31 to 2-33
features 2-4
in video display hardware 2-19 to 2-20
memory controller (memory/interrupt controller)
See also interrupt controller
description 2-45 to 2-47
features 2-4
in audio block diagram 2-7
in components diagram 1-3
in PCl interface block diagram 2-58
memory controller event 2-50
MEN bit 2-25
metric parameters
display 4-8
video capture 5-4
miniboot.bin file 6-10
mix enable bit (MEN) 2-25, 2-26
mixed mode 2-25, 2-29, 2-33, 4-3
mode change enable bit (MCE) 2-10
monitor timing parameters 4-4, 4-5
mono mode 2-13
MRST bit 2-59, 2-62, 2-70

noninterlaced video 4-5
notational conventions iv

Index-9

Index

NTSC
definition D-7
video 1-2,2-4,2-35

odd-to-even field transition enable flag bit 2-41
odd-to-even field transition interrupt flag bit 2-40
odd-to-even field transition interrupt source

bit 2-41
opcode bits 2-13, 2-14, 2-15, 2-16
operand bits 2-13, 2-14, 2-15, 2-16

overlay mode 4-3, 4-25, 4-27
See also mixed mode

overlay, video 2-25, 2-33 to 2-34, 4-3, 4-8, 4-25,
4-27

packet transfer 2-7, 2-9, 2-35, 2-46, 2-54, A-8
See also PDPT (peripheral data packet transfer)

page mode 2-45, 2-46
PAL
definiton D-8
video 1-2, 2-4, 2-35
PAL86 bit 2-28, 2-30
PALADRD register 2-21, 2-22, 2-24
PALADWR register 2-21, 2-22
palette graphics output 2-25, 2-26, 2-33

palette holding register (PALHOLD) 2-21, 2-22,
2-24

palette read address register (PALADRD) 2-21,
2-22,2-24

palette write address register (PALADWR) 2-21,
2-22

PALHOLD register 2-21, 2-22, 2-24
parallel processor (PP) 1-2

PCF8584 I12C control register (I2CCTRL) 2-37,
2-42

PCF8584 12C controller chip 2-36, 2-42, 2-43, 2-44
PCF8584 I12C data register (I2CDAT) 2-37, 2-42
PCF8584 |2C status register (I2CSTAT) 2-37, 2-43

Index-10

PCI bits
in CLFLAGO/RDFLAGO register 2-55
in ENABLEO register 2-52
in STFLAGO/CNFLAGO register 2-56

PCI bus
and bus master writes 2-68
and the memory controller 2-47
description 2-5
in PCl interface block diagram 2-58

PCI bus mastering, registers summary 2-69
PCl event 2-49, 2-61

PCI FIFO
access by 'C80 2-63to 2-64
block diagram 2-63
description 2-58, 2-62 to 2-63
host-to-SDB (FIFO1) 2-49, 2-50, 2-60, 2-63,
2-64, 2-67, 2-68
in host address space 2-66 to 2-68
mailbox
host-to-SDB (mailbox1) 2-60, 2-63, 2-64,
2-67
SDB-to-host (mailbox2) 2-59, 2-63, 2-64,
2-67
mailboxes 2-62, 2-64, 2-67
resetting 2-62
SDB-to-host (FIFO2) 2-49, 2-50, 2-60, 2-63,
2-64, 2-68, 2-70
PCI FIFO offset bit (FOFF) 2-62
PCI FIFO reset bit (FRST) 2-62
PCl interface
See also PCI FIFO
block diagram 2-58
description 2-58 to 2-71
in components diagram 1-3
registers
bus mastering, listing 2-69
PCI status register (PCISTAT) 2-59
PCl interrupt A enable bit (IAEN) 2-61

PCI status register (PCISTAT)
and bootstrapping 2-70to 2-71, 6-10
and Client_ClearConfigBit function 6-13
and Client_ReadConfig function 6-18
and Client_ReadConfigBit function 6-19
and Client_Readlo function 6-21
and Client_ReadMailbox function 6-22
and Client_SetConfigBit function 6-24
and Client_WriteConfig function 6-27
and hostreads 2-67, 2-68
bits and fields 2-59 to 2-62

PCI status register (PCISTAT) (continued)
description 2-59 to 2-62
location in host address space 2-67

PDPT (peripheral data packet transfer) 2-35, 2-45,
2-46
See also package transfer

PELMASK register 2-21, 2-23

peripheral data packet transfer (PDPT) 2-35, 2-45,
2-46
See also packet transfer

peripheral driver libraries 1-4

PGD bits
in CLFLAG1/RDFLAGLI register 2-56
in ENABLE? register 2-53
in STFLAG1/CNFLAGLI register 2-57

PGD event 2-50

pin notation iv

PIO (programmed input/output) mode 2-7, 2-12,
A-21

piotest.bat file A-23to A-24

piotest.c file A-21to A-22

piotest.Ink file A-22 to A-23

pixel
defined 2-19
resolution 2-19, 2-31 to 2-33

pixel clock frequency 2-19, 2-33
See also dot rate

pixel clock generator
and DIS1CON register 2-28
description 2-30to 2-31
in video display block diagram 2-20
sample program 2-30
pixel depth 2-19, 2-31, 2-32
pixel read-mask register (PELMASK) 2-21, 2-23
pixel resolution 1-3, 1-4
playback left/right sample bit (PL/R) 2-11
playback ready bit (PRDY) 2-12
playback upper/lower bit (PU/L) 2-11
plug and play 2-64 to 2-65
plug-incard 1-2
porch times 4-6
PRDY bit 2-11, 2-12
PRGD bit 2-59
programmed input/output (PIO) mode 2-7, 2-12,
A-21
programming done bit (PRGD) 2-59

Index

programming done event 2-50

progressive scan (noninterlaced video) 4-5
protocol, client to server 6-8

pseudocolor mode 2-23, 4-2, 4-5

PU/L bit 2-11

rl bit 2-70
RAM 2-6, 2-22, 2-23
read flag register 0 (RDFLAGO0) 2-51, 2-55 to 2-56
read flag register 1 (RDFLAG1) 2-51, 2-56
read input source setting register (ISRC) 2-37,
2-38
reduced instruction set computer (RISC) 1-2
refresh rate 1-3, 2-19, 2-31, 2-32
register bit notation iv
registers
audio hardware, listing 2-8
interrupt controller, listing 2-51
PCI bus mastering, listing 2-69
PCl interface 2-59
video capture hardware, listing 2-37
video display hardware, listing 2-21
related documentation v to vi
reset PCF8584 12C controller register
(I2CRST) 2-37,2-43
reset video capture EPLD register
(CAPRST) 2-37,2-43
reset video capture FIFO register (CFI-
FORST) 2-37
ROW bits
in CLFLAGO/RDFLAGO register 2-55
in ENABLEO register 2-52
in STFLAGO/CNFLAGO register 2-56

ROW event 2-35, 2-48, 2-49

SAA7196 video decoder/scaler (DESC) 2-36, 2-44
sample overrun/underrun bit (SOUR) 2-11
samples directory A-1

scaling resolutions supported, video capture 5-4
scaling example, video capture A-24 to A-29
sdbboot.out file 6-10

sdbdrvs.h file B-1, B-2

Index-11

Index

sdbdrvs.lib 3-2
sdbdrvs.lib file 4-2,5-2, 6-2
sdbrst.exe file 6-10
SEN bit 2-28
SENSE from TVP3020 bit (SEN) 2-28
serial access memory. See SAM
serial access memory (SAM) 2-46
server library (SDB library) 6-1
SERVER_CMNDSIZE macro 6-4
Server_Done function 6-31
Server_GetCmnd function 6-32
Server_Init function 6-33
Server_Install function 6-34
Server_lInstallSema function 6-35
Server_ReadDataFifo function 6-36
Server_Sync function 6-37
Server_Unlnstall function 6-38
Server_WriteDataFifo function 6-39
set flag register 0 (STFLAGO) 2-51, 2-56
set flag register 1 (STFLAG1) 2-51, 2-57
set input to CVBSL1 register (CVBS1) 2-37, 2-38
set input to CVBS2 register (CVBS2) 2-37, 2-39
set input to S-VHS register (SVHS) 2-37, 2-38
software development board (SDB)
description 1-1
hardware
audio 2-2,2-7to 2-18
block diagram 2-3
data buses 2-5
DRAM 2-4, 2-45
functions 1-4
interrupt controller 2-4, 2-48 to 2-57
memory controller 2-4, 2-45 to 2-47
overview 2-2to2-5
PCl interface 2-4, 2-58 to 2-71
TMS320C80 2-2, 2-6, 2-45, 2-46
video capture 2-4, 2-35 to 2-44
video display 2-2, 2-19 to 2-34
VRAM 2-4, 2-31 to 2-33, 2-46
illustration 1-3
kit, contents 1-2
memory address assigned 2-64
PCI plug-in card, components 1-2
peripheral driver libraries 1-4
plug and play 2-64
SOUR bit 2-11

Index-12

SRAM 2-6

sserver.h file 6-2

state of the 'C80 EINT[3:1] pins bits (EINT) 2-54
state of the ’C80 LINT4 pin bit (LINT) 2-54
state of the 'C80 XPT[2:0] pins bits (XPT) 2-54
static random-access memory. See SRAM
stereo mode 2-13

STFLAGO register 2-51, 2-56

STFLAGL1 register 2-51, 2-57

S-VHS mode 2-38, 2-39

S-VHS video 1-2, 1-4, 2-4, 2-35, 2-36, 2-38
SVHS register 2-37, 2-38

synchronization of client and server
APIs 6-6to 6-7

system block diagram 2-3
system-level overview 2-2to 2-5

TC (transfer controller) 2-6
technical support vii

test bus controller event 2-50
TFRAME enable flag bit 2-41
TFRAME interrupt flag bit 2-40
TFRAME interrupt source bit 2-41

TMS320C8x digital signal processor (DSP). See
'C8x DSP device

transfer controller (TC) 2-6, 2-35, 2-46
transfer request disable bit (TRD) 2-10
trigger an event 2-61
triggering an event
definition 2-48
example 2-42
TROW enable flag bit 2-41
TROW interrupt flag bit 2-40
TROW interrupt source bit 2-41
true color mode 4-2, 4-5
TVP3020 data register (TVPDAT) 2-21, 2-24
TVP3020 index register (TVPIDX) 2-21, 2-24
TVP3020 palette 8/6 mode bit (PAL86) 2-28
TVP3020 RAMDAC
and the DISOCON register 2-25, 2-26
and the PALADRD register 2-24
and the PALADWR register 2-21
and the PALHOLD register 2-22

TVP3020 RAMDAC (continued)
and the TVPDAT register 2-24
and the TVPIDX register 2-24
and video overlay (mixed mode) 2-33
in display I/0O block diagram 2-34
in video display block diagram 2-20
TVPDAT register 2-21, 2-24

TVPIDX register 2-21, 2-24

VC (video controller) 2-6
vertical frequency (F,) 2-19
See also refresh rate
VGA bit 2-25, 2-26
VGA pass-through mode 2-26, 2-33, 4-3, 4-25
VGA/mix enable bit (VGA) 2-26
video capture API
buffering 5-5to 5-7
data type 5-3
functions, listing 5-8
macros 5-2to 5-3
metric parameters 5-4
scaling resolutions supported 5-4
video capture condition 2-35, 2-40
video capture FIFO
description 2-35, 2-46
in video capture block diagram 2-36
resetting 2-37
video capture frame event 2-49
video capture hardware
block diagram 2-36
description 2-35
features 2-4
FIFO 2-35
registers, listing 2-37
video capture row event 2-49
video capture scaling example A-24 to A-29
video capture-process-display example A-2 to A-7
video controller (VC) 2-6
video digitizer 1-2, 2-39

Index

video display API
data types 4-4
functions, listing 4-10
macros 4-2to 4-3

video display hardware
block diagram 2-20
description 2-19
features 2-2
registers summary 2-21

video display modes, overlay (mixed) 2-29
video display test example A-30 to A-40

video interface palette (VIP) 1-3

video mode 4-3, 4-17, 4-25

video overlay 2-33to 2-34, 4-3, 4-8, 4-25, 4-27
video random-access memory. See VRAM
video.bat file A-7 to A-8

video.c file A-2toA-6

video.Ink file A-6

VRAM
and memory controller 2-46
and pixel resolution 2-31 to 2-33
features 2-4
in components diagram 1-3
in video display hardware 2-19 to 2-20

VSYNCO falling edge enable flag bit 2-41
VSYNCO falling edge interrupt flag bit 2-40
VSYNCO falling edge interrupt source bit 2-41
VSYNCL invert bit (IVS1) 2-29

window mode bit (WIN) 2-25

XLI bits
in CLFLAG1/RDFLAGLI register 2-56
in ENABLEZ2 register 2-53
in STFLAG1/CNFLAGLI register 2-57

XLl event 2-50
XPT bits 2-54

Index-13

Index-14

