
TMS320TCI6482
Digital Signal Processor
Silicon Revisions 3.1, 2.1, 2.0, 1.1

Silicon Errata

Literature Number: SPRZ235R

October 2005–Revised January 2012



2 SPRZ235R–October 2005–Revised January 2012
Submit Documentation Feedback

Copyright © 2005–2012, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRZ235R


Contents

1 Introduction ........................................................................................................................ 5
1.1 Device and Development-Support Tool Nomenclature ............................................................. 5

1.2 Package Symbolization and Revision Identification ................................................................ 6

2 Silicon Revision 3.1 Usage Notes and Known Design Exceptions to Functional
Specifications ..................................................................................................................... 8

2.1 Usage Notes for Silicon Revision 3.1 ................................................................................. 8
2.1.1 DDR2 Memory Controller: Chip Enable Pin Remains Low, Always Active .......................... 8
2.1.2 PLL: Hosts Should Not Access the DSP While PLL Registers are Being Configured ............. 8
2.1.3 EMIFA: Chip Enable Pin Must Be Used to Interface With Devices Connected to EMIFA ......... 8

2.1.4 EMIFA: EDMA FIFO Addressing Mode Should Not Be Used When Reading from EMIFA ....... 9
2.1.5 HPI: Certain HPIC Register Bits Will Reset to Default Value Only With Power-On Reset ....... 12
2.1.6 DDR2 Memory Controller and EMIFA: PRIO_RAISE Bits Should Be Changed From Default

Following Reset ............................................................................................ 12
2.1.7 Device: Heatsink/Airflow Recommended to Lower Case Temperature ............................. 12
2.1.8 McBSP: Receiver and/or Transmitter Must Out of Reset to Enable Frame-Sync Detection ..... 12
2.1.9 McBSP: Performance Degradation Can Be Seen When Using PCI, UTOPIA, or VLYNQ ....... 12
2.1.10 Boundary Scan: Warnings Relating to the RSV32 and RSV34 Pins May Be Observed When

Using Boundary Scan ..................................................................................... 13
2.1.11 PCI: DSP PCI Cannot Burst More Than 64 Bytes When Used in Master Mode .................. 13
2.1.12 DDR2 Memory Controller: Maximum Addressable Memory Increased to 512MB in 32-bit Mode

................................................................................................................ 13
2.1.13 EMAC: Gigabit Mode Cannot Be Used With CPU Running at Speeds Lower Than 750 MHz .. 13
2.1.14 DDR2 EMIF: Delay Before CKE Goes High With Different Combinations of REFRESH_RATE and

DDR Clock .................................................................................................. 14
2.1.15 Manual Cache Coherence Operation .................................................................... 14
2.1.16 AEA3 Must be Tied High with a 1-kΩ Resisitor if Power is Applied to the SRIO Supply Pins ... 15

2.2 Silicon Revision 3.1 Known Design Exceptions to Functional Specifications .................................. 16

3 Silicon Revision 2.1 Usage Notes and Known Design Exceptions to Functional
Specifications ................................................................................................................... 63

3.1 Usage Notes for Silicon Revision 2.1 ............................................................................... 63

3.2 Silicon Revision 2.1 Known Design Exceptions to Functional Specifications .................................. 64

4 Silicon Revision 2.0 Usage Notes and Known Design Exceptions to Functional
Specifications ................................................................................................................... 75

5 Silicon Revision 1.1 Usage Notes and Known Design Exceptions to Functional
Specifications ................................................................................................................... 76

5.1 Usage Notes for Silicon Revision 1.1 ............................................................................... 76
5.1.1 EMAC: RMII Reference Clock Will Be Changed to Input on Silicon Revision 2.0 and Later .... 76

5.2 Silicon Revision 1.1 Known Design Exceptions to Functional Specifications .................................. 77

Revision History ......................................................................................................................... 83

3SPRZ235R–October 2005–Revised January 2012 Table of Contents
Submit Documentation Feedback

Copyright © 2005–2012, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRZ235R


www.ti.com

List of Figures

1 Lot Trace Code Examples for TMS320TCI6482 (CTZ/GTZ/ZTZ Packages) ....................................... 6

2 Read and Write Synchronous FIFO Interface With Glue Block Diagram............................................ 9

3 Bad TCK Transition ....................................................................................................... 23

4 Good TCK Transition ..................................................................................................... 24

5 Internal Reset Asserted By Reset Controller .......................................................................... 29

6 Example With RESET and PRST Pins Tied High..................................................................... 30

7 Example With PRST and RESET Pins Tied Together ............................................................... 30

8 Example With Independent Power-On Reset, Warm Reset, and PCI Reset Sources ........................... 30

9 Daisy-Chain Example ..................................................................................................... 39

10 AECLKOUT at the DSP .................................................................................................. 43

11 66-MHz Buffer Slew and Timing Performance vs Specification Performance..................................... 48

12 L1D Cache Address Mapping............................................................................................ 56

13 Sequence of Events....................................................................................................... 57

14 ISR Workaround Flowchart .............................................................................................. 62

15 IDMA, SDMA, and MDMA Paths ........................................................................................ 66

16 QUETCMAP Register (02A0 0280h).................................................................................... 82

List of Tables

1 Lot Trace Codes ............................................................................................................ 6

2 Speed and Temperature Grade Symbolization ......................................................................... 6

3 Silicon Revision Variables ................................................................................................. 7

4 200-μs Delay Calculated Values ........................................................................................ 14

5 7.8125-μs Interval Calculated Values................................................................................... 14

6 Silicon Revision 3.1 Advisory List ....................................................................................... 16

7 Receive Internal Bus Utilization ......................................................................................... 34

8 1 Port 4x mode Using 4 LSUs, NWRITE packets, 3.125 Gbaud.................................................... 34

9 1 Port 1x mode Using 1 LSU, NWRITE packets, 3.125 Gbaud ..................................................... 35

10 PCI Slew Rate ............................................................................................................. 48

11 Valid Signal Delay ......................................................................................................... 48

12 66-MHz PCI System Timing ............................................................................................. 49

13 TCI6482 Default Master Priorities ....................................................................................... 50

14 Value of X for L1D Cache ................................................................................................ 56

15 Silicon Revision 2.1 Advisory List ....................................................................................... 64

16 Stall Conditions on Silicon Revisions ................................................................................... 72

17 Silicon Revision 1.1 Advisory List ....................................................................................... 77

18 TC Connection Matrix..................................................................................................... 81

19 QUETCMAP Register Field Descriptions............................................................................... 82

4 List of Figures SPRZ235R–October 2005–Revised January 2012
Submit Documentation Feedback

Copyright © 2005–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRZ235R


Silicon Errata
SPRZ235R–October 2005–Revised January 2012

TMS320TCI6482 Digital Signal Processor
Silicon Revisions 3.1, 2.1, 2.0, 1.1

1 Introduction

This document describes the known exceptions to the functional specifications for the TMS320TCI6482
digital signal processor; see the TMS320TCI6482 Communications Infrastructure Digital Signal Processor
data manual (literature number SPRS246).

The advisory numbers in the document are not sequential. Some advisory numbers have been moved to
the next revision. When items are moved, the remaining advisory numbers are not resequenced.

This document also contains "Usage Notes." Usage Notes highlight and describe particular situations
where the device's behavior may not match presumed or documented behavior. This may include
behaviors that affect device performance or functional correctness. These notes will be incorporated into
future documentation updates for the device (such as the device-specific data manual), and the behaviors
they describe will not be altered in future silicon revisions.

1.1 Device and Development-Support Tool Nomenclature

To designate the stages in the product development cycle, TI assigns prefixes to the part numbers of all
DSP devices and support tools. Each DSP commercial family member has one of three prefixes: TMX,
TMP, or TMS (e.g., TMS320TCI6482CTZ). Texas Instruments recommends two of three possible prefix
designators for its support tools: TMDX and TMDS. These prefixes represent evolutionary stages of
product development from engineering prototypes (TMX/TMDX) through fully qualified production
devices/tools (TMS/TMDS).

Device development evolutionary flow:
TMX Experimental device that is not necessarily representative of the final device's electrical

specifications
TMP Final silicon die that conforms to the device's electrical specifications but has not

completed quality and reliability verification
TMS Fully qualified production device
Support tool development evolutionary flow:
TMDX Development-support product that has not yet completed Texas Instruments internal

qualification testing
TMDS Fully qualified development-support product

TMX and TMP devices and TMDX development-support tools are shipped against the following
disclaimer:

"Developmental product is intended for internal evaluation purposes."

TMS devices and TMDS development-support tools have been characterized fully, and the quality and
reliability of the device have been demonstrated fully. TI's standard warranty applies.

Predictions show that prototype devices (TMX or TMP) have a greater failure rate than the standard
production devices. Texas Instruments recommends that these devices not be used in any production
system because their expected end-use failure rate still is undefined. Only qualified production devices are
to be used.

All trademarks are the property of their respective owners.

5SPRZ235R–October 2005–Revised January 2012 TMS320TCI6482 Digital Signal Processor— Silicon Revisions 3.1, 2.1, 2.0, 1.1
Submit Documentation Feedback

Copyright © 2005–2012, Texas Instruments Incorporated

http://www.ti.com/lit/pdf/SPRS246
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRZ235R


DSP

TMS320TCI6482CTZ

#xx−#######

Lot Trace Code

DSP

#xx−#######

Lot Trace Code

$ $

DSP

#xx−#######

Lot Trace Code

$

TMS320TCI6482GTZ TMS320TCI6482ZTZ

Introduction www.ti.com

1.2 Package Symbolization and Revision Identification

Figure 1 shows an example of TCI6482 package symbolization. The device revision can be determined by
the lot trace code marked on the top of the package. The location of the lot trace code for the CTZ, GTZ,
and ZTZ packages is shown in Figure 1.

A Qualified devices are marked with the letters "TMS" at the beginning of the device name, while nonqualified devices
are marked with the letters "TMX" or "TMP" at the beginning of the device name.

B "#" denotes an alphanumeric character. "x" denotes a numeric character only.

C "$" denotes the speed and temperature grade of the device. For more information, see Table 2. Note that this
symbol is included on all TMS devices. Some TMX devices may not have this symbolization.

Figure 1. Lot Trace Code Examples for TMS320TCI6482 (CTZ/GTZ/ZTZ Packages)

Silicon revision correlates to the lot trace code marked on the package. This code is of the format
#xx-#######. If xx is "11", then the silicon is revision 1.1; if xx is "20", then the silicon is revision 2.0, etc.
Table 1 lists the silicon revisions associated with each lot trace code for the TCI6482 devices. Each
package also contains symbolization at the top right corner that denotes the speed and temperature grade
of the device, see Figure 1 and Table 2. Note that this symbol is included on all TMS devices. Some
TMX devices may not have this symbolization.

Each silicon revision uses a specific revision of the CPU and the C64x+ Megamodule. The CPU revision
ID identifies the silicon revision of the CPU. Table 3 lists the CPU and C64x+ Megamodule revision
associated with each silicon revision. The CPU revision can be read from the REVISION_ID field of the
CPU Control Status Register (CSR). The C64x+ Megamodule revision can be read from the REVISION
field of the Megamodule Revision ID register (MM_REVID) located at address 0181 2000h.

The VARIANT field of the JTAG ID Register (located at 02A8 008h) changes between silicon revisions.
Table 2 lists the contents of the JTAG ID Register for each revision of the device. More details on the
JTAG ID Register can be found in the TMS320TCI6482 Communications Infrastructure Digital Signal
Processor data manual (literature number SPRS246).

Table 1. Lot Trace Codes

LOT TRACE CODE (xx) SILICON REVISION COMMENTS

31 3.1 Silicon revision 3.1

21 2.1 Silicon revision 2.1

20 2.0 Silicon revision 2.0

11 1.1 Initial silicon revision

Table 2. Speed and Temperature Grade Symbolization

SPEED/TEMPERATURE GRADE SYMBOLIZATION SPEED GRADE TEMPERATURE GRADE

1GHZ 1 GHz Commercial

A1GHZ 1 GHz Extended

<blank> 850 MHz Commercial

6 TMS320TCI6482 Digital Signal Processor— Silicon Revisions 3.1, 2.1, 2.0, 1.1 SPRZ235R–October 2005–Revised January 2012
Submit Documentation Feedback

Copyright © 2005–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/lit/pdf/SPRS246
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRZ235R


www.ti.com Introduction

Table 3. Silicon Revision Variables

SILICON REVISION CPU REVISION C64X+ MEGAMODULE REVISION JTAG ID REGISTER VALUE

3.1 1.0 Rev.1 0x4008 A02Fh
(REVISION_ID = 0h) (MM_REVID[REVISION] = 5h) (VARIANT = 0100)

2.1 1.0 Rev. 1 0x2008 A02Fh
(REVISION_ID = 0h) (MM_REVID[REVISION] = 1h) (VARIANT = 0010b)

2.0 1.0 Rev. 1 0x1008 A02Fh
(REVISION_ID = 0h) (MM_REVID[REVISION] = 1h) (VARIANT = 0001b)

1.1 1.0 Rev. 0 0x0008 A02Fh
(REVISION_ID = 0h) (MM_REVID[REVISION] = 0h) (VARIANT = 0000b)

7SPRZ235R–October 2005–Revised January 2012 TMS320TCI6482 Digital Signal Processor— Silicon Revisions 3.1, 2.1, 2.0, 1.1
Submit Documentation Feedback

Copyright © 2005–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRZ235R


Silicon Revision 3.1 Usage Notes and Known Design Exceptions to Functional Specifications www.ti.com

2 Silicon Revision 3.1 Usage Notes and Known Design Exceptions to Functional
Specifications

This section describes the usage notes and advisories that apply to revision 3.1 of the TCI6482 device.

2.1 Usage Notes for Silicon Revision 3.1

Usage Notes highlight and describe particular situations where the device's behavior may not match
presumed or documented behavior. This may include behaviors that affect device performance or
functional correctness. These notes will be incorporated into future documentation updates for the device
(such as the device-specific data manual), and the behaviors they describe will not be altered in future
silicon revisions.

2.1.1 DDR2 Memory Controller: Chip Enable Pin Remains Low, Always Active

The chip enable pin of the DDR2 memory controller, DCE0, is used to enable the DDR2 SDRAM memory
device during external memory accesses. Currently, TI documentation shows that the DCE0 pin is goes
low to enable the DDR2 SDRAM memory device during external memory accesses and then goes high at
the end of the access. However, on the TMS320TCI6482 device, the DCE0 pin stays low throughout the
operation of the DDR2 memory controller; it never goes high. Note that this behavior does not affect the
ability of the DDR2 memory controller to access DDR2 SDRAM memory devices.

2.1.2 PLL: Hosts Should Not Access the DSP While PLL Registers are Being Configured

The PLL1 controller and PLL2 controller registers can only be programmed through the CPU and the
emulator. To configure the PLL controllers, hosts like the HPI and PCI would have to load a small program
that does this. However, hosts should hold off accesses to the DSP while the PLL controllers are being
configured. Therefore, a mechanism must be in place such that the DSP can let the host know when the
PLL configuration has been completed.

2.1.3 EMIFA: Chip Enable Pin Must Be Used to Interface With Devices Connected to EMIFA

The state of the EMIFA control pins is not defined while the chip enable pins (CE[5:2]) are high.
Furthermore, some control pins may become active while the chip enable pins are driven high. To avoid
erroneously activating devices connected to EMIFA, the chip enable pins should be used to
select/deselect these devices. If a device being used does not have a chip enable input, then the control
pins going to that device should be qualified with a chip enable pin. An example of this is shown in
Figure 2.

8 TMS320TCI6482 Digital Signal Processor— Silicon Revisions 3.1, 2.1, 2.0, 1.1 SPRZ235R–October 2005–Revised January 2012
Submit Documentation Feedback

Copyright © 2005–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRZ235R


OE

RCLK
REN

WCLK
WEN

FIFO
Synchronous

Q[31:0]

FF
EF

HF
D[n:0](B)

EXT_INTy(A)
D[31:0]

WEN
WCLK

FIFO
Synchronous

Q[n:0](B)
HF
FF
EF

OE
REN
RCLK

ED[63:0]

EXT_INTx(A)

SWE
SOE

SADS/SRE
CEn

ECLKOUT

EMIF

n

www.ti.com Silicon Revision 3.1 Usage Notes and Known Design Exceptions to Functional Specifications

A GPIO pins on TCI648x devices may be configured as external interrupt sources to the CPU. For more details, see the
TMS320TCI648x DSP General-Purpose Input/Output (GPIO) User's Guide (literature number SPRU725).

Figure 2. Read and Write Synchronous FIFO Interface With Glue Block Diagram

2.1.4 EMIFA: EDMA FIFO Addressing Mode Should Not Be Used When Reading from EMIFA

As documented in the TMS320TCI648x DSP Enhanced DMA (EDMA3) Controller User's Guide (literature
number SPRU727), the EDMA includes two types of addressing modes: increment mode and FIFO mode
(constant addressing mode). One of these modes must be selected for the source address mode and the
destination address mode (SAM and DAM in the channel options parameter (OPT)).

Even though the EDMA supports FIFO mode configurations for SAM and DAM, the EMIFA does not fully
support constant addressing mode. Attempts to perform writes to the EMIFA with FIFO mode (constant
addressing mode) (DAM == FIFO) will result in the destination address incrementing within a
Modulo-64-byte address range; i.e., the data will be written to address <Dst> to <Dst>+63 bytes,
repeatedly, until the transfer count programmed for the EDMA transfer is exhausted. This behavior will not
be modified on future versions of the TCI6482 device.

Attempts to perform reads from the EMIFA with FIFO mode (SAM == FIFO) on TCI6482 revision 1.1 will
result in reading invalid data. An enhancement will be added to TCI6482 revision 2.0 such that reads from
the EMIFA in constant addressing mode (SAM == FIFO) will behave much like writes; i.e., reads will be
issued to address <SRC> to <SRC> + 63 bytes, repeatedly, until the transfer count programmed for the
EDMA transfer is exhausted.

In order to avoid the issues described above with reads/writes to EMIFA when EDMA is configured for
FIFO mode, irrespective of device revision, it is suggested that the EDMA always be programmed with
SAM and DAM in increment mode. The ACNT and BCNT values, along with proper indexing, can be used
to mimic FIFO addressing mode. This is addressed in the first and second recommendations/use cases
below. For legacy reasons, it may be necessary to use FIFO mode. This is addressed in the third
recommended use case below.

No special requirements exist for addresses accessed by the EDMA in increment mode or for single-word
accesses by the CPU or DMA.

9SPRZ235R–October 2005–Revised January 2012 TMS320TCI6482 Digital Signal Processor— Silicon Revisions 3.1, 2.1, 2.0, 1.1
Submit Documentation Feedback

Copyright © 2005–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/lit/pdf/SPRU725
http://www.ti.com/lit/pdf/SPRU727
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRZ235R


Silicon Revision 3.1 Usage Notes and Known Design Exceptions to Functional Specifications www.ti.com

2.1.4.1 Recommended Implementations for Read/Writes to FIFO Connected to EMIFA

NOTE: In the case of ACNT < 64 bytes even though FIFO mode (fixed-mode addressing) is
selected by EDMA configuration, the EMIFA will execute the transfer as if it were an
increment address transfer. Therefore, the recommended implementation for read/write to
FIFO should be increment mode instead of FIFO mode. The examples below provide
suggestions for read/writes to FIFO using increment mode.

The following scenarios highlight various options for interfacing with a FIFO connected to the EMIFA and
programming the EDMA to access the FIFO.

In general, the use cases are numbered in order of priority. The system designer should attempt to design
a system/board/ASIC memory map such that a relatively large memory range is devoted to a FIFO. In this
way, the EDMA can be programmed in increment mode for a given DMA transfer, and the transfer from
start to finish will reside in the memory range dedicated to a given FIFO.

Approach 1: Address space dedicated to the FIFO is greater than or equal to the largest expected EDMA
transfer. No performance hit since EDMA ACNT is not artificially constrained.

• FIFO should be aligned on a 64-byte boundary in EMIFA address space.

System memory map and glue logic should be implemented to use EMIFA MS-address bits to decode
FIFO address and select FIFO.

• EDMA transfer starting address should match the FIFO's base address.

• Use INCR transfer SRC/DST address mode with ACNT = transfer size.

• Use SBIDX or DBIDX of 0 such that the next EDMA transfer will also begin at the base address of the
FIFO (assuming BCNT and/or CCNT are greater than 1).

For example, if the largest possible DMA transfer to/from a FIFO interfaced to EMIFA is 1024 bytes, then
a memory range of at least 1024 bytes should be devoted to the FIFO in the EMIFA's memory map. The
system glue logic should use the chip enable signals and logical address bits 10 and above if multiple
FIFOs reside in the chip enable space. The EDMA transfer can be set with ACNT = 1024 bytes, BCNT =
X, CCNT = Y, and an EDMA synchronization type of A-synchronized, The index for the FIFO side of the
transfer (either SRC or DST) should be set to 0 such that the same address is used for the next DMA
trigger.

Approach 2: If the amount of space dedicated to the FIFO is less than the largest expected EDMA, then
ACNT and BCNT value with appropriate indexing can be used to control access to the FIFO. This will
result in a potential performance impact depending on the size of ACNT.

• FIFO should be aligned on 64-byte boundary in EMIFA address space.

System memory map and glue logic should be implemented to use EMIFA MS-address bits to decode
FIFO address and select FIFO.

• EDMA transfer starting address should match the FIFO's base address.

• The EDMA size must be broken into

– ACNT × BCNT = transfer size.

– ACNT must be less than or equal to the address space dedicated to the FIFO.

– If the EDMA transfer size is not a multiple of ACNT, then two EDMA channels must be used.
Completion of the first channel can chain to the second channel, where the second channel is used
to transfer the remaining data.

• Use SBIDX or DBIDX of 0 such that the next EDMA transfer will also begin at the base address of the
FIFO (assuming BCNT and/or CCNT are greater than 1).

For example, if the desired DMA transfer size to/from a FIFO interfaced to EMIFA is 1024 bytes, but the
memory range dedicated to the FIFO is only 64 bytes, then the EDMA transfer must be broken into a 2-D
transfer, with ACNT = 64 bytes, BCNT = 16, CCNT = X, and an EDMA synchronization type of
AB-synchronized. The index for the FIFO side of the transfer (either SRC or DST) should be set to 0 such
that the same address is used for the next DMA trigger.

With the same example, if the desired DMA transfer size is 1028-bytes, an additional channel with
ACNT = 4 bytes must be used. Completion of the first channel needs to chain trigger the second channel.

10 TMS320TCI6482 Digital Signal Processor— Silicon Revisions 3.1, 2.1, 2.0, 1.1 SPRZ235R–October 2005–Revised January 2012
Submit Documentation Feedback

Copyright © 2005–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRZ235R


www.ti.com Silicon Revision 3.1 Usage Notes and Known Design Exceptions to Functional Specifications

Approach 3: For legacy purposes, FIFO mode can be used with the restrictions below. This is a
compromise between Approach 1 and Approach 2. Approach 3 allows the programmer to use an
unrestricted ACNT value while the hardware forces the addresses accessed to reside within a 64-byte
boundary, whereas Approach 2 uses a software mechanism to restrict addresses to the desired address
ranges. If a FIFO requires an address range smaller than 64 bytes, then FIFO mode cannot be used;
Approach 2 must be used instead.

TCI6482 revision 1.1

Writes to EMIFA in FIFO mode are allowed but addresses will increment within a 64-byte boundary.

• FIFO should be aligned on 64-byte boundary in EMIFA address space.

System memory map and glue logic should be implemented to use EMIFA MS-address bits to decode
FIFO address and select FIFO.

• EDMA transfer starting address should match the FIFO's base address.

• Use FIFO transfer DST address mode with ACNT = transfer size.

• Use DBIDX of 0 such that the next EDMA transfer will also begin at the base address of the FIFO
(assuming BCNT and/or CCNT are greater than 1).

For example, if a transfer is greater than or equal to 64 bytes, then a memory range of at least 64 bytes
should be devoted to the FIFO in the EMIFA's memory map. The system glue logic should use the chip
enable signal and logical address bits 6 and above for address decoding if multiple FIFOs or other
memory types reside in the chip enable space. The EDMA transfer can be set with ACNT = X-bytes,
BCNT = Y, CCNT = Z, and an EDMA synchronization type of A-synchronized. The DBIDX should be set
to 0 such that the same address is used for the next DMA trigger.

If a transfer is X bytes, where X is less than 64 bytes, then a memory range of at least X bytes should be
devoted to the FIFO in the EMIFA's memory map. The system glue logic should use the chip enable
signal and the appropriate MS-bits of the address for address decoding if multiple FIFOs or other memory
types reside in the chip enable space. The EDMA transfer can be set with ACNT = X-bytes, BCNT = Y,
CCNT = Z, and an EDMA synchronization type of A-synchronized. The DBIDX should be set to 0 such
that the same address is used for the next DMA trigger.

Reads from EMIFA in FIFO mode will return invalid data and therefore must not be used. Use increment
mode for SAM instead of FIFO mode. See Approaches 1 and 2 above.

TCI6482 revision 2.0

Reads and writes from EMIFA in FIFO mode will both behave like writes in revision 1.1, as described
above (increment within 64-byte boundary).

• FIFO should be aligned on 64-byte boundary in EMIFA address space.

System memory map and glue logic should be implemented to use EMIFA MS-address bits to decode
FIFO address and select FIFO.

• EDMA transfer starting address should match the FIFO's base address.

• Use FIFO transfer address mode for the FIFO side of the transfer (either SRC or DST) with ACNT =
transfer size in bytes.

• Use SBIDX or DBIDX of 0 such that the next EDMA transfer will also begin at the base address of the
FIFO (assuming BCNT and/or CCNT are greater than 1).

For example, if a transfer is greater than or equal to 64 bytes, then a memory range of at least 64 bytes
should be devoted to the FIFO in the EMIFA's memory map. The system glue logic should use the chip
enable signal and logical address bits 6 and above for address decoding if multiple FIFOs or other
memory types reside in the chip enable space. The EDMA transfer can be set with ACNT = X-bytes,
BCNT = Y, CCNT = Z, and an EDMA synchronization type of A-synchronized. The SBIDX or DBIDX
should be set to 0 such that the same address is used for the next DMA trigger.

If a transfer is X bytes, where X is less than 64 bytes, then a memory range of at least X bytes should be
devoted to the FIFO in the EMIFA's memory map. The system glue logic should use the chip enable
signal and the appropriate MS-bits of the address for address decoding if multiple FIFOs or other memory
types reside in the chip enable space. The EDMA transfer can be set with ACNT = X-bytes, BCNT = Y,
CCNT = Z, and an EDMA synchronization type of A-synchronized. The SBIDX or DBIDX should be set to
0 such that the same address is used for the next DMA trigger.

11SPRZ235R–October 2005–Revised January 2012 TMS320TCI6482 Digital Signal Processor— Silicon Revisions 3.1, 2.1, 2.0, 1.1
Submit Documentation Feedback

Copyright © 2005–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRZ235R


Silicon Revision 3.1 Usage Notes and Known Design Exceptions to Functional Specifications www.ti.com

2.1.5 HPI: Certain HPIC Register Bits Will Reset to Default Value Only With Power-On Reset

The following bits of the Host Port Interface Control register (HPIC) will only reset to their default values
with a power-on reset (POR pin). Other resets, like warm reset (RESET pin) and emulation reset, will not
affect these bits.

• HWOB (bit 0)

• HRDY (bit 3)

• HWOBSTAT (bit 8)

• DUALHPIA (bit 9)

• HPIARWSEL (bit 11)

2.1.6 DDR2 Memory Controller and EMIFA: PRIO_RAISE Bits Should Be Changed From Default
Following Reset

The reordering and scheduling rules used by EMIFA and DDR2 Memory Controller may lead to command
starvation, which is the prevention of certain commands from being processed. Command starvation can
result when a continuous stream of high-priority read commands blocks a low-priority write command.

To avoid this condition, EMIFA and DDR2 Memory Controller momentarily raise the priority of the oldest
command in the command FIFO after a set number of transfers have been made. The PRIO_RAISE field
in the Burst Priority Register (BPRIO) sets the number of the transfers that must be made before the
priority of the oldest command is raised.

By default, this feature of EMIFA and DDR2 Memory Controller is disabled. This means commands can
stay in the command FIFO indefinitely. Therefore, to enable this feature with the highest level of allowable
memory transfers, the PRIO_RAISE bits should be set to FEh immediately following reset. These bits can
be left as FEh unless advanced bandwidth/prioritization control is required. It is suggested that
prioritization be set at the system level to avoid placing high-bandwidth masters on the highest priority
levels.

2.1.7 Device: Heatsink/Airflow Recommended to Lower Case Temperature

It is strongly recommended that users complete system-level thermal analysis to account for details of
heatsink requirements, airflow, and other factors in order to achieve the case temperature specification of
90°C. The latest power data for the TMS320TCI6482 device indicates that static power is a significant
contributor to overall power. Since static power varies with case temperature and voltage, a lower case
temperature can greatly impact the overall power consumption. Therefore, the use of a heatsink to lower
the case temperature is an effective way to lower power consumption. For further details on the power
consumption of the TMS320TCI6482 device, see the TMS320TCI6482 Power Consumption Summary
(literature number SPRAAF1) application report.

2.1.8 McBSP: Receiver and/or Transmitter Must Out of Reset to Enable Frame-Sync Detection

The McBSP transmitter and receiver on the TCI6482 device are capable of generating an interrupt upon
the detection of frame synchronization. The TMS320C6000 DSP Multichannel Buffered Serial Port
(McBSP) Reference Guide (literature number SPRU580) states that this feature will operate even while
the associated portion of the serial port is in reset. However, on the TCI6482 device, the receiver and/or
transmitter must be out of reset to enable this feature.

Note that frame synchronization can be detected while the receiver or transmitter are in reset by using the
GPIO mode of the frame-sync pin (FSR or FSX). In this configuration, the CPU can monitor the status of
the frame-sync pin and switch to the non-GPIO mode when a transition on the frame-sync pin is detected.
For more information on the GPIO mode and frame sync detection feature of the McBSP, see the
TMS320C6000 DSP Multichannel Buffered Serial Port (McBSP) Reference Guide (literature number
SPRU580).

2.1.9 McBSP: Performance Degradation Can Be Seen When Using PCI, UTOPIA, or VLYNQ

The McBSP Data Receive Register (DRR) and Data Transmit Register (DXR) can be accessed through
two separate busses: the configuration bus and the data bus. Both the CPU and the EDMA can access
these busses and, in most cases, the highest performance method is achieved by using the data bus.

12 TMS320TCI6482 Digital Signal Processor— Silicon Revisions 3.1, 2.1, 2.0, 1.1 SPRZ235R–October 2005–Revised January 2012
Submit Documentation Feedback

Copyright © 2005–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/lit/pdf/SPRAAF1
http://www.ti.com/lit/pdf/spru580
http://www.ti.com/lit/pdf/spru580
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRZ235R


www.ti.com Silicon Revision 3.1 Usage Notes and Known Design Exceptions to Functional Specifications

However, as shown in the device-specific data manual (see section 4, System Interconnect), the McBSP
data bus shares a bridge to the data switched central resource with the PCI, UTOPIA, and VLYNQ
peripherals. Performance degradations can be observed if any of these peripherals are used and the
McBSP DRR and DXR are accessed through the data bus.

Therefore, when the PCI, UTOPIA, and VLYNQ peripherals are used, it is recommended the configuration
bus is used to access the McBSP DRR and DXR.

Note that the PCI and VLYNQ peripherals consist of an independent master and slave. The above
performance degradation is only an issue when the peripheral is used to initiate transactions on the
external bus.

2.1.10 Boundary Scan: Warnings Relating to the RSV32 and RSV34 Pins May Be Observed When Using
Boundary Scan

Previously, the device-specific data manual required that the RSV32 and RSV34 be tied to VSS for proper
device operation. This is an incorrect configuration for these pins. This configuration may case
boundary-scan tools to generate warnings relating to these pins; these warnings are not critical and can
be ignored.

The current device-specific data manual has been corrected such that the requirement is now to tie the
RSV32 and RSV34 pins to the 1.8-V I/O supply (DVDD18) via a 1-kΩ resistor. This configuration will prevent
any boundary-scan warnings relating to these pins.

Existing TCI6482 designs need not be modified to meet the new requirement. The boundary-scan
warnings relating to these two pins are not critical and can be ignored. TCI6482 devices will not be
damaged by tying the RSV32 and RSV34 pins to VSS. New TCI6482 designs must tie the RSV32 and
RSV34 pins to the 1.8-V I/O supply via a pull-up resistor to avoid these boundary-scan warnings.

2.1.11 PCI: DSP PCI Cannot Burst More Than 64 Bytes When Used in Master Mode

The PCI on the TCI6482 can operate as a PCI master and slave. As a slave, the DSP PCI responds to
accesses initiated by an off-chip PCI master. As a master, the DSP PCI, itself, initiates transfers on the
PCI bus. Usually, for memory read and write transfers, another DSP master such as the EDMA is
configured to move data to/from the DSP PCI.

As a PCI master, the DSP PCI is only capable of bursting a maximum of up to 64 bytes. In other words,
for memory transfers larger than 64 bytes, the DSP PCI will initiate a transfer, transfer 64 bytes, stop the
transfer, and then repeat. As a PCI slave, external PCI masters can burst an infinite amount of data to the
DSP PCI. Note that the DSP PCI may insert wait states or generate a target retry if it cannot meet the
latency requirement set forth by the PCI system. For example, a PCI access to DSP DDR2 memory may
stall due to other master accesses or because of a scheduled DDR2 memory refresh. In this case the
DSP PCI will generate a target retry until the DDR2 memory controller is ready to service the PCI request.

Because of this limitation, the DSP PCI throughput will be lower in master mode than in slave mode. To
avoid low throughput performance, external PCI masters should be used to move data to/from the DSP
PCI whenever possible.

2.1.12 DDR2 Memory Controller: Maximum Addressable Memory Increased to 512MB in 32-bit Mode

The maximum addressable memory has been increased from 256MB to 512MB in 32-bit mode and from
128MB to 256MB in 16-bit mode. Revision G and later of the TMS320TCI6482 Communications
Infrastructure Digital Signal Processor data manual (literature number SPRS246) has been updated to
show this change. Revision B and late of the TMS320TCI648x DSP DDR2 Memory Controller User's
Guide (literature number SPRU894) has been updated to reflect this change.

2.1.13 EMAC: Gigabit Mode Cannot Be Used With CPU Running at Speeds Lower Than 750 MHz

The EMAC internal bus frequency must be greater than or equal to the I/O bus frequency. The EMAC
internal bus is clocked by SYSCLK3 of the PLL1 controller, which has a frequency equal to the CPU
frequency divided by 6. The I/O bus frequency of the EMAC is determined by the bit rate being used:
1.25 MHz for 10 Mbps, 12.5 MHz for 100 Mbps, and 125 MHz for 1000 Mbps. This restriction applies
whether RGMII or GMII mode is being used.

13SPRZ235R–October 2005–Revised January 2012 TMS320TCI6482 Digital Signal Processor— Silicon Revisions 3.1, 2.1, 2.0, 1.1
Submit Documentation Feedback

Copyright © 2005–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/lit/pdf/SPRS246
http://www.ti.com/lit/pdf/spru894
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRZ235R


Silicon Revision 3.1 Usage Notes and Known Design Exceptions to Functional Specifications www.ti.com

Note that if the CPU speed is less than 750 MHz, the gigabit mode of the EMAC (1000 Mbps) cannot be
used since the SYSCLK3 frequency will be less than 125 MHz.

2.1.14 DDR2 EMIF: Delay Before CKE Goes High With Different Combinations of REFRESH_RATE and
DDR Clock

The SDRAM refresh control register (SDRFC) contains a count value that is used for two purposes. At
power up, it is used to control the delay before CKE goes high. Later, it is used to control the time
between refreshes. The DDR2 JEDEC specification requires a 200 μs delay before CKE goes high during
initialization. The calculation of the delay before CKE goes high involves the following: The default value
for REFRESH_RATE is 0x1388 at POR.

If the DDR clock period is set at 3.75 ns, the delay would be 16 * (0x1388) / 266.666 = 300 μs. Users
have to make sure that any time when the DDR2 is enabled, the delay before CKE goes high with
different combinations of REFRESH_RATE and DDR clock is always longer than 200 μs. Table 4 lists a
few typical calculated values (200-μs delay).

Table 4. 200-μs Delay Calculated Values

CLOCK PERIOD REFRESH_RATE

3.75 ns 0xD04

5 ns 0x9C4

8 ns 0x61A

During normal operation, the DDR memories require a refresh cycle at an average interval of 7.8125 μs
(MAX). The calculation of RERESH_RATE involves the following:

REFRESH_RATE = DDR2CLKOUT frequency × memory refresh period

If the DDR clock period is set at 3.75 ns, the RERESH_RATE would be:

REFRESH_RATE = 266.666 MHz × 7.8125 μs = 2082 = 0x822.

Table 5 lists a few typical calculated values (an average interval of 7.8125 μs).

Table 5. 7.8125-μs Interval Calculated Values

CLOCK PERIOD REFRESH_RATE

3.75 ns 0x822

5 ns 0x61A

8 ns 0x3D0

If the DDR2 needs to be put into self-refresh mode or power-down mode, users need to write a new value
to the REFRESH_RATE field of the SDRFC register to guarantee the 200-μs delay of CKE during
power-up or self-refresh mode exit.

2.1.15 Manual Cache Coherence Operation

When an L1DWB, L1DWBINV, L2DWB, or L2DWBINV command is executed, and the writeback is
complete, the C64x+ Megamodule sends a single 128-bit message with the address of the last word for
that block operation. On the TCI6482 device, TI did not hook up this signal and, therefore, this looks like
any other write command.

Because CPU-to-CPU transfers are not allowed in the connectivity of the SCR, the address is treated as
an invalid address and the command is immediately terminated at the null-endpoint within the SCR and
goes nowhere. There should be no effect at all to the system by this behavior.

14 TMS320TCI6482 Digital Signal Processor— Silicon Revisions 3.1, 2.1, 2.0, 1.1 SPRZ235R–October 2005–Revised January 2012
Submit Documentation Feedback

Copyright © 2005–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRZ235R


www.ti.com Silicon Revision 3.1 Usage Notes and Known Design Exceptions to Functional Specifications

2.1.16 AEA3 Must be Tied High with a 1-kΩ Resisitor if Power is Applied to the SRIO Supply Pins

The AEA3 pin must be pulled up at device reset using a 1-kΩ resistor if power is applied to the SRIO
supply pins. Failure to do so may occur in L2 memory errors and Die-ID not being read correclty. If the
SRIO peripheral is not used and the SRIO supply pins are connected to VSS, the AEA3 pin must be
pulled down to VSS using a 1-kΩ resistor.

15SPRZ235R–October 2005–Revised January 2012 TMS320TCI6482 Digital Signal Processor— Silicon Revisions 3.1, 2.1, 2.0, 1.1
Submit Documentation Feedback

Copyright © 2005–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRZ235R


Silicon Revision 3.1 Usage Notes and Known Design Exceptions to Functional Specifications www.ti.com

2.2 Silicon Revision 3.1 Known Design Exceptions to Functional Specifications
Table 6. Silicon Revision 3.1 Advisory List

Title ...................................................................................................................................... Page

Advisory 3.1.1 —VCP2: Specific Parameter Combinations Generate Incorrect Results ..................................... 17

Advisory 3.1.2 —VCP2 and TCP2: Emulator Access to TCP2 and VCP2 Registers Through EDMA Bus Return
Incorrect Results .............................................................................................................. 18

Advisory 3.1.3 —EMAC: RMII Interface Cannot be Used in Half-Duplex Mode ............................................... 21

Advisory 3.1.4 —EMAC: RMCRSDV Signal is Asserted from the PHY Asynchronously and Can Cause Undefined
Behavior Internal to the RMII Module ...................................................................................... 21

Advisory 3.1.5 —EMAC: Signal Transitions on RMRXER are Ignored for Least Significant Di-Bit ......................... 22
Advisory 3.1.6 —EMAC: RMCRSDV Not Being Passed Asynchronously to the EMAC...................................... 22
Advisory 3.1.7 —EMU: Emulation Prone to Failure Under Certain Situations ................................................. 23
Advisory 3.1.8 —McBSP: Emulation Access to McBSP Registers May Cause Sample Loss ............................... 25

Advisory 3.1.9 —SRIO: Using NREAD to Read Invalid Memory Space Causes a Timeout and Halts the Port that
Processed the NREAD Request ............................................................................................ 26

Advisory 3.1.10 —L1D Cache: C64x+ L1D Cache May Lose Data or Hang DMA Operations Under Certain
Conditions ...................................................................................................................... 27

Advisory 3.1.11 —McBSP: Transfers Less than 32 Bits are Ignored in Some Cases When Device is Configured for
Big-Endian Mode .............................................................................................................. 28

Advisory 3.1.12 —PCI: PCI Reset and Chip Reset Must Always Be Asserted Together..................................... 29
Advisory 3.1.13 —PCI: SRIO Max Reset Should Not Be Used When PCI is Used ........................................... 32
Advisory 3.1.14 —PCI: Device State Control Registers Should Not Be Used to Disable the PCI Once it is Enabled.... 32

Advisory 3.1.15 —Chip: Writing to Certain Peripheral Memory-Mapped Registers Will Modify Value of PRI_ALLOC
Register......................................................................................................................... 33

Advisory 3.1.16 —SRIO: Performance Issues Identified Prohibiting Full Utilization of Pin Bandwidth ..................... 34
Advisory 3.1.17 —CPU: Back-to-Back SPLOOPs With Interrupts Can Cause Incorrect Operation on C64x+ CPU ..... 36
Advisory 3.1.18 —CPU: C64x+ CPU Incorrectly Generates False Exceptions for Multiple Writes.......................... 37

Advisory 3.1.19 —SRIO: Packet Forwarding Cannot Be Used With NREAD Response Packets Greater Than 16
Bytes ............................................................................................................................ 39

Advisory 3.1.20 —PLL Controller: GOSTAT Bit of PLL Controller Does Not Reflect GO Operation Status ............... 40
Advisory 3.1.21 —Potential SerDes Clocking Issue ............................................................................... 42

Advisory 3.1.22 —EMIFA: Occurrence of Read Data Corruption for Synchronous Interface Due to Impedance
Mismatch at AECLKOUT..................................................................................................... 43

Advisory 3.1.23 —DDR2 EMIF Buffers Not Totally Compensated by Default ................................................. 45
Advisory 3.1.24 —SRIO Port 0 Reset Affects Other Ports ....................................................................... 47
Advisory 3.1.25 —SRIO OUTBOUND_ACKID Field Not Read Correctly....................................................... 47
Advisory 3.1.26 —PCI AC Timings Differ From Specifications................................................................... 48
Advisory 3.1.27 —DMA Access to L2 SRAM May Stall When the DMA and the CPU Command Priority is Equal ...... 50

Advisory 3.1.29 —Potential McBSP Transmit Frame Corruption When XDATDLY = 0 and CLKX/FSX is Input Pin
Driven By External Clock..................................................................................................... 52

Advisory 3.1.31 —SPLOOP CPU Cross-Path Stall................................................................................ 53
Advisory 3.1.32 —DMA Corruption of L1D$ Allocation............................................................................ 55
Advisory 3.1.33 —Error Detection and Correction Incorrectly Reporting Error ................................................ 59
Advisory 3.1.34 —SRIO May Fail to Send Interrupt for Completed TX or RX Message ..................................... 61

16 TMS320TCI6482 Digital Signal Processor— Silicon Revisions 3.1, 2.1, 2.0, 1.1 SPRZ235R–October 2005–Revised January 2012
Submit Documentation Feedback

Copyright © 2005–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRZ235R


www.ti.com Silicon Revision 3.1 Usage Notes and Known Design Exceptions to Functional Specifications

Advisory 3.1.1 VCP2: Specific Parameter Combinations Generate Incorrect Results

Revision(s) Affected: 3.1 and earlier

Details: Using the following parameter combinations with VCP2 and a constraint length of K = 8
will generate incorrect results on the TCI6482 device.

TRACE-BACK MODE K C R F

Convergent 8 98 119 2557

Convergent 8 105 63 120

Note this advisory applies to convergent trace-back mode with K = 8 and these particular
combinations of R, C and F. These may be used in some VoIP, HD radio, and radio
network applications, but are not used in any 3-G wireless infrastructure standards.

Workaround(s): There is no workaround for this advisory.

17SPRZ235R–October 2005–Revised January 2012 TMS320TCI6482 Digital Signal Processor— Silicon Revisions 3.1, 2.1, 2.0, 1.1
Submit Documentation Feedback

Copyright © 2005–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRZ235R


Silicon Revision 3.1 Usage Notes and Known Design Exceptions to Functional Specifications www.ti.com

Advisory 3.1.2 VCP2 and TCP2: Emulator Access to TCP2 and VCP2 Registers Through EDMA
Bus Return Incorrect Results

Revision(s) Affected: 3.1 and earlier

Details: Some VCP2 and TCP2 registers are accessed either through the EDMA bus or through
the configuration bus. Register access through the EDMA bus is only supported for
64-bit accesses.

The emulation software (Code Composer Studio) accesses memory mapped registers
(MMRs) via 32-bit accesses. Therefore, reading VCP2 and TCP2 registers through the
EDMA bus results in the odd word accesses being returned as 0s.

Workaround(s): There is no hardware workaround. In order to view these registers for debug purposes, a
software workaround must be implemented.

One possible limited intrusive method would be to use an interrupt service routine (ISR)
to access the registers and store them in a global structure. The ISR would not be
executed during normal operations, but can be executed when desired through the use
of a GEL script. Debugging would proceed as normal, except when it is desired to view
the TCP2 and/or VCP2 registers.

A GEL script can be written to generate an interrupt and, hence, execute the ISR. A
breakpoint should be placed at the end of the ISR. After the ISR has completed
execution, the data can be viewed in the global structure.

The ISR needs to access the registers with 64-bit accesses. This can be achieved with
LDDWs to access two registers at a time or via DMA accesses. IDMA channel 0 is a
good option for this, as it is fast and easy to set up. The setup of the ISR and mapping of
interrupts is left up to the developer. The code segments shown in Example 1 through
Example 3 are provided as examples to show how this workaround can be implemented.

Example 1. Interrupt Service Routine Setup

interrupt TCP2_regDump_ISR(){
/* Code to copy DMA Based MMRs to Global Struct */

}

18 TMS320TCI6482 Digital Signal Processor— Silicon Revisions 3.1, 2.1, 2.0, 1.1 SPRZ235R–October 2005–Revised January 2012
Submit Documentation Feedback

Copyright © 2005–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRZ235R


www.ti.com Silicon Revision 3.1 Usage Notes and Known Design Exceptions to Functional Specifications

Example 2. Interrupt Initialization

void DoInterruptsInitialization()
{

CSL_IntcParam vectId1;
CSL_IntcGlobalEnableState state;

/* Setup the global Interrupt */
context.numEvtEntries = 1;
context.eventhandlerRecord = Record;
CSL_intcInit(&context);
/* Enable NMIs */
CSL_intcGlobalNmiEnable();
/* Enable Global Interrupts */
CSL_intcGlobalEnable(&state);

/* VectorID for the TCP2 Register Dump Event */
vectId1 = CSL_INTC_VECTID_4;

/* Opening a handle for the Global EDMA Event */
hIntcTcp2 = CSL_intcOpen( &intcTcp2,

CSL_INTC_EVENTID_##, // Event Driven By GEL
&vectId1,

NULL);
//Hook the ISRs

CSL_intcHookIsr(vectId1,& TCP2_regDump_ISR);
// Clear the Interrupt
CSL_intcHwControl(hIntcTcp2, CSL_INTC_CMD_EVTCLEAR, NULL);

//Enable the Event & the interrupt
CSL_intcHwControl(hIntcTcp2, CSL_INTC_CMD_EVTENABLE, NULL);
ipr[0] = 0xFFFFFFFF;
ipr[1] = 0xFFFFFFFF;

}

19SPRZ235R–October 2005–Revised January 2012 TMS320TCI6482 Digital Signal Processor— Silicon Revisions 3.1, 2.1, 2.0, 1.1
Submit Documentation Feedback

Copyright © 2005–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRZ235R


Silicon Revision 3.1 Usage Notes and Known Design Exceptions to Functional Specifications www.ti.com

Example 3. GEL Script

/************************************************/
/* GEL FILE */
/************************************************/
#define EVENTSET0 0x01800020 // Event Set Register 0
#define EVENTSET1 0x01800024 // Event Set Register 1
#define EVENTSET2 0x01800028 // Event Set Register 2
#define EVENTSET3 0x0180002C // Event Set Register 3
StartUp()
{

/* Initialization portion of GEL File */
}
/*--------------------------------------------------------------*/
/* TCP2 VCP2 Register Access */
/*--------------------------------------------------------------*/
menuitem "TCP2VCP2RegAccess";
hotmenu TCP2RegAccess()
{
*(int *)EVENTSET0 = 0xXXXXXXXX; // Only need to set one of these
*(int *)EVENTSET1 = 0xXXXXXXXX; // corresponding to the event
*(int *)EVENTSET2 = 0xXXXXXXXX; // used to trigger the ISR
*(int *)EVENTSET3 = 0xXXXXXXXX;

GEL_Go(TCP2_regDump_ISR); /* Runs until TCP2_regDump_ISR function is called */
}
hotmenu VCP2RegAccess()
{
*(int *)EVENTSET0 = 0xXXXXXXXX; // Only need to set one of these
*(int *)EVENTSET1 = 0xXXXXXXXX; // corresponding to the event
*(int *)EVENTSET2 = 0xXXXXXXXX; // used to trigger the ISR
*(int *)EVENTSET3 = 0xXXXXXXXX;

GEL_Go(VCP2_regDump_ISR); /* Runs until VCP2_regDump_ISR function is called */
}

20 TMS320TCI6482 Digital Signal Processor— Silicon Revisions 3.1, 2.1, 2.0, 1.1 SPRZ235R–October 2005–Revised January 2012
Submit Documentation Feedback

Copyright © 2005–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRZ235R


www.ti.com Silicon Revision 3.1 Usage Notes and Known Design Exceptions to Functional Specifications

Advisory 3.1.3 EMAC: RMII Interface Cannot be Used in Half-Duplex Mode

Revision(s) Affected: 3.1 and earlier

Details: The RMII Ethernet MAC interface on TCI6482 cannot be used during normal operation in
half-duplex mode. Only full-duplex mode is supported.

It is anticipated that some RMII devices connecting to this device will initialize by default
to half-duplex mode. This will still be allowed on TCI6482 given that the system
negotiates to full-duplex mode immediately and a reset to the TCI6482 RMII is issued via
the EMAC configuration register (EMACCFG). Note that this register and the ability to
reset the RMII individually does not exist in silicon revision 1.1.

Workaround(s): No workaround exists for support of RMII in half-duplex mode.

If half-duplex mode must be used, MII should be considered for connection to 10/100
Mbps devices and RGMII should be considered for 1 Gbps devices.

Advisory 3.1.4 EMAC: RMCRSDV Signal is Asserted from the PHY Asynchronously and Can
Cause Undefined Behavior Internal to the RMII Module

Revision(s) Affected: 3.1 and earlier

Details: The RMCRSDV input pin, used in the Ethernet MAC RMII interface, is susceptible to
metastability due to the fact that it is not properly synchronized inside the device. Any
activating transition on the RMCRSDV input may cause undefined behavior during
EMAC RMII reception operation. This failure can result in lost frames.

Workaround(s): The best way to eliminate the issue is to create a synchronized gating signal externally
(based on the RMII reference clock) then AND that signal with the RMCRSDV input.
Care must be taken as RMCRSDV also toggles at the end of frames.

21SPRZ235R–October 2005–Revised January 2012 TMS320TCI6482 Digital Signal Processor— Silicon Revisions 3.1, 2.1, 2.0, 1.1
Submit Documentation Feedback

Copyright © 2005–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRZ235R


Silicon Revision 3.1 Usage Notes and Known Design Exceptions to Functional Specifications www.ti.com

Advisory 3.1.5 EMAC: Signal Transitions on RMRXER are Ignored for Least Significant Di-Bit

Revision(s) Affected: 3.1 and earlier

Details: For RMII operation, if a pulse on RMRXER is driven during the least significant di-bit
time, the pulse is ignored. This can result in corrupt receive frames that are not seen as
erroneous data. This can cause errant frames to be seen as normal frames with corrupt
data.

Workaround(s): This issue can be resolved in hardware by ORing a delayed version of RMRXER
(previous di-bit) with the current RMRXER. Note that AC timing must still be met.

Advisory 3.1.6 EMAC: RMCRSDV Not Being Passed Asynchronously to the EMAC

Revision(s) Affected: 3.1 and earlier

Details: During RMII operation, RMCRSDV should be received asynchronously to the
RMREFCLK and passed to the EMAC as CRS to minimize latency. However, this signal
is being clocked internally which can cause a slight performance impact.

Workaround(s): There is currently no workaround for this issue.

22 TMS320TCI6482 Digital Signal Processor— Silicon Revisions 3.1, 2.1, 2.0, 1.1 SPRZ235R–October 2005–Revised January 2012
Submit Documentation Feedback

Copyright © 2005–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRZ235R


4

3

2

1

0

-1
0 5 10 15 20

Nanoseconds (ns)

V
o

lt
s
 (

V
)

2.5 V

0.6 V

www.ti.com Silicon Revision 3.1 Usage Notes and Known Design Exceptions to Functional Specifications

Advisory 3.1.7 EMU: Emulation Prone to Failure Under Certain Situations

Revision(s) Affected: 3.1 and earlier

Details: Under certain conditions, the emulation hardware may corrupt the emulation control state
machine or may cause it to lose synchronization with the emulator software. When
emulation commands fail as a result of the problem, Code Composer Studio Integrated
Development Environment (IDE) may be unable to start or it may report errors when
interacting with the C64x+ DSP (for example, when halting the CPU, reaching a
breakpoint, etc.).

This phenomenon is observed when an erroneous clock edge is generated from the TCK
signal inside the C64x+ DSP. This can be caused by several factors, acting
independently or cumulatively:

• TCK transition times (as measured between 2.5 V and 0.6 V) in excess of 3 ns.

• Operating the C64x DSP in a socket, which can aggravate noise or glitches on the
TCK input.

• Simultaneous switching EMU pins during trace can affect the TCK signal.

• Poor signal integrity on the TCK line from reflections or other layout issues.

A TCK edge that can cause this problem might look similar to the one shown in
Figure 3. A TCK edge that does not cause the problem will look similar to the one
shown in Figure 4. The key difference between the two figures is that Figure 4 has a
clean and sharp transition whereas Figure 3 has a "knee" in the transition zone.
Problematic TCK signals may not have a knee that is as pronounced as the one in
Figure 3. Due to the TCK signal amplification inside the chip, any perturbation of the
signal can create erroneous clock edges.

As a result of the faster edge transition, there is increased ringing in Figure 4. As long
as the ringing does not cross logic input thresholds (0.6 V for falling edges, and 2.5 V
for rising edges), this ringing is acceptable.

When examining a TCK signal for this issue, either in board simulation or on an
actual board, it is very important to probe the TCK line as close to the DSP input pin
as possible. In simulation, it should not be difficult to probe right at the DSP input. For
most physical boards, this means using the via for the TCK pad on the back side of
the board. Similarly, ground for the probe should come from one of the nearby
ground pad vias to minimize EMI noise picked up by the probe.

Figure 3. Bad TCK Transition

23SPRZ235R–October 2005–Revised January 2012 TMS320TCI6482 Digital Signal Processor— Silicon Revisions 3.1, 2.1, 2.0, 1.1
Submit Documentation Feedback

Copyright © 2005–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRZ235R


4

2.5 V

2

1

0

-1
0 5 10 15 20

Nanoseconds (ns)

V
o

lt
s
 (

V
)

0.6 V

3

Silicon Revision 3.1 Usage Notes and Known Design Exceptions to Functional Specifications www.ti.com

Figure 4. Good TCK Transition

Workaround(s): As the problem may be caused by one or more of the above factors, one or more of the
steps outlined below may be necessary to fix it:

• Avoid using a socket.

• Ensure that the board design achieves rise times and fall times of less than 3 ns with
clean, monotonic edges for the TCK signal.

• For designs where TCK is supplied by the emulation pod, use an external buffer
equal, or similar to, TI's CDCV304 on the TCK signal.

24 TMS320TCI6482 Digital Signal Processor— Silicon Revisions 3.1, 2.1, 2.0, 1.1 SPRZ235R–October 2005–Revised January 2012
Submit Documentation Feedback

Copyright © 2005–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRZ235R


www.ti.com Silicon Revision 3.1 Usage Notes and Known Design Exceptions to Functional Specifications

Advisory 3.1.8 McBSP: Emulation Access to McBSP Registers May Cause Sample Loss

Revision(s) Affected: 3.1 and earlier

Details: The McBSP registers on the TCI6482 DSP can be accessed through two separate
busses: a configuration bus and a data bus. McBSP registers are accessed through the
data bus at byte address 0x3000 0000 and through the configuration bus at byte
address 0x02A0 0000.

The McBSP allows emulation access only through the configuration bus since this does
not affect the values of the RRDY and XRDY bits in the serial port control register
(SPCR). The data bus is intended for functional accesses using the EDMA engine and
not for emulation accesses. Furthermore, competing accesses through the configuration
and data bus may affect the operation of the McBSP.

Two potential issues could be encountered while debugging an application that uses the
EDMA to service the McBSP:

• An emulation access to the data receive register (DDR) through data bus may clear
the RRDY bit.

• An EDMA access to the DRR or the data transmit register (DXR) through the data
bus may be lost if an emulation access is pending through the configuration bus to
those same registers.

The likelihood of encountering these issues is very low; however, they should be noted
when debugging applications which use the EDMA to service the McBSP.

Workaround(s): To avoid these issues, do one of the following:

1. In Code Composer Studio, do not open any memory, watch, or register windows on
the McBSP registers using the configuration bus address at 0x02A0 0000 while the
EDMA is running.

2. Use the data bus address at offset 0x3000 0000 to read the McBSP registers, except
for the data receive register (DDR), through Code Composer Studio.

3. Clear the FREE bit in the serial port control register (SPCR).

25SPRZ235R–October 2005–Revised January 2012 TMS320TCI6482 Digital Signal Processor— Silicon Revisions 3.1, 2.1, 2.0, 1.1
Submit Documentation Feedback

Copyright © 2005–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRZ235R


Silicon Revision 3.1 Usage Notes and Known Design Exceptions to Functional Specifications www.ti.com

Advisory 3.1.9 SRIO: Using NREAD to Read Invalid Memory Space Causes a Timeout and Halts
the Port that Processed the NREAD Request

Revision(s) Affected: 3.1 and earlier

Details: On TCI6482 devices, reading an invalid or reserved memory space generates a bus
error message from the DMA bus.

On silicon revision 1.1, when a master node uses the NREAD command to access an
invalid or reserved memory space on the DSP, the SRIO port will send a corrupted
response packet instead of an error response. The outbound portion of the SRIO port
will also be halted. If the master node is another DSP, the completion code of the LSUn
Control Regiser 6 (LSUn_REG6) will be set to 001b (transaction timeout occurred on
non-posted transaction).

On silicon revisions 2.0, 2.1, and 3.1, the behavior of the device has been changed such
that the SRIO module ignores the DMA bus error message and sends a valid response
packet with a payload of garbage data. The outbound portion of the SRIO port also is not
halted. Therefore, if a master node uses NREAD to access invalid or reserved memory
space, the master node receives a packet with a garbage payload. If the master node is
another DSP, the DSP receives the packet and stores it into receive memory; the
completion code of LSUn_REG6 is set to 000b (transaction complete, no errors).

Workaround(s): Always make sure to use NREAD requests to access valid memory space.

26 TMS320TCI6482 Digital Signal Processor— Silicon Revisions 3.1, 2.1, 2.0, 1.1 SPRZ235R–October 2005–Revised January 2012
Submit Documentation Feedback

Copyright © 2005–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRZ235R


www.ti.com Silicon Revision 3.1 Usage Notes and Known Design Exceptions to Functional Specifications

Advisory 3.1.10 L1D Cache: C64x+ L1D Cache May Lose Data or Hang DMA Operations Under
Certain Conditions

Revision(s) Affected: 3.1 and earlier

Details: Under certain conditions, parallel loads with predication to the same cache line may
cause victims to be dropped and/or the DMA to hang.

All of the following conditions must be true in order for this problem to occur:

1. Two LD instructions in parallel.

2. Both are LDs to the same cache line (upper 26 address bits are the same).

3. The LD using T1 is predicated and the predicate is false.

4. The LD using T2 is either not predicated, or is predicated and the predicate is true.

5. The cache line is absent from the cache.

6. The two other lines in the same L1D set are valid.

7. The LRU cache line in the set is dirty.

Results:

• L1D informs L2 to expect a victim for the affected set.

• L2 stalls DMAs with addresses that correspond to that set.

NOTE: DMA includes accesses from IDMA, EDMA, and any external masters,
such as PCI or other CPUs.

• L1D processes the true-predicated request correctly.

• L1D does not send the indicated victim.

Impact: If the load instruction reads a cacheable location:

• The updated data in the LRU line gets dropped.

• DMA accesses whose addresses match the affected set hang.

If the load instruction reads a non-cacheable location:

• L1D retains the updated data from the LRU line.

• DMA reads may see stale data if the LRU line's address is in L2 memory.

Workaround(s): Use Code Gen patch 6.0.3 (available on update advisor) to recompile your source code
and avoid this issue. Libraries supplied by TI will be re-released using the 6.0.3 compiler
patch. Customer-generated libraries from TI's third-party supplier may also need to be
recompiled.

For existing object code and libraries, an available Perl script can determine locations of
parallel predicated loads that may fail. The script is available at the same update advisor
location as the Code Gen patch.

27SPRZ235R–October 2005–Revised January 2012 TMS320TCI6482 Digital Signal Processor— Silicon Revisions 3.1, 2.1, 2.0, 1.1
Submit Documentation Feedback

Copyright © 2005–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRZ235R


Silicon Revision 3.1 Usage Notes and Known Design Exceptions to Functional Specifications www.ti.com

Advisory 3.1.11 McBSP: Transfers Less than 32 Bits are Ignored in Some Cases When Device is
Configured for Big-Endian Mode

Revision(s) Affected: 3.1 and earlier

Details: The McBSP is capable of transmitting and receiving various word lengths; e.g., 32, 24,
16, and 8 bits. Usually, the EDMA is used to service the McBSP with the necessary
number of bytes on each transmit and/or receive event, but the CPU can alos be used.
Furthermore, the CPU and EDMA can read/write data to the McBSP's Data Transmit
Register (DXR) and Data Receive Register (DRR) through two separate buses: a
configuration bus and an EDMA bus.

On the TCI6482 device, when the device is configured in big-endian mode, the McBSP
will ignore any transfer that is less than 32 bits, irrespective of the bus being used.
Therefore, the EDMA and CPU must be configured to always transfer 32 bits when
accessing the McBSP registers.

Note that none of these issues apply when the device is configured in little-endian mode.

Workaround(s): If the device is being used in big-endian mode, program the EDMA and CPU to use
32-bit transfers.

Note that, regardless of the number of bytes written or read by the CPU and EDMA, the
McBSP word length can be programmed to be smaller than 32 bits. Extra bits written to
the McBSP DXR and DRR are ignored.

28 TMS320TCI6482 Digital Signal Processor— Silicon Revisions 3.1, 2.1, 2.0, 1.1 SPRZ235R–October 2005–Revised January 2012
Submit Documentation Feedback

Copyright © 2005–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRZ235R


External

reset

Internal

reset

PCI

Reset

controller

Max reset

DSP

POR

RESET AND
PRST

www.ti.com Silicon Revision 3.1 Usage Notes and Known Design Exceptions to Functional Specifications

Advisory 3.1.12 PCI: PCI Reset and Chip Reset Must Always Be Asserted Together

Revision(s) Affected: 3.1 and earlier

Details: The PCI module in the TCI6482 device has an internal and an external reset source.
The internal reset is asserted by the reset controller during power-on, warm, and max
reset, see Figure 5. The internal reset is also asserted when the device state control
registers are used to disable the PCI module. The external reset is asserted through the
PCI reset pin, PRST.

Figure 5. Internal Reset Asserted By Reset Controller

The PCI module can lock up or go into a bad state if its internal and external resets are
asserted independently, meaning one is asserted and the other is not. Power-on and
warm reset are controlled differently from system to system and, therefore, the effect of
this issue is system specific.

Systems that assert the warm reset pin (RESET) or the power-on reset pin (POR) and
the PCI reset from the same source and at the same time are not affected by this issue.
Generating these resets from the same source at the same time ensures that both the
internal and external resets of the PCI module are asserted together.

Systems that assert the chip warm reset pin (RESET) or the power-on reset pin (POR)
and the PCI reset pin (PRST) from independent sources at different times will be
affected by this issue.

See Advisory 3.1.13 for issues relating to max reset. Also, see Advisory 3.1.14 for issues
relating to the device state control registers.

Workaround(s): Systems should be designed such that a power-on or warm reset always generates the
PCI reset and vice versa. Example circuits that ensure both the chip resets and the PCI
reset are asserted together are shown in Figure 6, Figure 7, and Figure 8. Note that
asserting power-on reset also asserts PCI reset internally. Also, since a PCI reset will
cause a chip reset, the configuration pins of the device will also be latched on a PCI
reset. Therefore, these pins must be at valid levels to ensure the device is taken out of
reset in the desired mode.

29SPRZ235R–October 2005–Revised January 2012 TMS320TCI6482 Digital Signal Processor— Silicon Revisions 3.1, 2.1, 2.0, 1.1
Submit Documentation Feedback

Copyright © 2005–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRZ235R


PCI

DSP

PRST
Tie high

POR

AND

PCI reset
source

RESET
Tie high

Power-on
reset

source

PCI

DSP

PRST
POR

PCI reset

source

RESET

Power-on

reset

source

PCI

DSP

PRST
POR

AND

PCI reset

source

RESET

Power-on

reset

source

Warm

reset

source

Silicon Revision 3.1 Usage Notes and Known Design Exceptions to Functional Specifications www.ti.com

Figure 6. Example With RESET and PRST Pins Tied High

Figure 7. Example With PRST and RESET Pins Tied Together

Figure 8. Example With Independent Power-On Reset, Warm Reset, and PCI Reset Sources

Note that in the above circuits a power-on or warm reset will reset the DSP and its PCI
only; other devices on the PCI bus will not be reset. To avoid interrupting an ongoing
PCI transaction to/from the DSP, the DSP PCI should be disconnected from the PCI
system. The sequence below ensures that the DSP PCI is disconnected from the PCI
system. This sequence can be executed by the DSP itself or by an external host. Note
that resetting the DSP PCI in the middle of a master or slave transaction can cause a
PCI bus fault at the system level.

1. Ensure that the PCI bus is not parked on the DSP PCI pins since the DSP will place
its PCI output pins in a high-impedance state whenever it is reset.

2. Stop all PCI transactions started within the DSP. This includes any ongoing EDMA
transactions to/from PCI memory space.

3. Disable the PCI slave and master. DSP code can do this through the back-end
registers of the PCI or an external host can do this through configuration/memory

30 TMS320TCI6482 Digital Signal Processor— Silicon Revisions 3.1, 2.1, 2.0, 1.1 SPRZ235R–October 2005–Revised January 2012
Submit Documentation Feedback

Copyright © 2005–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRZ235R


www.ti.com Silicon Revision 3.1 Usage Notes and Known Design Exceptions to Functional Specifications

accesses to the PCI registers.

(a) Clear the base enable bits (BASE_EN) of the Slave Control Register
(PCISLVCNTL).

(b) Clear the bus master bit (BUS_MS) and memory access bit (MEM_SP) of the
Command/Status Register (PCICSR).

4. Assert the DSP and PCI reset.

5. Once DSP comes out of reset, re-configure the PCI (DSP code or an external host
can do this).

6. Restart PCI transactions to/from the DSP.

Also, once the sequence above has been executed, the DSP will not acknowledge
accesses from external devices until the PCI has been reconfigured (either via DSP
software or an external host). Devices trying to access the DSP before the PCI is
reconfigured will likely generate a master abort condition; this must be comprehended by
the PCI system.

31SPRZ235R–October 2005–Revised January 2012 TMS320TCI6482 Digital Signal Processor— Silicon Revisions 3.1, 2.1, 2.0, 1.1
Submit Documentation Feedback

Copyright © 2005–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRZ235R


Silicon Revision 3.1 Usage Notes and Known Design Exceptions to Functional Specifications www.ti.com

Advisory 3.1.13 PCI: SRIO Max Reset Should Not Be Used When PCI is Used

Revision(s) Affected: 3.1 and earlier

Details: As described in Advisory 3.1.12, the PCI module can lock up or go into a bad state if its
internal and external resets are asserted independently, meaning one is asserted and
the other is not. Systems that use SRIO to generate a max reset to the DSP and also
use PCI are affected by this issue. This is because a max reset will assert the internal
reset of the PCI, but it will not affect its external reset. Therefore, the max reset should
not be used when the PCI is used.

Workaround(s): There is no workaround for this issue.

Advisory 3.1.14 PCI: Device State Control Registers Should Not Be Used to Disable the PCI Once it
is Enabled

Revision(s) Affected: 3.1 and earlier

Details: As described in Advisory 3.1.12, the PCI module can lock up or go into a bad state if its
internal and external resets are asserted independently, meaning one is asserted and
the other is not. The device state control registers should not be used to disable the PCI
module once it has been enabled. Doing so will assert the internal reset of the PCI
without affecting its external reset. To disable the PCI, reset the entire device, as well as
the PCI, through its external reset pin.

Workaround(s): There is no workaround for this issue.

32 TMS320TCI6482 Digital Signal Processor— Silicon Revisions 3.1, 2.1, 2.0, 1.1 SPRZ235R–October 2005–Revised January 2012
Submit Documentation Feedback

Copyright © 2005–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRZ235R


www.ti.com Silicon Revision 3.1 Usage Notes and Known Design Exceptions to Functional Specifications

Advisory 3.1.15 Chip: Writing to Certain Peripheral Memory-Mapped Registers Will Modify Value of
PRI_ALLOC Register

Revision(s) Affected: 3.1 and earlier

Details: As described in the device-specific data manual, the PRI_ALLOC register controls the
system priority of peripherals like the HPI and PCI. This register is normally configured
once during device initialization by DSP software.

Writing to some peripheral memory-mapped registers (MMRs) affects the value of the
PRI_ALLOC register, essentially clearing out the previously programmed value.

Writes to the PRI_ALLOC register do not affect any of these peripheral MMRs and also
reads from these MMRs do not return the value of the PRI_ALLOC register.

Writing to the registers below will affect the value of the PRI_ALLOC register:

• PCI Command/Status Register (PCICSR), address 02C0 0004h, read/write register.

• MCBSP1 Data Transmit Register (DXR), address 0290 0004h, read/write register.

• HPI Power and Emulation Management Register (PWREMU_MGMT), address 0288
0004h, read/write register.

• EMAC Transmit Control Register (TXCONTROL), address 02C8 0004h, read/write
register.

Workaround(s): The PRI_ALLOC register needs to be updated whenever these registers are modified.
There are several ways to do this depending on which peripheral MMR is being used.

PCI Command/Status Register and EMAC Transmit Control Register
(TXCONTROL)

Configure PCI and EMAC registers prior to PRI_ALLOC writes.

MCBSP1 Data Transmit Register (DXR)

The Data Transmit Register (DXR) can be accessed through two separate buses: a
configuration bus and a data bus. Both paths can be used by the CPU and the EDMA.
The impact of this issue depends on the use of the PCI and McBSP peripherals.

• System not using PCI:

Use the EDMA path to update the Data Transmit register to work around this issue.

• System using PCI:

If the CPU or EMDA accesses the DXR through the DMA bus the there are no
issues.

If the EDMA accesses the DXR through the configuration bus then the EDMA
channel servicing the McBSP must trigger a second channel after writing to the
McBSP DXR. The second channel must be set up to update the PRI_ALLOC
register. Chaining with intermediate transfer completion can be used to implement
this workaround.

If the CPU accesses the DXR through the configuration bus the value of the
PRI_ALLOC register must be saved prior to the CPU write. This value must be
restored after the CPU write.

HPI Power and Emulation Management Register (PWREMU_MGMT)

The PRI_ALLOC register need to be updated whenever these registers are modified.

33SPRZ235R–October 2005–Revised January 2012 TMS320TCI6482 Digital Signal Processor— Silicon Revisions 3.1, 2.1, 2.0, 1.1
Submit Documentation Feedback

Copyright © 2005–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRZ235R


Silicon Revision 3.1 Usage Notes and Known Design Exceptions to Functional Specifications www.ti.com

Advisory 3.1.16 SRIO: Performance Issues Identified Prohibiting Full Utilization of Pin Bandwidth

Revision(s) Affected: 3.1 and earlier

Details: On the TCI6482 devices, there may be performance degradation depending on mode of
operation and packet size used.

During 4x operation at 3.125 and 2.5 Gbaud, there are issues that limit the transmit
performance by 25%, or higher, depending on packet size. This is caused by two issues
within the physical layer of the Serial RapidIO peripheral. The first issue is due to a
stuttering buffer used for crossing a clock boundary. This causes extra clock cycles
between packets when moving data within the peripheral. The second issue is that an
EOP control symbol and 3 idle sequences are sent after every transmitted packet,
creating an interpacket gap on the link itself. Both issues impact overhead for sending a
packet and have a larger impact on smaller packet traffic. For 4x operation at 1.25
Gbaud and 1x operation at any rate, these issues do not present themselves.

There is also a receive physical layer performance issue that affects both 4x and 1x
operation. This is an issue where clock cycles are inserted between packets being
moved within the peripheral. The degree of impact on the receive throughput depends
on data rate, number of ports, and packet size. Receive physical layer RETRYs are
issued if the buffering is depleted. Hardware at the transmitter is responsible for
resending packets.

Table 7 illustrates the approximate internal utilization that can be achieved based on a
10-Gbps bus.

Table 7. Receive Internal Bus Utilization

PAYLOAD BYTES APPROXIMATE BUS UTILIZATION

8 45%

16 45%

32 50%

64 63%

128 75%

256 85%

For example, if the peripheral is set up in 4x mode running at 3.125 Gbaud, then the
performance will be degraded to approximately these levels. If the peripheral is setup in
1x mode, using 2 ports at 3.125 Gbaud (providing a theoretical maximum data rate of 5
Gbps), the performance degradation is negligible and only seen at the very small packet
sizes.

Table 8 and Table 9 represent simulation data incorporating both the receive and
transmit performance issues. The same performance levels were observed when
measuring actual silicon.

Table 8. 1 Port 4x mode Using 4 LSUs, NWRITE packets, 3.125 Gbaud

EXPECTED RESULTS WITHOUTPAYLOAD BYTES MEASURED RESULTS WITH ISSUE ISSUE

8 2.9 Gbps 3.5 Gbps

16 3.2 Gbps 4.5 Gbps

32 4.1 Gbps 6.3 Gbps

64 5.2 Gbps 10 Gbps

128 6.3 Gbps 10 Gbps

256 7.2 Gbps 10 Gbps

34 TMS320TCI6482 Digital Signal Processor— Silicon Revisions 3.1, 2.1, 2.0, 1.1SPRZ235R–October 2005–Revised January 2012
Submit Documentation Feedback

Copyright © 2005–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRZ235R


www.ti.com Silicon Revision 3.1 Usage Notes and Known Design Exceptions to Functional Specifications

Table 9. 1 Port 1x mode Using 1 LSU, NWRITE packets, 3.125 Gbaud

EXPECTED RESULTS WITHOUTPAYLOAD BYTES MEASURED RESULTS WITH ISSUE ISSUE

8 1.7 Gbps 1.7 Gbps

16 2.2 Gbps 2.2 Gbps

32 2.31 Gbps 2.5 Gbps

64 2.38 Gbps 2.5 Gbps

128 2.43 Gbps 2.5 Gbps

256 2.46 Gbps 2.5 Gbps

Workaround(s): There are no workaround options available.

35SPRZ235R–October 2005–Revised January 2012 TMS320TCI6482 Digital Signal Processor— Silicon Revisions 3.1, 2.1, 2.0, 1.1
Submit Documentation Feedback

Copyright © 2005–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRZ235R


Silicon Revision 3.1 Usage Notes and Known Design Exceptions to Functional Specifications www.ti.com

Advisory 3.1.17 CPU: Back-to-Back SPLOOPs With Interrupts Can Cause Incorrect Operation on
C64x+ CPU

Revision(s) Affected: 3.1 and earlier

Details: Back-to-back software pipeline loops (SPLOOPs) with interrupts can cause incorrect
operation on the C64x+ CPU. This issue occurs when the first SPLOOP is interrupted
and there are less than 2 execute packets between the SPKERNEL of the first SPLOOP
block (SPKERNEL instruction marks the end of the first SPLOOP block) and the
SPLOOP instruction of the second SPLOOP block (SPLOOP instruction marks the
beginning of the second SPLOOP block). The first SPLOOP block terminates abruptly
(i.e., without completing the loop, even though the termination condition is false). The
failure mechanism can be seen as a hang or by the first SPLOOP block draining for the
interrupt and starting the second SPLOOP block without taking the interrupt or returning
to complete the first SPLOOP block.

Workaround(s): The C6000 compiler release v6.0.6 and above detects this problem. If there are fewer
than 2 execute packets between the SPKERNEL and SPLOOP instructions, the compiler
will add the appropriate number of NOP instructions following the SPKERNEL
instruction.

For example,
...
SPKERNEL 0, 0
NOP 1 ; SDSCM00012367 HW bug workaround
MVK .L1 0x1,A0

[ A0] SPLOOPW 3 ;12
NOP 1
...

The assembler will detect sequences that could potentially trigger this issue, and issue a
remark. For example,
"neg_test.asm", REMARK at line 21 [R5001] SDSCM00012367 potentially

triggered by this execute packet sequence. SLOOP must be at
least 2 EPs away from previous SPKERNEL for safe interrupt
behavior.

Note: The assembler tool, asm6x.exe, can be used to determine if a previous version of
the compiler generated code that could potentially be affected by this silicon issue. The
assembler can also be used on assembly source code to see if the source could be
affected by this issue. Replace the old version of asm6x.exe with the 6.0.6 asm6x.exe in
your current build setup and recompile or reassemble.

Internal Tracking Number: 4

36 TMS320TCI6482 Digital Signal Processor— Silicon Revisions 3.1, 2.1, 2.0, 1.1 SPRZ235R–October 2005–Revised January 2012
Submit Documentation Feedback

Copyright © 2005–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRZ235R


www.ti.com Silicon Revision 3.1 Usage Notes and Known Design Exceptions to Functional Specifications

Advisory 3.1.18 CPU: C64x+ CPU Incorrectly Generates False Exceptions for Multiple Writes

Revision(s) Affected: 3.1 and earlier

Details: The C64x+ CPU may generate an incorrect resource conflict exception when taking an
interrupt. This only affects applications that run with exceptions enabled. Applications
enable exceptions by writing 1 to the GEE bit in the Task State Register (TSR).
Applications that do not enable exceptions are not affected by this errata.

The CPU generates this incorrect exception in the following scenario:

1. The CPU begins draining the pipeline as part of an interrupt context switch. During
this time, the CPU annuls instructions in the pipeline that have not yet reached the
E1 pipeline phase while it drains the pipeline.

2. The first annulled execute packet (resident in the DC pipeline stage at the time
draining begins) writes to one or more predicate registers. Because it is annulled, the
writes do not occur.

3. The second annulled execute packet (resident in the DP pipeline stage at the time
draining begins) has a predicated single cycle instruction that uses a predicate
written by the execute packet described in item 2. Because it is annulled, the write
does not occur.

4. The value held in the predicate register would cause the instruction in the second
annulled execute packet to write to some register in the same cycle as another
instruction if it were not annulled. The conflicting writes would not happen if the first
execute packet had not been annulled.

The exception is not a valid exception. If the CPU executed instructions described in
items 2 and 3 above, rather than annulling them while draining the pipeline for an
interrupt, the execute packet in item 2 would set the predicate(s) such that the writes in
the subsequent execute packet do not conflict.

Examples of sequences that generate the incorrect exception are:
ZERO A0
ZERO B0

---------------------> interrupt occurs
MVK 1, A0 ;(1st annulled EPKT)

[!A0] MVK 2, A1 ;(2nd annulled EPKT) \_ Appears both MVKs write A1,
||[!B0] MVK 3, A1 ;(2nd annulled EPKT) / triggers invalid exception.

...

ZERO A0
[!A0] LDW *A4, A5

NOP
NOP

--------------------> interrupt occurs
MVK 1, A0 ;(1st annulled EPKT)

[!A0] MVK 2, A5 ;(2nd annulled EPKT) LDW writes A5 this cycle

...

ZERO A0
[!A0] DOTP2 A3, A4, A5

NOP
-------------------> interrupt occurs

MVK 1, A0 ;(1st annulled EPKT)
[!A0] MVK 2, A5 ;(2nd annulled EPKT) DOTP2 writes A5 this cycle

37SPRZ235R–October 2005–Revised January 2012 TMS320TCI6482 Digital Signal Processor— Silicon Revisions 3.1, 2.1, 2.0, 1.1
Submit Documentation Feedback

Copyright © 2005–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRZ235R


Silicon Revision 3.1 Usage Notes and Known Design Exceptions to Functional Specifications www.ti.com

Workaround(s): The CPU only recognizes the incorrect exception while it drains the pipeline for an
interrupt. As a result, the CPU begins exception processing upon reaching the interrupt
handler. The NRP (NMI Return Pointer Register) and NTSR (NMI Task State Register)
will reflect the state of the machine upon arriving at the interrupt handler.

Therefore, to identify the incorrect resource conflict exception in software, verify the
following conditions at the beginning of the exception handler prior to normal exception
processing:

1. Exception occurred during an interrupt context switch.

(a) In NTSR, verify that INT=1, SPLX=0, IB=0, CXM=00.

(b) Verify that NRP points to an interrupt service fetch packet. That is, (NRP &
0xFFFF FE1F) == (ISTP & 0xFFFF FE1F).

2. The exception is a resource conflict exception. In IERR, verify that RCX == 1 and all
other IERR bits == 0.

3. The exception is an internal exception. In EFR, verify that IXF == 1 and all other EFR
bits == 0.

Upon matching the above conditions, suppress the exception as follows:

1. Clear EFR.IXF by writing 2 to ECR.

2. Resume the interrupt handler by branching to NRP.

The above workaround identifies and suppresses all cases of the incorrect resource
conflict exception. It resumes normal program execution when the incorrect exception
occurs, and has minimal impact on the execution time of program code. The interrupted
code sequence runs as expected when the interrupt handler returns.

The workaround also suppresses a particular valid exception case that is
indistinguishable from the incorrect case. Specifically, the code will suppress the
exception generated by two instructions with different delay slots (e.g., LDW and
DOTP2) writing to the same register in the same cycle, where the conflicting writes occur
during the interrupt context switch.

An example of a sequence with incorrectly suppressed exception is:
LDW *A0, A1
DOTP2 A3, A2, A1
NOP

-----------------> interrupt occurs
NOP
NOP ; Both LDW and DOTP2 write to A1 this cycle

The workaround will not suppress these valid resource conflict exceptions if the multiple
writes occur outside an interrupt context switch. That is, the workaround will not
suppress the exception generated by the code above when it executes without an
interfering interrupt.

For more details, see the following sections in the TMS320C64x/C64x+ DSP CPU and
Instruction Set Reference Guide (literature number SPRU732).

• Interrupt Service Table Pointer Register (ISTP) describes the ISTP control register.

• Nonmaskable Interrupt (NMI) Return Pointer Register (NRP) describes the NRP
control register.

• TMS320C64x+ DSP Control Register File Extensions describes the ECR, EFR,
IERR, TSR and NTSR control registers.

• Pipeline describes the overall operation of the C64x+ pipeline, including the behavior
of the E1, DC and DP pipeline phases.

• Actions Taken During Nonreset Interrupt Processing describes the operation of the
C64x+ pipeline during interrupt processing, including how it annuls instructions.

• C64x+ CPU Exceptions describes exception processing.

Internal Tracking Number: 5

38 TMS320TCI6482 Digital Signal Processor— Silicon Revisions 3.1, 2.1, 2.0, 1.1 SPRZ235R–October 2005–Revised January 2012
Submit Documentation Feedback

Copyright © 2005–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/lit/pdf/SPRU372
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRZ235R


DSP 1 DSP 2

Network/
System

Host

Port 0 Port 1 Port 0 Port 1 Port 0

DSP 3

www.ti.com Silicon Revision 3.1 Usage Notes and Known Design Exceptions to Functional Specifications

Advisory 3.1.19 SRIO: Packet Forwarding Cannot Be Used With NREAD Response Packets Greater
Than 16 Bytes

Revision(s) Affected: 3.1 and earlier

Details: Packet forwarding uses programmable look-up tables to direct incoming packets to an
outbound port when the packets do not belong to the local device. Packet forwarding is
carried out at the logical layer of the serial RapidIO (SRIO) without the interaction of the
CPU. The SRIO logical layer copies incoming packets from an inbound buffer to an
outbound buffer. When used for packet forwarding, it forwards all types of packets,
including response, maintenance, DOORBELL, and message packets.

The current SRIO design fails to correctly copy response packets with a payload greater
than 16 bytes from the inbound to the outbound buffer. The first 16 bytes are correctly
copied, but the remainder of the payload is discarded. This issue affects only NREAD
response packets since their payloads can be up to 256 bytes. Packet types with small
responses, such as NWRITE_R, maintenance, message, and DOORBELL packets are
not affected by this issue.

Workaround 1: Use a data push model, where each device in the daisy chain only submits write
requests. Using this approach will avoid the issue and provide the lowest latency
solution.

Workaround 2: Two options exist if NREAD response packets cannot be avoided; for example, when
reading core dump information from an unresponsive processor which is unable to
initiate traffic by itself. The first option is to use software to segment read requests into
16-byte NREADs. Note that this option will work functionally, but may take too much
time.

The second option is illustrated in Figure 9.

Figure 9. Daisy-Chain Example

In this example, assume that DSP3 is down and the system host wants to do a large
NREAD of DSP3 to examine the core dump. The issue discussed above prohibits the
NREAD from completing correctly because, as the response packets from DSP3 are
sent back, they are corrupted by DSP2 and DSP1 packet forwarding. Instead, the
system host needs to request that the adjacent DSP (DSP2) generates the NREAD
request to DSP3. The NREAD responses are sent to DSP2 and temporarily stored in
memory. Then, DSP2 can generate NWRITE/NWRITE_R/SWRITE packets to the
system host with the needed payload. These packets are correctly forwarded by DSP1
to the system host since they are request packets and not responses.

39SPRZ235R–October 2005–Revised January 2012 TMS320TCI6482 Digital Signal Processor— Silicon Revisions 3.1, 2.1, 2.0, 1.1
Submit Documentation Feedback

Copyright © 2005–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRZ235R


Silicon Revision 3.1 Usage Notes and Known Design Exceptions to Functional Specifications www.ti.com

Advisory 3.1.20 PLL Controller: GOSTAT Bit of PLL Controller Does Not Reflect GO Operation
Status

Revision(s) Affected: 3.1 and earlier

Details: As documented in the TMS320TCI648x DSP Software-Programmable Phase-Locked
Loop (PLL) Controller User's Guide (literature number SPRU806 ), after software starts a
GO operation to change the clock divider ratios, it must poll the GOSTAT bit in the PLL
controller status register (PLLSTAT) to determine the GO operation has completed
before continuing since internal clocks may be stopped.

On current revisions of the TCI6482 device , the GOSTAT bit does not reflect the status
of the GO operation. Software should not rely on the GOSTAT bit of the PLL controller
status register (PLLSTAT) to determine the status of the GO operation.

The TCI6482 device includes two PLL controllers. Only divider D4 and divider D5 of PLL
controller 1 and divider D1 of PLL controller 2 are programmable on this device .
Software must not access any resource in the clock domain of these dividers N number
of SYSCLKREF cycles after changing the divider clock frequency through a GO
operation. The number N can be calculated using the formula given in the workaround
below.

NOTE: Existing software may not need to be modified if the resources, such as
memory-mapped registers, of the modules being affected by the clock
change are not being accessed within N cycles after setting the GOSET
bit.

Workaround(s): A modified programming sequence from that given in the TMS320TCI648x DSP
Software-Programmable Phase-Locked Loop (PLL) Controller User's Guide (literature
number SPRU806 ) can be followed to ensure the GO operation has completed.

Modified Divider Programming Sequence

1. Check for the GOSTAT bit in PLLSTAT to clear to 0 to indicate that no GO operation
is currently in progress. (Step included for forward compatibility only.)

2. Program the RATIO field in PLLDIVn with the desired divide factors. If the RATIO
field changed, the PLL controller will flag the change in the corresponding bit of
DCHANGE.

3. Set the GOSET bit in PLLCMD to 1 to initiate the GO operation to change the divide
values. During this transition, any SYSCLK being changed will be paused
momentarily.

4. Wait for N number of SYSCLKREF clock cycles to ensure divider changes have
completed. The number N can be calculated using the following formula:

(2 x Least Common Multiple (LCM) of all of the old SYSCLK divide values) + 50
cycles overhead

5. Wait for the GOSTAT bit in PLLSTAT to clear to 0. (Step included for forward
compatibility only.)

Example on Calculating Number of Clock Cycles N for PLL Controller 1

Settings before divider change:

• PLLDIV4.RATIO = 3 (divide-by-8)

• PLLDIV5.RATIO = 3 (divide-by-4)

New divider settings:

• PLLDIV4.RATIO = 4 (divide-by-10)

• PLLDIV5.RATIO = 3 (divide-by-4)

The least common multiple between the old divider values of /4 and /8 is /8. Therefore,

40 TMS320TCI6482 Digital Signal Processor— Silicon Revisions 3.1, 2.1, 2.0, 1.1 SPRZ235R–October 2005–Revised January 2012
Submit Documentation Feedback

Copyright © 2005–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/lit/pdf/SPRU806
http://www.ti.com/lit/pdf/SPRU806
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRZ235R


www.ti.com Silicon Revision 3.1 Usage Notes and Known Design Exceptions to Functional Specifications

the number of cycles N is:

N = (2 x 8) + 50 overhead = 66 SYSCLKREF source clock cycles

If PLL controller 1 is in PLL mode (PLLCTL.PLLEN = 1), the SYSREFCLK source clock
is the PLL1 output clock. If PLL controller 1 is in PLL bypass mode (PLLCTL.PLLEN
= 0), the SYSREFCLK source clock is the device clock source CLKIN1.

Example on Calculating Number of Clock Cycles N for PLL Controller 2

Settings before divider change:

• PLLDIV1RATIO = 1(divide-by-2)

New divider settings:

• PLLDIV1RATIO = 4 (divide-by-5)

Since there is only one configurable clock, the least common multiple will always be the
older divider value, in this case that is /2. Therefore, the number of cycles N is:

N = (2 x 2) + 50 overhead = 54 SYSCLKREF source clock cycles

The PLL controller 2 is always in PLL mode (PLLCTL.PLLEN = 1), hence the
SYSREFCLK frequency is always equal to CLKIN2 x 10.

41SPRZ235R–October 2005–Revised January 2012 TMS320TCI6482 Digital Signal Processor— Silicon Revisions 3.1, 2.1, 2.0, 1.1
Submit Documentation Feedback

Copyright © 2005–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRZ235R


Silicon Revision 3.1 Usage Notes and Known Design Exceptions to Functional Specifications www.ti.com

Advisory 3.1.21 Potential SerDes Clocking Issue

Revision(s) Affected: 3.1 and earlier

Details: An issue has been found in the SerDes interfaces that causes a SerDes clocking
problem in normal functional operation. This problem will not occur when external
pull-down is applied on the TCK pin (JTAG controller clock). SerDes are used in the
Serial RapidIO interface (SRIO).

The TCK pin (JTAG controller clock) is internally assigned to an internal signal that is
used by the SerDes macro. For the SerDes macro to get proper clocking in the normal
functional operation, it needs the internal signal to be held low. However, there is an
internal pull-up on the TCK, creating problems for SerDes operation. This problem exists
on all SerDes interfaces.

Workaround(s): The TCK pin should be externally pulled down with a 1-kΩ resistor.

42 TMS320TCI6482 Digital Signal Processor— Silicon Revisions 3.1, 2.1, 2.0, 1.1 SPRZ235R–October 2005–Revised January 2012
Submit Documentation Feedback

Copyright © 2005–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRZ235R


www.ti.com Silicon Revision 3.1 Usage Notes and Known Design Exceptions to Functional Specifications

Advisory 3.1.22 EMIFA: Occurrence of Read Data Corruption for Synchronous Interface Due to
Impedance Mismatch at AECLKOUT

Revision(s) Affected: 3.1 and earlier

Details: The EMIFA AECLKOUT is used to synchronize external devices and synchronous read
data latch. For this reason, the EMIFA timing characteristics and requirements are more
dependent upon the specific loading topologies of the targeted system. It is important to
properly terminate the targeted system to ensure the following:

• Minimize reflections at the DSP and external device.

• Over/undershoot within the device-specific data manual specification.

• The AECLKOUT is monotonic at the DSP and the external device between VIL/VIH for
the rising/falling edge with respect to weak/strong buffers.

If the above conditions are not within specification — as defined in the TMS320TCI6482
Communications Infrastructure Digital Signal Processor data manual (literature number
SPRS246 ) — then read data corruption can occur. If the signal quality is not achievable
with the proper termination, then external buffering may be required. This ensures that
the AECLKOUT is monotonic at the DSP and at the external device between VIL/VIH. In
all cases, techniques for high-speed digital design should be applied to the EMIFA
interface. Since the the AECLKOUT is looped back for read data latch, it is very
important to terminate the AECLKOUT at the DSP to ensure clock signal integrity. There
is an inherent "shelf" near the switch point at the driver, which causes the transition to be
non-monotonic at the DSP. The impact of this issue depends on where the AECLKOUT
is non-monotonic at the DSP. The AECLKOUT topology must ensure that the
AECLKOUT signal at the DSP and the load is monotonic between VIL/VIH.

Figure 10. AECLKOUT at the DSP

43SPRZ235R–October 2005–Revised January 2012 TMS320TCI6482 Digital Signal Processor— Silicon Revisions 3.1, 2.1, 2.0, 1.1
Submit Documentation Feedback

Copyright © 2005–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/lit/pdf/SPRS246
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRZ235R


Silicon Revision 3.1 Usage Notes and Known Design Exceptions to Functional Specifications www.ti.com

Workaround(s): The workaround provides details on how to select the correct series termination values
at the driver and loads to minimize reflections and over/undershoot. The workaround
must also ensure that the AECLKOUT signal is always monotonic between VIL/VIH at the
driver and the loads for weak and strong conditions.

Termination at the DSP

In order to select the appropriate series termination resistor at the DSP, the following
information is provided:

• DSP impedance = 25 Ω
• Example AECLKOUT board topology

In this example we assume trace impedance = 50 Ω (typical impedance range is
50-75 Ω). In this example, use the following formulas to calculate the driver switch
voltage, VOUT, with respect to the chosen series termination resistor at the DSP. Note
that the switch point is the voltage where the far-end reflection causes the AECLKOUT
to be non-monotonic at the DSP. The goal here is to ensure that the switch-point voltage
is always above VIH and below VIL for weak and strong buffers.

• DriverR = output driver impedance

• TraceR = board trace impedance
VOUT ≉ { DriverR / (DriverR + TraceR) } * 3.3 V (1)

• SwitchV = driver switch-point voltage
SwitchV ≉ 3.3 V - Vout (2)

To optimize for a specific switch point voltage

1. Solve Equation 2 for VOUT.

2. Solve Equation 1 for TraceR by plugging in the new value for VOUT.

Note: The higher the series termination resistor at the DSP, the lower the rise time is at
the load.

Termination at the Load

Select the appropriate series termination resistor needed to match the impedance at the
load. As an example, assume the trace impedance at the stub = 50 Ω and the trace
lengths are symmetrical. If your trace lengths are not symmetrical you have to calculate
the appropriate values. As the signal travels down the transmission line, it comes to a
point of divergence where AECLKOUT sees two 50-Ω pathways for a total of 25 Ω or
Zo/2. This creates a three-way split of the signal energy:

• 1/3 returns to the source

• 1/3 goes toward load1

• 1/3 goes toward load2

To minimize reflections, terminate each load with series termination resistance = Zo/2 =
100 Ω. This reduces the energy that returns to the source, thus reducing reflections at
the DSP. This also allows the full signal to propagate toward the loads. After establishing
the proper termination values, confirm the AC timings at the load and source for setup,
hold, and rise time according to the device-specific data manual specifications.

44 TMS320TCI6482 Digital Signal Processor— Silicon Revisions 3.1, 2.1, 2.0, 1.1 SPRZ235R–October 2005–Revised January 2012
Submit Documentation Feedback

Copyright © 2005–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRZ235R


www.ti.com Silicon Revision 3.1 Usage Notes and Known Design Exceptions to Functional Specifications

Advisory 3.1.23 DDR2 EMIF Buffers Not Totally Compensated by Default

Revision(s) Affected: 3.1 and earlier

Details: The output buffers on the DDR2 EMIF contain dynamic impedance compensation
circuitry to maintain a constant output impedance across temperature, voltage, and
silicon process variation. This impedance compensation circuitry must configure each
individual output buffer. The output buffer compensation for each DDR2 output buffer is
not complete until both a 1-to-0 and 0-to-1 transition has occurred on that output.

Until this compensation occurs, the output drive strength is probably less than ideal. The
DDR2 EMIF cycles that occur before dynamic compensation is complete may fail. Since
the mode register (MR) write cycles are the first cycles initiated by the DDR2 EMIF after
a reset, these cycles are at risk. Similarly, after EMIF configuration, the first writes to
DDR2 memory are also at risk.

This issue has not been seen in the field. It has only been observed on test fixtures at TI.
Therefore, it appears to have a very low probability of affecting existing designs. The
recommended topologies that only have one or two loads per DDR2 EMIF without VTT
termination appear to be resilient to this condition. The possibility of failure can only be
eliminated if the software workaround described below is implemented.

Some system start-up sequences improve the probability of robust operation, such as:

• Incomplete compensation may cause mode register (MR) writes to fail. This could
result in DDR2 performance lower than expected or complete failure. The risk of this
occurring is reduced through multiple MR write operations since compensation of
most address and control output buffers and both clock output buffers are completed
before the final MR write. Most DDR2 EMIF configuration sequences, including the
one implemented in the CSL, result in multiple MR write operations. MR write cycles
are also designed to complete on the slowest possible DDR2 memory devices. This
is another reason these cycles have a high probability of success.

• Incomplete compensation may cause initial DDR2 memory writes to fail. This could
cause the DSP to execute incorrectly if these initial writes are code or critical data.
Many system implementations use a secondary bootloader to load the full binary
image. The secondary bootloader is then discarded after boot completion. Therefore,
any invalid writes would occur in the bootloader and the full application code is
loaded after the DDR2 EMIF output buffers have been activated many times. (This is
not a full guarantee of complete compensation but the probability is high that all of
the output buffers are fully compensated by the time the secondary bootloader is
written.)

• A better guarantee that this compensation has no latent impact is validation of the full
binary image through some type of code checksum at the end of the boot process. If
the code is verified in this way, the system is guaranteed to be robust.

Workaround(s): This workaround has to be executed every time the DDR2 EMIF is initialized. Since it
should occur before valid mode register writes can be completed, the EMIF configuration
has to be repeated after the output buffers are fully compensated. The sequence of
steps listed below completes the dynamic compensation for all of the DDR2 EMIF output
buffers. The CSL API function CSL_ddr2HwSetup is called during the normal bring-up
process to trigger MR writes. Therefore, the workaround code can be put before the API
function call.

Sample code:
/* Define the following variables. */
Uint32 tempData0, tempData1;
/* Define the following pointers to compensate the address buffers. */
Uint32 *pDdr2Data_temp0 = (Uint32 *) 0xEAAAAAA8;
Uint32 *pDdr2Data_temp1 = (Uint32 *) 0xE5555554;
/* Use 0xF5555554 on systems using 512MB of memory. */

/*************************************************************

45SPRZ235R–October 2005–Revised January 2012 TMS320TCI6482 Digital Signal Processor— Silicon Revisions 3.1, 2.1, 2.0, 1.1
Submit Documentation Feedback

Copyright © 2005–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRZ235R


Silicon Revision 3.1 Usage Notes and Known Design Exceptions to Functional Specifications www.ti.com

The following code needs to be executed at the beginning of every DDR2 EMIF
initialization.
*************************************************************/

/* Enable self-refresh mode and set an appropriate REFRESH_RATE to guarantee
200us delay before CKE goes high. REFRESH_RATE value has to be calculated based
on DDR2 clock being used. */
hDdr2->regs->SDRFC = 0x80001388;

/* Disable self-refresh mode and set an appropriate REFRESH_RATE to have a
correct refresh cycle. REFRESH_RATE value has to be calculated based on DDR2
clock being used. */
hDdr2->regs->SDRFC = 0x00000753;

/*Write and read the first location with a 0xAAAAAAAA pattern.*/
tempData0 = 0xAAAAAAAA;
*pDdr2Data_temp0 = tempData0; /* DDR2 memory write */
tempData1 = *pDdr2Data_temp0; /* DDR2 memory read */

/* Perform two more writes with a 0x55555555 and 0xAAAAAAAA pattern to complete
the compensation cycle. */
tempData0 = 0x55555555;
*pDdr2Data_temp1 = tempData0; /* DDR2 memory write */
tempData0 = 0xAAAAAAAA;
*pDdr2Data_temp0=tempData0; /* DDR2 memory write */

46 TMS320TCI6482 Digital Signal Processor— Silicon Revisions 3.1, 2.1, 2.0, 1.1 SPRZ235R–October 2005–Revised January 2012
Submit Documentation Feedback

Copyright © 2005–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRZ235R


www.ti.com Silicon Revision 3.1 Usage Notes and Known Design Exceptions to Functional Specifications

Advisory 3.1.24 SRIO Port 0 Reset Affects Other Ports

Revision(s) Affected: 3.1 and earlier

Details: The SerDes for SRIO should allow the reset of individual 1X ports without affecting the
state of the other operational ports. There are dedicated MMR bits to reset 1X ports,
which are the BLKn_EN (n=5..8) at offsets 0x60, 0x68, 0x70, and 0x78. However, the
BLK5_EN that controls reset for port 0 also resets all other ports. Therefore, it is
impossible to reset port 0 without affecting all other ports.

Workaround(s): There is no workaround for this advisory.

Advisory 3.1.25 SRIO OUTBOUND_ACKID Field Not Read Correctly

Revision(s) Affected: 3.1 and earlier

Details: The OUTBOUND_ACKID field of the RIO_SP(n)_ACKID_STAT register should be
updated by hardware each time a packet is sent out. The value should reflect the ACKID
value to be used on the next transmit packet. This field is being updated by the hardware
as expected. The field can also be written by the software and these writes also
succeed. However, a hardware error prevents this field from being read. The
OUTBOUND_ACKID always reads as zero. This problem does not cause any impact to
link operation.

Workaround(s): There is no workaround for this advisory.

47SPRZ235R–October 2005–Revised January 2012 TMS320TCI6482 Digital Signal Processor— Silicon Revisions 3.1, 2.1, 2.0, 1.1
Submit Documentation Feedback

Copyright © 2005–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRZ235R


4

3

2

1

0

V
o

lt
s

V_tfall

2 64 8

Time (ns)

(6 ns)

(6.95 ns)

PCI Specification
Buffer Performance

Actual Buffer
Performance

Vil

(4.6 ns)

(5.8 ns)

Silicon Revision 3.1 Usage Notes and Known Design Exceptions to Functional Specifications www.ti.com

Advisory 3.1.26 PCI AC Timings Differ From Specifications

Revision(s) Affected: 3.1 and earlier

Details: The device's PCI signals' slew rate differs from that specified in the PCI Local Bus
Specification revision 2.3, as shown in Table 10.

Table 10. PCI Slew Rate

PARAMETER PCI SPECIFICATION VALUE ACTUAL VALUE

Tf, minimum 1 V/ns 0.65 V/ns

Although the actual minimum slew rate is below the specified minimum, overall PCI
timings are within the bounds permitted by the PCI specification. As shown in Table 11,
actual values for the valid signal delay (Tval) are well below the permitted maximum. This
allows additional time for system propagation delay to compensate for the reduced slew
rate. Figure 11 shows the buffer slew and timing performance versus the specification
performance in the 66-MHz environment. The 33-MHz environment has even more
timing margin than the 66-MHz environment, making 66 MHz the worst case.

Table 11. Valid Signal Delay

PARAMETER PCI SPECIFICATION VALUE ACTUAL VALUE

Tval, maximum (33 MHz) 11 ns 6.8 ns

Tval, maximum (66 MHz) 6 ns 4.6 ns

Figure 11. 66-MHz Buffer Slew and Timing Performance vs Specification Performance

Table 12 shows the system timing budget for 66-MHz PCI with values from the
specification and values in a system where the device is driving with reduced slew rate.

48 TMS320TCI6482 Digital Signal Processor— Silicon Revisions 3.1, 2.1, 2.0, 1.1 SPRZ235R–October 2005–Revised January 2012
Submit Documentation Feedback

Copyright © 2005–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRZ235R


www.ti.com Silicon Revision 3.1 Usage Notes and Known Design Exceptions to Functional Specifications

Table 12. 66-MHz PCI System Timing

PARAMETER PCI SPECIFICATION VALUE ALTERNATE COMPATIBLE TIMING

Tval 6 ns 4.6 ns

Tprop 5 ns 6.4 ns

Tskew 1 ns 1 ns

Tsu 3 ns 3 ns

Total Cycle Time 15 ns (66 MHz) 15 ns (66 MHz)

Since Tskew and Tsu are identical in the two systems, no changes to PCI-acceptable
layouts or other components on the bus are required. The device can function normally
in PCI systems despite the change in timing.

49SPRZ235R–October 2005–Revised January 2012 TMS320TCI6482 Digital Signal Processor— Silicon Revisions 3.1, 2.1, 2.0, 1.1
Submit Documentation Feedback

Copyright © 2005–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRZ235R


Silicon Revision 3.1 Usage Notes and Known Design Exceptions to Functional Specifications www.ti.com

Advisory 3.1.27 DMA Access to L2 SRAM May Stall When the DMA and the CPU Command Priority
is Equal

Revision(s) Affected: 3.1 and earlier

Details: The L2 memory controller in the C64x+ Megamodule has programmable bandwidth
management features that are used to control bandwidth allocation for all requestors.
There are two parameters to control this, command priority and arbitration counter
MAXWAIT values.

Each requestor has a command priority and the requestor with the higher priority wins.
However, there are also counters associated with each requestor that track the number
of cycles each requestor loses arbitration. When this counter reaches a threshold
(MAXWAIT), which is programmed by the user (or default value), the losing requestor
gets an arbitration slot and wins for that cycle.

There are four such requestors: CPU, DMA (SDMA and IDMA), user cache coherency
operation, and global cache coherence. Global-coherence operations are highest
priority, while user-coherence operations are lowest priority. However, there is active
arbitration done for the CPU and the DMA (SDMA/IDMA) commands. The priority for
DMA commands comes from an external master as part of the SDMA command or a
programmable register, IDMA1_COUNT, in the C64x+ Megamodule for IDMA
commands. The priority for CPU accesses to L2 is in a programmable register,
CPUARBU, in the C64x+ Megamodule. For the default priority values, see Table 13.

Table 13. TCI6482 Default Master Priorities

DEFAULT MASTER PRIORITIES
MASTER (0 = Highest priority, PRIORITY CONTROL

7 = Lowest priority)

EDMA3TCx 0 QUEPRI.PRIQx (EDMA3 register)

SRIO (Data Access) 0 PER_SET_CNTL.CBA_TRANS_PRI
(SRIO register)

SRIO (Descriptor Access) 0 PRI_ALLOC.SRIO_CPPI

EMAC 1 PRI_ALLOC.EMAC

HPI 2 PRI_ALLOC.HOST

PCI 2 PRI_ALLOC.HOST

VYLNQ 4 PRI_ALLOC.VLYNQ

C64x+ Megamodule (MDMA port) 7 MDMAARBE.PRI (C64x+ Megamodule
register)

C64x+ Megamodule (CPU Arbitration 1 CPUARBU (C64x+ Megamodule register)
control to L2)

C64x+ Megamodule (IDMA channel 1) 0 IDMA1_COUNT (C64x+ Megamodule
register)

The L2 memory controller is supposed to give equal bandwidth to the DMA and the
CPU, by alternating between the two for arbitration. Instead, the L2 memory controller
gives larger bandwidth allocation to the CPU accesses when the DMA and the CPU
priorities are same. The CPU commands keep winning arbitration over the DMA as long
as there are no other internal conditions (stalls, etc.) that force the DMA to win
arbitration. This typically happens when CPU accesses keep the L2 memory controller
busy every cycle, hence, the DMAs stall until the stream of CPU accesses completes.
For example, if a continuous stream of L1D write misses to L2 keep the L2 memory
controller busy every cycle, the DMAs stall for the entire duration of the write miss
stream.

50 TMS320TCI6482 Digital Signal Processor— Silicon Revisions 3.1, 2.1, 2.0, 1.1 SPRZ235R–October 2005–Revised January 2012
Submit Documentation Feedback

Copyright © 2005–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRZ235R


www.ti.com Silicon Revision 3.1 Usage Notes and Known Design Exceptions to Functional Specifications

NOTE: When the SDMA has finished sending all of its commands to the L2
controller the C64x+ Megamodule drops the effective transfer priority
down to 7 if no further commands are in the pipeline. This condition
happens when there is a single word access, a burst of less than 32B
with no other SDMA commands pending, or for only the last 64B of a
burst that is greater than 64B with no other SDMA commands pending.
This effective priority level is what the L2 controller uses to arbitrate these
SDMA commands with the CPU, irrespective of what the actual
programmed priority value is of the master peripheral. This means that if
the CPU is programmed to priority 7, via the CPUARB register, this issue
will be triggered. Therefore, priority 7 is not a valid priority level for CPU.
If for any reason this demoted transfer is still pending upon initiation of
another transfer, it will automatically inherit the priority of that new
transfer and be pushed through such that it does not stall the new
transfer.

Workaround(s): Set the CPU and the DMA commands to L2 on different priorities. As noted above,
Priority 7 is not a valid priority for the CPU.

51SPRZ235R–October 2005–Revised January 2012 TMS320TCI6482 Digital Signal Processor— Silicon Revisions 3.1, 2.1, 2.0, 1.1
Submit Documentation Feedback

Copyright © 2005–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRZ235R


Silicon Revision 3.1 Usage Notes and Known Design Exceptions to Functional Specifications www.ti.com

Advisory 3.1.29 Potential McBSP Transmit Frame Corruption When XDATDLY = 0 and CLKX/FSX is
Input Pin Driven By External Clock

Revision(s) Affected: 3.1 and earlier

Details: There is a potential McBSP transmit problem for the first frame when both the following
conditions are met:

1. XDATDLY = 0 mode is used.

2. Either CLKX or FSX, or both, are used as input pins and are driven by external
clocks.

The problem is due to the McBSP timing issue on the internal state machine causing the
second element copy while the first element transfer is still in progress. In other words,
there is a spurious transfer from DXR to XSR after the first bit of the first element is
transmitted. Due to this, the first element is partially overwritten by the second element.
For example in case of 16-bit elements, the first element transmitted consists of bit 15 of
the first element and bit 14 to bit 0 of the second element. The second element actually
transmitted is the third element, etc. Since the second element of the frame overwrites
the first element, all the following elements are also shifted forward one element position
in the frame.

The problem is seen only on the first frame transmitted and not every frame after that.
Also note that the problem is only on the transmit side, there is no problem on the
receive side with the RDATDLY = 0 setting.

Overview of XDATDLY

The start of a frame is defined by the first clock cycle in which frame synchronization is
active. The beginning of actual data transmission with respect to the start of the frame
can be delayed, if required. XDATDLY specifies the data delay for transmission. The
range of programmable data delay is zero to two bit clocks (XDATDLY = 00b to10b). The
XDATDLY field is set using the transmit control register (XCR).

Workaround(s): XDATDLY = 0 mode will be no longer supported when either CLKX or FSX or both are
used as input pins and are driven by external clocks. Change XDATDLY from 0 to either
1 or 2. This setting change for the McBSP transmitter requires matching change on
whatever external receiver is connected.

52 TMS320TCI6482 Digital Signal Processor— Silicon Revisions 3.1, 2.1, 2.0, 1.1 SPRZ235R–October 2005–Revised January 2012
Submit Documentation Feedback

Copyright © 2005–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRZ235R


www.ti.com Silicon Revision 3.1 Usage Notes and Known Design Exceptions to Functional Specifications

Advisory 3.1.31 SPLOOP CPU Cross-Path Stall

Revision(s) Affected: 3.1 and earlier

Details: If the following three rules are met, a stall is seen when an SPKERNEL instruction is
executed.

1. Cross-path instruction rule: An instruction reading a register via the cross path in
the first cycle after SPKERNEL instruction.

2. Data dependence rule: An instruction in the SPLOOP body that writes to the above
cross-path read register. This instruction can be anywhere in the SPLOOP body.

3. Functional unit rule: No instruction in parallel with the SPKERNEL instruction that
uses the same functional unit as the cross-path read instruction mentioned in rule 1
above.

This results in a one CPU cycle stall for each iteration of the loop. The following are
three examples of code that are affected by this issue:

Example 1
SPLOOP 1
MV .S1 A0, A1 ;stalls every iteration due to MV after loop
SPKERNEL
MV .S2X A1, B2

Example 2
PLOOP 14
MV .S1 A0, A1 ;stalls every iteration due to MV after loop
NOP 9
NOP 9
NOP 9
NOP 9
SPKERNEL
MV .S2X A1, B2

Example 3
SMV .S1 A0, A1 ;stalls every iteration due to MV after loop
SPKERNEL
||NEG .L2 B3, B4 ;Qualifies for rule 3, functional unit rule
MV .S2X A1, B2

The following three examples are not affected by this issue:

Example 1
;No stalls: No cross path in instruction after SPKERNEL
SPLOOP 1
MV .S1 A0, A1
SPKERNEL
MV .S1 A1, A2

Example 2
;No stalls: A1 not written to in loop body
SPLOOP 1
MV .S1 A0, A2
SPKERNEL
MV .S2X A1, B2

Example 3
;No stalls: Instruction in parallel with SPKERNEL prevents bug since
;it's in the same unit as the instruction that uses the cross-path.
SPLOOP 1
MV .S1 A0, A1
SPKERNEL
||NEG .S2 B3, B4 ;masks the bug
MV .S2X A1, B2

53SPRZ235R–October 2005–Revised January 2012 TMS320TCI6482 Digital Signal Processor— Silicon Revisions 3.1, 2.1, 2.0, 1.1
Submit Documentation Feedback

Copyright © 2005–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRZ235R


Silicon Revision 3.1 Usage Notes and Known Design Exceptions to Functional Specifications www.ti.com

Workaround(s): The way SPLOOP code is scheduled is controlled by the compiler. Therefore, there are
no direct workarounds for non-assembly source code. There are new revisions of the
latest compilers that ensure that these three conditions are never met. The following
compiler releases include the fix:

• 6.0.25 or later

• 6.1.15 or later

• 7.0.2 or later

• 7.1.0B2 or later

• 7.2.0A or later.

54 TMS320TCI6482 Digital Signal Processor— Silicon Revisions 3.1, 2.1, 2.0, 1.1 SPRZ235R–October 2005–Revised January 2012
Submit Documentation Feedback

Copyright © 2005–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRZ235R


www.ti.com Silicon Revision 3.1 Usage Notes and Known Design Exceptions to Functional Specifications

Advisory 3.1.32 DMA Corruption of L1D$ Allocation

Revision(s) Affected: 3.1

Details: Under a specific set of circumstances, a snoop-write updates unintended data being
allocated into L1D$ from external, cacheable memory. This can lead directly to program
misbehavior. If that line is then modified by CPU accesses, a subsequent victim
writeback from L1D could commit this corrupted line to lower levels of memory. The key
requirements for this issue are:

• Two clean lines in L1D$.

– This means that a CPU has read two L2 or external, cacheable addresses and
has not modified them.

• One more allocated line in L1D$ that can be clean or dirty.

– Dirty means that a CPU has read and written to any L2 or external, cacheable
address.

• Two more parallel CPU reads (occurring in the same CPU cycle).

– One of the reads must create an L2$ hit (implying an external, cacheable
address) and must be a set match to one of the clean lines already in L1D$.

– The other can be from an L2 SRAM address or an external, cacheable address
and must be a set match to the L1D$ cache line mentioned above as clean or
dirty.

• Two DMA writes to buffers in L2 SRAM that are a set match to the two clean lines in
L1D$.

NOTE:
1. For information on L1D cache coherence protocol, see section 3.3.6,

Cache Coherence Protocol, in the C64x+ DSP Megamodule
Reference Guide (SPRU871).

2. The DMA in the following description refers to all non-CPU
requestors. This includes IDMA, EDMA, and any other master in the
system.

Under a specific set of circumstances listed below, a snoop-write results in data
corruption of L1D$. The issue occurs when there is a DMA to L2 for one of the allocated
(clean) lines that is also in the process of being replaced by an allocation from external,
cacheable memory (implying there was a set match between the two); this is along with
another allocation and a DMA to the other allocated (clean) line. L2 sends the DMA
requests as snoop-writes to the L1D cache. When the error occurs, the line the second
snoop-write was destined for has already been replaced by the allocation from external,
cacheable memory. The logic to kill the snoop-write did not get sensitized and the
snoop-write ends up corrupting the line that was allocated. Subsequent writes to the
corrupted line cause this to get committed to lower levels of memory.

The prerequisite before the window where the issue occurs is:

• The CPU reads two L2 locations that are not a set match to each other and have not
been modified since then (CPU/DMA has not written to it). For a description on how
to determine if you have a set match or not, see below.

– These are now two separate 64B cache lines allocated and clean in L1D (referred
to here as Cache Lines B and E).

• The CPU reads another L2 location that is not a set match to Cache Lines B and E. It
does not matter whether this particular cache line is modified or not before the issue
window arrives.

– Because of this, another 64B cache line is allocated in L1D as clean or dirty
(referred to here as Cache Line A).

– Note that both ways for this particular set must be occupied. It may require more

55SPRZ235R–October 2005–Revised January 2012 TMS320TCI6482 Digital Signal Processor— Silicon Revisions 3.1, 2.1, 2.0, 1.1
Submit Documentation Feedback

Copyright © 2005–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/lit/pdf/SPRU871
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRZ235R


31 X+1 X 6 5 4 2 1 0

Tag Set
Offset

Sub-line Bank Byte

Silicon Revision 3.1 Usage Notes and Known Design Exceptions to Functional Specifications www.ti.com

than one read to this particular cache set.

How to determine if two addresses are a set match:

Determining if two addresses are a set match can be done by comparing certain bits of
two addresses. The mapping of an address to a location in L1D cache is shown in
Figure 12.

The value X is determined by how large the L1D cache is in the particular application (see Table 14).

Figure 12. L1D Cache Address Mapping

Table 14. Value of X for L1D Cache

AMOUNT OF L1D CACHE X BIT POSITION

0KB N/A

4KB 10

8KB 11

16KB 12

32KB 13

If you use the default configuration, 32KB, as an example, bits [13:6] are a set match if
they are identical in two different addresses. Some examples of set matches are shown
below:

• 0x0080 2A80 00000000100000000010101010000000

• 0x8000 2A80 10000000100000000010101010000000

• 0x0080 2A8A 00000000100000000010101010001010

The following steps must all occur in a very tight window to see the issue:

1. The DMA writes to Cache Line E. This means that it is not necessarily the same
exact address, but within the same 64B cache line.

• As a result, a snoop- write request is generated.

2. The DMA writes to Cache Line B. This means that it is not necessarily the same
exact address, but within the same 64B cache line.

• As a result, a snoop-write request is generated but not immediately issued as it is
blocked by the snoop-write issued in the previous Step 1.

• Once the snoop-write from Step 1 is complete, this snoop-write is processed.

3. The CPU reads from any address in external, cacheable memory that is a set match
to Cache Line B. This must also create an L2$ hit (referred to here as Cache Line D).

• This results in a cache miss from the CPU and sends a read request to L2 cache
for the line.

• Assuming this was also mapped to the same way as Cache Line B, this results in
a replacement of Cache Line B since it was clean in L1D$.

• Note that there is no method to determine what particular way is used, so it is not
possible to tell whether this replacement would actually happen for a particular
operation. This is why only a set match is mentioned here.

4. In parallel (the same CPU cycle) with Step 3, the CPU reads from any address in L2
SRAM that is a set match to Cache Line A, mentioned in prerequisite Step 2 (referred
to here as Cache Line C).

• This results in a cache miss from the CPU and sends a read request to L2 SRAM
for the line.

56 TMS320TCI6482 Digital Signal Processor— Silicon Revisions 3.1, 2.1, 2.0, 1.1 SPRZ235R–October 2005–Revised January 2012
Submit Documentation Feedback

Copyright © 2005–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRZ235R


L1D Cache

UMAP0

t0

Corruption

t2

Clean line [E]

Int buff [C]

Int buff [A]

Int buff [B]

Ext buff [D]

CacheClean line [E]

Dirty line [A]

Clean line [B]

Snoop to [E] Snoop to [B]

t1

t4

t3

www.ti.com Silicon Revision 3.1 Usage Notes and Known Design Exceptions to Functional Specifications

• Assuming this was also mapped to the same way as Cache Line A, this results in
a replacement of Cache Line A if it was clean in L1D$. If Cache Line A was dirty,
an eviction would occur before the allocation completed.

• Note that there is no method to determine what particular way is used, so it is not
possible to tell whether this replacement would actually happen for a particular
operation. This is why only a set match is mentioned here.

The results of the above cause the following:

(A) The snoop-write to Cache Line E, from Step 1 above, is now in process and blocking
the snoop-write to Cache Line B from Step 2.

(B) While Step A is going on, Cache Line A has either now been evicted and/or replaced
by Cache Line C from Step 4 above and Cache Line B (the intended target of the
delayed snoop-write) is now replaced with Cache Line D from Step 3 above.

(C) Once the first snoop-write from operation C1 completes, the second (delayed)
snoop-write mentioned in Step A to Cache Line B should be killed since Cache Line
B was replaced in the operation in Step B. Instead, it is not killed and the line cached
(which is now actually Cache Line D) is now updated incorrectly.

As a result, the following is true:

1. Cache Line D now holds data that was corrupted by the operation in Step C above
(as a result of Step 2 above).

• A subsequent read of this data returns a corrupted value.

• Subsequent writes to this cache line also cause the corrupted values to be
committed to lower levels of memory.

Figure 13 shows the sequence of events.

Figure 13. Sequence of Events

Workaround(s): A compiler flag (--c64p_dma_l1d_workaround) has been added to the latest Code
Generation Tools to resolve this potential issue. This flag can be utilized for all code in

57SPRZ235R–October 2005–Revised January 2012 TMS320TCI6482 Digital Signal Processor— Silicon Revisions 3.1, 2.1, 2.0, 1.1
Submit Documentation Feedback

Copyright © 2005–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRZ235R


Silicon Revision 3.1 Usage Notes and Known Design Exceptions to Functional Specifications www.ti.com

the system or used on particular files/functions that may be susceptible to the conditions
listed in this advisory.

58 TMS320TCI6482 Digital Signal Processor— Silicon Revisions 3.1, 2.1, 2.0, 1.1 SPRZ235R–October 2005–Revised January 2012
Submit Documentation Feedback

Copyright © 2005–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRZ235R


www.ti.com Silicon Revision 3.1 Usage Notes and Known Design Exceptions to Functional Specifications

Advisory 3.1.33 Error Detection and Correction Incorrectly Reporting Error

Revision(s) Affected: 3.1 and earlier

Details: The C64x+ Megamodule L2 Memory Controller provides support for error detection and
correction (EDC). The primary purpose of this is to protect code and largely static data
held in L2 memory. Because the likelihood of a bit error on a given bit is proportional to
the time since it was last written, and program images are rarely written, the focus of
EDC is on those portions of L2 that are written rarely but must be correct when read.

The EDC implements a distance-3 "detect 2, correct 1" Hamming code. The L2 controller
always performs a full Hamming code check on 256-bit reads, regardless of whether the
fetch is from L1D controller, L1P controller, IDMA, or DMA. There is a parity value
associated with every 256 bits (32B) of L2 memory and a valid bit to qualify each parity
value. EDC uses parity RAM to store this parity information. Parity is calculated and
made valid in the parity RAM for following operations:

• 256 bits IDMA write

• 256 bits DMA writes through SDMA

• L2 cache allocate (both read and write allocate, except for the line to which the write
allocate writes).

Parity is made invalid in the parity RAM for the following operations:

• DMA writes through SDMA or IDMA writes for less than 256 bits.

• All L1D writes to L2, either cache or SRAM.

• L1D writes that cause an L2 write allocate on the line that gets written (part of the L2
cache line).

• All L1D victims.

EDC configuration registers are available to enable EDC individually for each of the L2
memory pages. Status registers are also available to report the address that shows the
EDC error as well as the type of the error, whether it is 1-bit error or multiple-bit error. It
also indicates whether it is corrected or not.

Problem Symptoms:

EDC is reporting EDC error (parity error) even when there is no error present in L2
memory. The error is random and the status register reports either 1-bit or multiple-bit
error. It is also not consistent that after some defined iterations EDC reports an error.
The EDC error can occur at any time and at any location in the memory. The error is a
false positive; i.e., there is actually no error present in the memory, but EDC reports an
error. There are two dedicated events (event 116, corrected bit error, and event 117,
uncorrected bit error) going from EDC to the megamodule INTC. If interrupt is enabled
and configured for those events, then the CPU reports an EDC interrupt.

Problem Prerequisites:

The following two operations must happen in parallel for this error to occur:

• L2 block coherence operation (WB and WBInv Only)

• L1D victim generation.

When there is an L2 block coherence operation going on (it could be either L2_WB or
L2_WBInv) and before that operation is complete, if the CPU does the operations that
generates the L1D victims, then it is possible that the L1D victim operation will mark the
parity valid bit to be 1, which is incorrect behavior. This can easily occur when there are
interrupts happening during the L2 Block WriteBack (L2_WB) or L2 WriteBackInvalidate
(L2_WBInv) operation. The error does not occur during block invalidate operation. As
mentioned above, it is a random occurrence that the L1D victim could validate the parity
and generate the EDC interrupt.

59SPRZ235R–October 2005–Revised January 2012 TMS320TCI6482 Digital Signal Processor— Silicon Revisions 3.1, 2.1, 2.0, 1.1
Submit Documentation Feedback

Copyright © 2005–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRZ235R


Silicon Revision 3.1 Usage Notes and Known Design Exceptions to Functional Specifications www.ti.com

Correct Behavior:
• L2 coherence operation in progress

and
• L1D victim generated

• L1D victims are not EDC protected and, so, the parity valid bit should get reset to 0
and junk should be written to parity RAM.

Incorrect Behavior:
• L2 coherence operation in progress

and
• L1D victim generated

• L1D victims are not EDC protected but the parity valid bit is marked valid with no
parity calculated and junk written to parity RAM.

• Any subsequent reads to this cache line cause the L2 EDC error. EDC protection is
performed as per junk parity data on that cache sub-line (256 bits) and it can corrupt
the data in that cache sub-line.

Workaround(s): Workaround 1:

Disable interrupts during L2 block coherence operations. If there are large block
coherence operations and disabling the interrupt during those coherence operations is
not feasible, then divide the big coherence operation into multiple, small coherence
operations and protect each of them against allowing interrupts during two coherence
operations.

Workaround 2:

Allow interrupts, but put the L1D cache in freeze mode before starting L2 block
coherence operation so that L1D victims are not generated during the L2 block
coherence operation. Un-freeze the L1D cache as soon as the L2 block coherence
operation is complete.

60 TMS320TCI6482 Digital Signal Processor— Silicon Revisions 3.1, 2.1, 2.0, 1.1 SPRZ235R–October 2005–Revised January 2012
Submit Documentation Feedback

Copyright © 2005–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRZ235R


www.ti.com Silicon Revision 3.1 Usage Notes and Known Design Exceptions to Functional Specifications

Advisory 3.1.34 SRIO May Fail to Send Interrupt for Completed TX or RX Message

Revision(s) Affected: 3.1 and earlier

Details: The interrupt clearing/setting mechanism for the RXU/TXU gives priority to clearing the
interrupt rather than setting it. The sequence of the peripheral for handling buffer
descriptors of a completed message is to: write the buffer descriptor info, set the ICSR
interrupt bit, and, finally, write the completion pointer (CP). As software processes the
buffer descriptors during an ISR, it ends the process by writing the CP register to
indicate to the peripheral what was the last buffer descriptor processed. This clears the
interrupt, if both peripheral and software are at the same point; i.e., the interrupt is not
cleared and will fire again once the pacing register has completed its countdown.

Due to the implementation of the interrupt clearing/setting, where priority is given to
clearing the interrupt, if software writes the CP (which the peripheral compares to it's CP
and matches) causing the interrupt to be cleared on the same internal clock cycle as the
peripheral trying to set the interrupt bit for the next buffer descriptor, the interrupt bit is
cleared and the interrupt for that next packet is lost. Note that no data is actually lost, the
interrupt simply does not occur. Once an additional message is processed and the
descriptor is completed, the interrupt is fired as normal and all descriptors can be
processed at that point. Although not guaranteed, it is possible for this missed interrupt
condition to occur with every ISR that attempts to write the TX or RX CP. However, since
the missed interrupt descriptor can be processed during the next interrupt ISR, the only
concern is added latency. For systems with a steady flow of messages, this added
latency is usually insignificant, but it is evident on scenarios where it occurs on the last
buffer descriptor in a group of messages since nothing is behind it to cause another
interrupt. For example, if the RX queue received 10 messages and the tenth interrupt is
lost, and no other messages were ever routed to that same RX queue, it will never fire
another interrupt.

Workaround: Change the ISR as shown in the following steps and in Figure 14. Every time an
interrupt is received:

1. Determine that the interrupt is related to CPPI. If not, call another handler.

2. Fetch the next descriptor (software maintains a current pointer, SW_Pointer).

3. Check the ownership bit for this next descriptor:

(a) If it is not owned by software, go to Step 6.

(b) If it is owned by software, then check the “CC” code and perform the remaining
packet processing.

(c) If EOQ is reached, write the completion pointer and go to Step 8.

(d) Otherwise, continue with Step 4.

4. Move the SW_Pointer to point to this next descriptor.

5. Go back to Step 3.

6. Write the completion pointer based on the current SW_Pointer value.

7. Check the ownership bit for the next descriptor again:

(a) If it is owned by software, go to Step 3b.

(b) Otherwise, continue with Step 8.

8. Write the interrupt pacing register to enable the next interrupt.

61SPRZ235R–October 2005–Revised January 2012 TMS320TCI6482 Digital Signal Processor— Silicon Revisions 3.1, 2.1, 2.0, 1.1
Submit Documentation Feedback

Copyright © 2005–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRZ235R


If CPPI
Interrupt?

End
No

Current_Desc

Yes

Check CC and
Perform Packet

Processing

Peripheral

Application Software (CPU)

Write the
Interrupt Pacing

Register

Peripheral

Return from ISR

Application
Software
(CPU)

Check EOQ?

Yes

Current_Desc =
Current_Desc +

0x10

No

Write the
completion

pointer

Write the
completion
pointer with

Previous_Desc

Previous_Desc =
Current_Desc –

0x10

Ownership of
Current_Desc?

Ownership of
Current_Desc?

Silicon Revision 3.1 Usage Notes and Known Design Exceptions to Functional Specifications www.ti.com

Figure 14. ISR Workaround Flowchart

62 TMS320TCI6482 Digital Signal Processor— Silicon Revisions 3.1, 2.1, 2.0, 1.1 SPRZ235R–October 2005–Revised January 2012
Submit Documentation Feedback

Copyright © 2005–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRZ235R


www.ti.com Silicon Revision 2.1 Usage Notes and Known Design Exceptions to Functional Specifications

3 Silicon Revision 2.1 Usage Notes and Known Design Exceptions to Functional
Specifications

This section describes the usage notes and advisories that apply to revision 2.1 of the TCI6482 device.

NOTE: No functional design changes were made from silicon revision 2.0 to silicon revision 2.1. All
usage notes and advisories for TCI6482 silicon revision 2.0 also apply to silicon revision 2.1.

3.1 Usage Notes for Silicon Revision 2.1

Silicon revision 2.1 applicable usage notes have been found on later silicon revisions; for more detail, see
Section 2.1, Usage Notes for Silicon Revision 3.1.

63SPRZ235R–October 2005–Revised January 2012 TMS320TCI6482 Digital Signal Processor— Silicon Revisions 3.1, 2.1, 2.0, 1.1
Submit Documentation Feedback

Copyright © 2005–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRZ235R


Silicon Revision 2.1 Usage Notes and Known Design Exceptions to Functional Specifications www.ti.com

3.2 Silicon Revision 2.1 Known Design Exceptions to Functional Specifications

Table 15. Silicon Revision 2.1 Advisory List

Title ...................................................................................................................................... Page

Advisory 2.1.21 —DSP SDMA/IDMA: Unexpected Stalling of SDMA/IDMA Access to L2 SRAM .......................... 65
Advisory 2.1.27 —L2 Victim Traffic Due To L2 Block Writeback During Any Pending CPU Request ...................... 72
Advisory 2.1.28 —Serial RapidIO Internal Digital Loopback is Not Always Stable ............................................ 74

64 TMS320TCI6482 Digital Signal Processor— Silicon Revisions 3.1, 2.1, 2.0, 1.1 SPRZ235R–October 2005–Revised January 2012
Submit Documentation Feedback

Copyright © 2005–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRZ235R


www.ti.com Silicon Revision 2.1 Usage Notes and Known Design Exceptions to Functional Specifications

Advisory 2.1.21 DSP SDMA/IDMA: Unexpected Stalling of SDMA/IDMA Access to L2 SRAM

Revision(s) Affected: 2.1 and earlier

Details:

NOTE: If DSP L2 memory is used only as cache OR if L2 RAM is not accessed
by IDMA or via the SDMA interface during run-time, then this exception
does not apply.

The C64x+ megamodule has a Master Direct Memory Access (MDMA) bus interface and
a Slave Direct Memory Access (SDMA) bus interface. The MDMA interface provides
DSP access to resources outside the C64x+ megamodule (i.e., DDR2, EMIFA, and PCI
memory). The MDMA interface is typically used for CPU/cache accesses to memory
beyond the level 2 (L2) memory level. These accesses include cache line allocates,
write-backs, and non-cacheable loads and stores to/from system memories. The SDMA
interface allows other master peripherals in the system to access level 1 data (L1D),
level 1 program (L1P), and L2 RAM DSP memories. The masters allowed accesses to
these memories are EDMA transfer controllers, HPI, PCI, EMAC, and SRIO. The DSP
Internal Direct Memory Access (IDMA) is a C64x+ megamodule DMA engine used to
move data between internal DSP memories (L1, L2) and/or the DSP peripheral
configuration bus. The IDMA engine shares resources with the SDMA interface.

The C64x+ megamodule has an L1D cache and an L2 caches, both of which implement
write-back data caches. The C64x+ megamodule holds updated values for external
memory as long as possible. It writes these updated values, called victims, to external
memory when it needs to make room for new data, when requested to do so by the
application, or when a load is performed from a non-cacheable memory for which there
is a set match in the cache (i.e., the non-cacheable line would replace a dirty line if
cached). The L1D sends its victims to L2. The caching architecture has pipelining,
meaning multiple requests could be pending between L1, L2, and MDMA. For more
details on the C64x+ megamodule and its MDMA and SDMA ports, see the
TMS320C64x+ Megamodule Reference Guide (literature number SPRU871).

Ideally, the MDMA (the blue lines in Figure 15) and SDMA/IDMA paths (the orange lines
in Figure 15) operate independently with minimal interference. Normally, MDMA
accesses may stall for extended periods of time (clock cycles) due to expected system
level delays (e.g., bandwidth limitations, DDR2 memory refreshes). However, when
using L2 as RAM, SDMA and/or IDMA accesses to L2/L1 may experience unexpected
stalling in addition to the normal stalls seen by the MDMA interface. For latency-sensitive
traffic, the SDMA stall can result in missing real-time deadlines. In a more severe case,
the SDMA stall can produce a deadlock condition in the device.

NOTE: SDMA/IDMA accesses to L1P/D will not experience an unexpected stall if
there are no SDMA/IDMA accesses to L2. Unexpected SDMA/IDMA
stalls to L1 happen only when they are pipelined behind L2 accesses.
Additionally, the deadlock scenario will be avoided if there are no SDMA
accesses to L2.

Figure 15 is a simplified view for illustrative purposes only. The IDMA/SDMA path
(orange lines) can also go to L1D/L1P memories and IDMA can go to the DSP CFG
peripherals. MDMA transactions (blue lines) can also originate from L1P or L1D through
the L2 controller or directly from the DSP.

65SPRZ235R–October 2005–Revised January 2012 TMS320TCI6482 Digital Signal Processor— Silicon Revisions 3.1, 2.1, 2.0, 1.1
Submit Documentation Feedback

Copyright © 2005–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/lit/pdf/SPRU871
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRZ235R


Cache Control

Memory Protect

Bandwidth Mgmt

L1P

RAM/
Cache

256

Bandwidth Mgmt

Memory Protect

Cache Control

256

L2

256

RAM/
Cache ROM

256

Instruction Fetch

C64x + CPU

256

Cache Control

Memory Protect

Bandwidth Mgmt

L1D

64 64

8 x 32

256

256

256
CFG

MDMA SDMA

EMC

256

32
Peripherals

128 128

RAM/
Cache

Register
File A

Register
File B

EDMA Master
Peripherals

ID
M

A

128
Power Down

Interrupt
Controller

CPU/Cache Access Origination

Master Peripheral Origination

Silicon Revision 2.1 Usage Notes and Known Design Exceptions to Functional Specifications www.ti.com

Figure 15. IDMA, SDMA, and MDMA Paths

66 TMS320TCI6482 Digital Signal Processor— Silicon Revisions 3.1, 2.1, 2.0, 1.1 SPRZ235R–October 2005–Revised January 2012
Submit Documentation Feedback

Copyright © 2005–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRZ235R


www.ti.com Silicon Revision 2.1 Usage Notes and Known Design Exceptions to Functional Specifications

SDMA/IDMA stalls may occur during the following scenarios. Each of these scenarios
describes expected normal DSP functionality, but the SDMA/IDMA access potentially
exhibits additional unexpected stalling.

1. Bursts of writes to non-cacheable MDMA space (i.e., DDR2, EMIFA, and PCI
memory). The DSP buffers up to 4 non-cacheable writes. When this buffer fills,
SDMA/IDMA is blocked until the buffer is no longer full. Therefore, bursts of
non-cacheable writes longer than three writes can stall SDMA/IDMA traffic.

2. Various combinations of L1 and L2 cache activity:

(a) L1D read miss generating victim traffic to L2 (cache or SRAM) or external
memory. The SDMA/MDMA may be stalled while servicing the read miss and the
victim. If the read miss also misses L2 cache, the SDMA/IDMA may be stalled
until data is fetched from external memory to service the read miss. If the read
access is to non-cacheable memory there will still potentially be an L1D victim
generated even though the read data will not replace the line in the L1D cache.

(b) L1D read request missing L2 (going external) while another L1D request is
pending. The SDMA/IDMA may be stalled until the external memory access is
complete.

(c) L2 victim traffic to external memory during any pending L1D request. The
SDMA/IDMA may be stalled until external memory access and the pending L1D
request are complete.

The duration of the SDMA/IDMA stalls depends on the quantity/characteristics of the
L1/L2 cache and the MDMA traffic in the system. In cases 2a, 2b, and 2c, stalling may or
may not occur depending on the state of the cache request pipelines and the traffic
target locations. These stalling mechanisms may also interact in various ways, causing
longer stalls. Therefore, it is difficult to predict if stalling will occur and for how long.

SDMA/IDMA stalling and any system impact is most likely in systems with excessive
context switching, L1/L2 cache miss/victim traffic, and heavily loaded EMIF.

Use the following steps to determine if SDMA/IDMA stalling is the cause of real-time
deadline misses for existing applications. Situations where real-time deadlines may be
missed include loss of McBSP samples and low peripheral throughput.

1. Determine if the transfer missing the real-time deadline is accessing L2 or L1D
memory. If not, then SDMA/IDMA stalling is not the source of the real-time deadline
miss.

2. Identify all SDMA transfers to/from L2 memory (e.g., EDMA transfer to/from L2
from/to a McBSP or HPI block transfer to/from L2). If there are no SDMA transfers
going to L2, then SDMA/IDMA stalling is not the source of the problem.

3. Redirect all SDMA transfers to L2 memory to other memories using one of the
following methods:

• Temporarily transfer all the L2 SDMA transfers to L1D SRAM.

• If not all L2 SDMA transfers can be moved to L1D memory, temporarily direct
some of the transfers to DDR memory and keep the rest in L1D memory. There
should be no L2 SDMA transfers.

• If neither of the above approaches are possible, move the transfer with the
real-time deadline to the EMAC CPPI RAM. If the EMAC CPPI RAM is not big
enough, a two-step mechanism can be used to page a small working buffer
defined in the EMAC CPPI RAM into a bigger buffer in L2 SRAM. The EDMA
module can be setup to automate this double buffering scheme without CPU
intervention for moving data from the EMAC CPPI RAM. Some throughput
degradation is expected when the buffers are moved to the EMAC CPPI RAM.

Note: Note that EMAC CPPI RAM memory is word-addressable only and,
therefore, must be accessed using an EDMA index of 4 bytes.

If real-time deadlines are still missed after implementing any of the options in Step 3,
then SDMA/IDMA stalling is likely not the cause of the problem. If real-time deadline
misses are solved using any of the options in Step 3, then SDMA/IDMA stalling is likely

67SPRZ235R–October 2005–Revised January 2012 TMS320TCI6482 Digital Signal Processor— Silicon Revisions 3.1, 2.1, 2.0, 1.1
Submit Documentation Feedback

Copyright © 2005–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRZ235R


Silicon Revision 2.1 Usage Notes and Known Design Exceptions to Functional Specifications www.ti.com

the source of the problem.

As previously mentioned, a possible deadlock scenario is introduced in the presence of
the SDMA stalls just described. This scenario occurs for certain masters connected to
the data SCR indirectly through a bridge [see the System Interconnect section of the
TMS320TCI6482 Communications Infrastructure Digital Signal Processor data manual
(literature number SPRS246 )]. For TCI648x devices, the masters that are affected are
the EMAC, HPI, PCI, VLYNQ, and SRIO . If the following sequence of events occurs,
then a deadlock situation might arise:

1. One of the following two accesses occur:

(a) SRIO issues a write command to the DSP's SDMA port followed by a subsequent
write command to DDR2 (or EMIFA).

(b) EMAC, HPI, PCI, or VLYNQ issues a write command to the DSP's SDMA port
and the same or different master in this group issues a subsequent write
command to DDR2 (or EMIFA).

2. If, at this time, the DSP's SDMA asserts itself not ready and unable to accept more
write data and a cache line writeback from the DSP to DDR2 (or another slave, e.g.,
EMIFA) occurs.

In the above scenario it is possible for data phases from the write command issued to
DDR2 (or EMIFA) to be stuck behind the data phases for the write to the DSP's SDMA in
the SCR.

Therefore, if the DSP issues victim traffic to the same slave (DDR2 or EMIFA), then data
associated with the victim traffic (#2) intended for DDR2 (or EMIFA) will be stuck behind
write commands issued for #1. However, due to the MDMA/SDMA blocking issue, the
SDMA traffic for #1 will be waiting for the MDMA traffic for #2 to finish, manifesting itself
into a deadlock situation.

68 TMS320TCI6482 Digital Signal Processor— Silicon Revisions 3.1, 2.1, 2.0, 1.1 SPRZ235R–October 2005–Revised January 2012
Submit Documentation Feedback

Copyright © 2005–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/lit/pdf/SPRS246
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRZ235R


www.ti.com Silicon Revision 2.1 Usage Notes and Known Design Exceptions to Functional Specifications

Workaround(s): Method 1

Entirely eliminate IDMA/SDMA stalling and the potential for a deadlock condition by
removing all SDMA/IDMA accesses to L2 SRAM. For example, EMAC descriptors and
EMAC payload cannot reside in L2. Master peripherals like the EDMA, PCI, HPI, and
SRIO cannot access L2. There are no issues with the CPU itself accessing code/data in
L2. This issue only pertains to SDMA/IDMA accesses to L2.

Method 2

Issues such as dropped McBSP samples can be worked around by moving
latency-sensitive buffers outside the C64x+ megamodule. For example, rather than
placing buffers for the McBSP into L1/L2, those buffers can instead be placed in other
memory, such as the EMAC CPPI RAM.

Note: Note that EMAC CPPI RAM memory is word-addressable only and, therefore,
must be accessed using an EDMA index of 4 bytes.

Method 3

To reduce the SDMA/IDMA stalling system impact, perform any of the following:

1. Improve system tolerance on DMA side (SDMA/IDMA/MDMA):

• Understand and minimize latency-critical SDMA/IDMA accesses to L2 or L1P/D.

• Directly reduce critical real-time deadlines, if possible, at peripheral/IO level (e.g.,
increase word size and/or reduce bit rates on serial ports).

• To reduce DSP MDMA latency:

– Increase the priority of the DSP access to DDR2/EMIFA such that MDMA
latency of MDMA accesses causing stalls is minimized.

Note: Other masters, such as HPI, may have real-time deadlines that dictate
higher priority than the DSP.

– Lower the PRIO_RAISE field setting in the DDR2 memory controller's burst
priority register. Values ranging between 0x10 and 0x20 should give decent
performance and minimize latency; lower values may cause excessive
SDRAM row thrashing.

– Do not perform EMIFA access using EMIFA ARDY handshaking during DSP
run time. (Devices using ARDY potentially insert excessive latency to external
memory accesses.)

2. Minimize offending scenarios on DSP/caching side:

• If the DSP performing non-cacheable writes is causing the issue, insert protected
non-cacheable reads (as shown in the last list item below) every few writes to
allow the write buffer to empty.

• Avoid caching from slow memories such as asynchronous memory. Instead,
page the data via the EDMA from the off-chip async memory to L2 SRAM or
SDRAM space before accessing the data from the DSP.

Note: Paging cannot occur while real-time deadlines must be met.

• Use explicit cache commands to trigger cache writebacks during appropriate
times (L1D Writeback All, L2 Writeback All). Do not use these commands when
real-time deadlines must be met.

• Restructure program data and data flow to minimize the offending cache activity.

– Define the read-only data as const. The const C keyword tells the compiler
not to write to the array. By default, such arrays are allocated to the .const
section as opposed to BSS. With a suitable linker command file, the
developer can link the .const section off chip, while linking .bss on chip.
Because programs initialize .bss at run time, this reduces the program's
initialization time and total memory image.

– Explicitly allocate lookup tables and writeable buffers to their own sections.
The #pragma DATA_SECTION (label, section) directive tells the compiler to
place a particular variable in the specified COFF section. The developer can

69SPRZ235R–October 2005–Revised January 2012 TMS320TCI6482 Digital Signal Processor— Silicon Revisions 3.1, 2.1, 2.0, 1.1
Submit Documentation Feedback

Copyright © 2005–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRZ235R


Silicon Revision 2.1 Usage Notes and Known Design Exceptions to Functional Specifications www.ti.com

explicitly control the layout of the program with this directive and an
appropriate linker command file.

– Avoid directly accessing data in slow memories (e.g., flash); copy at
initialization time to faster memories.

• Modify troublesome code.

– Rewrite using DMAs to minimize data cache writebacks. If the code accesses
a large quantity of data externally, consider using DMAs to bring in the data,
using double buffering and related techniques. This will minimize cache
write-back traffic and the likelihood of SDMA/IDMA stalling.

– Re-block the loops. In some cases, restructuring loops can increase reuse in
the cache and reduce the total traffic to external memory.

– Throttle the loops. If restructuring the code is impractical, then it is reasonable
to slow it down. This reduces the likelihood that consecutive SDMA/IDMA
blocks stack up in the cache request pipelines, resulting in a long stall.

• Protect non-cacheable reads from generating an SDMA stall by freezing the L1D
cache during the non-cacheable read access(es). The following example code
contains a function that protects non-cacheable reads, avoids blocking during the
reads, and, therefore, avoids the deadlock state.

;; ======================================================================== ;;
;; Long Distance Load Word ;;
;; ;;
;; int long_dist_load_word(volatile int *addr) ;;
;; ;;
;; This function reads a single word from a remote location with the L1D ;;
;; cache frozen. This prevents L1D from sending victims in response to ;;
;; these reads, thus preventing the L1D victim lock from engaging for the ;;
;; corresponding L1D set. ;;
;; ;;
;; The code below does the following: ;;
;; ;;
;; 1. Disable interrupts ;;
;; 2. Freeze L1D ;;
;; 3. Load the requested word ;;
;; 4. Unfreeze L1D ;;
;; 5. Restore interrupts ;;
;; ;;
;; Interrupts are disabled while the cache is frozen to prevent affecting ;;
;; the performance of interrupt handlers. Disabling interrupts during ;;
;; the long distance load does not greatly impact interrupt latency, ;;
;; because the CPU already cannot service interrupts when it's stalled by ;;
;; the cache. This function adds a small amount of overhead (~20 cycles) ;;
;; to that operation. ;;
;; ;;
;; ======================================================================== ;;

.asg 0x01840044, L1DCC ; L1D Cache Control

.global _long_dist_load_word

.text

.asmfunc
; int long_dist_load_word(volatile int *addr)
_long_dist_load_word:

MVKL L1DCC, B4
MVKH L1DCC, B4

|| DINT ; Disable interrupts
|| MVK 1, B5

STW B5, *B4 ; \_ Freeze cache
LDW *B4, B5 ; /
NOP 4
SHR B5, 16, B5 ; POPER -> OPER

|| LDW *A4, A4 ; read value remotely
NOP 4
STW B5, *B4 ; \_ Restore cache

70 TMS320TCI6482 Digital Signal Processor— Silicon Revisions 3.1, 2.1, 2.0, 1.1 SPRZ235R–October 2005–Revised January 2012
Submit Documentation Feedback

Copyright © 2005–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRZ235R


www.ti.com Silicon Revision 2.1 Usage Notes and Known Design Exceptions to Functional Specifications

RET B3
|| LDW *B4, B5 ; /

NOP 4
RINT ; Restore interrupts
.endasmfunc

;; ======================================================================== ;;
;; End of file: ldld.asm ;;
;; ======================================================================== ;;

Perform one of the following to eliminate the potential for a deadlock condition:

• Force EMAC, HPI, PCI, VLYNQ, and SRIO to perform writes to either DSP memory
space or DDR2 (or EMIFA) memory space, but not to both.

• Force the completion of pending EMAC, HPI, PCI, VLYNQ, and SRIO write
commands to either DSP memory space or DDR2/EMIFA memory space before
initiating writes to a different destination. Pending write commands from a particular
master are forced to complete when the same master initiates a read from the same
destination memory.

NOTE: In the case of EMAC, HPI, PCI, and VLYNQ as a group, all of these
masters must only perform writes to either DSP memory or DDR2/EMIFA
memory, but not both. For example, if EMAC writes to DSP memory and
PCI writes to DDR2 memory, the potential for the deadlock condition is
still present.

This issue has been fixed on silicon revision 3.1.

71SPRZ235R–October 2005–Revised January 2012 TMS320TCI6482 Digital Signal Processor— Silicon Revisions 3.1, 2.1, 2.0, 1.1
Submit Documentation Feedback

Copyright © 2005–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRZ235R


Silicon Revision 2.1 Usage Notes and Known Design Exceptions to Functional Specifications www.ti.com

Advisory 2.1.27 L2 Victim Traffic Due To L2 Block Writeback During Any Pending CPU Request

Revision(s) Affected: 2.1 and earlier

Details: This advisory is an update to Advisory 2.1.21 in this document. Advisory 2.1.21 lists the
following four blocking conditions to trigger an SDMA/IDMA stall:

1. Bursts of writes to non-cacheable locations.

2. L1D read miss generating victim traffic to L2 (cache or SRAM) or external memory.

3. L1D read request missing L2 (going external) while another L1D request is pending.

4. L2 victim traffic to external memory during any pending L1D request.

NOTE: Items 1, 2, 3, and 4 shown in the list above and in Table 16 below are
actually labeled as 1, 2a, 2b, and 2c in Advisory 2.1.21.

This advisory covers one more blocking condition:

5. L2 victim traffic due to L2 block writeback during any pending CPU request.

For silicon revisions 1.1, 2.0, and 2.1 that contain the original SDMA/IDMA blocking
errata, this is a fifth way to encounter the issue in addition to the previously
communicated four errata conditions in Advisory 2.1.21.

No additional deadlock risk potential is created by the addition of the new condition to
silicon revisions 1.1, 2.0, and 2.1 that currently contain the SDMA/IDMA blocking
conditions 1-4. This means that this issue can lead to a deadlock in the same manner
that the other four conditions can. On silicon revision 2.0, without the original stall
conditions 1-4, this creates a deadlock condition that is identical to the previous
revisions.

Table 16. Stall Conditions on Silicon Revisions

STALL CONDITIONSSILICON
REVISIONS 1 2 3 4 5 6

1.1 YES YES YES YES YES NO

2.0 YES YES YES YES YES NO

2.1 YES YES YES YES YES NO

Under certain conditions, L2 victim traffic due to a block writeback can block
SDMA/IDMA accesses to UMAP0 during CPU requests.

There are four transactions that must happen to cause an SDMA/IDMA to stall because
of this condition:

1. L1D/L1P needs to create an L2$ hit. This happens as a result of one of the following:

• An L1D victim (through L1D writeback or writeback-invalidate).

• An L1D read+victim (through L1D read miss resulting in a writeback).

• An L1D write miss (write-through to an uncached line).

• An L1D read miss.

• An L1P fetch miss.

2. A user-initiated L2 block writeback must occur involving the same cache set as the
L1D/L1P cache accesses in the previous bullet.

3. An SDMA access to UMAP0.

4. The CPU also accesses the same cache set as the L1D/L1P cache accesses and
the L2 block writeback as described in the first two bullets. This happens as a result
of a CPU LDx/STx instruction that causes one of the following:

• An L1D victim (through L1D writeback or writeback-invalidate).

• An L1D write miss (write-through to an uncached line).

• An L1D read miss.

72 TMS320TCI6482 Digital Signal Processor— Silicon Revisions 3.1, 2.1, 2.0, 1.1 SPRZ235R–October 2005–Revised January 2012
Submit Documentation Feedback

Copyright © 2005–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRZ235R


www.ti.com Silicon Revision 2.1 Usage Notes and Known Design Exceptions to Functional Specifications

• An L1P fetch miss.

As a result of the four items above, any further SDMAs to UMAP0 are blocked. Note that
three of these items must involve the same L2$ set in order to see the issue and, thus,
is not as likely as the other conditions listed in the original errata. The stall persists until
the operations above are complete.

Workaround(s): Workaround 1: Leave in previous SDMA/IDMA stall workarounds

For silicon revisions 1.1, 2.0, and 2.1 that were already affected with the other four
conditions of the SDMA/IDMA stall issue from Advisory 2.1.21, there is no additional
workaround needed. If all of the deadlock avoidance steps listed in Advisory 2.1.21 have
been followed, there is no risk for a deadlock because of this issue. Methods to reduce
stalling due to this issue are also already covered in Advisory 2.1.21.

For silicon revision 2.0 that fixed the initial four conditions of SDMA/IDMA stall issue, the
deadlock avoidance steps that are already listed in Advisory 2.1.21 for previous revisions
of silicon should be followed to ensure that there is no chance of a deadlock. The
workarounds to avoid stalls are also the same as communicated in previous revisions of
the device with the issue.

Workaround 2: Do not use L2$

Systems that do not use L2$ are not affected by this issue.

This issue has been fixed on silicon revision 3.1.

73SPRZ235R–October 2005–Revised January 2012 TMS320TCI6482 Digital Signal Processor— Silicon Revisions 3.1, 2.1, 2.0, 1.1
Submit Documentation Feedback

Copyright © 2005–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRZ235R


Silicon Revision 2.1 Usage Notes and Known Design Exceptions to Functional Specifications www.ti.com

Advisory 2.1.28 Serial RapidIO Internal Digital Loopback is Not Always Stable

Revision(s) Affected: 2.1 and earlier

Details: A digital loopback control function provides testability features with the ability to loop a
port's transmit data back to the receive side. Digital loopback is controlled through bit 25
of the RIO_PER_SET_CNTL register. This single bit control affects every 1X port, or all
lanes of a 4X port, depending on the supported mode of the device. This loopback is
done in the digital logic domain and is before the SerDes. An issue was discovered
where ports that are in digital loopback exhibit sporadic errors and are unreliable. In
these instances, the ports are unable to maintain Port_ok status and may encounter
multiple various error stopped states.

In digital loopback, the normal physical layer RX FIFO is bypassed altogether for data.
The data is actually handed from TX to RX via a separate path. This handoff is being
performed correctly, however, the RX FIFO sideband signals that indicate under/over run
conditions are erroneously being evaluated by the digital logic, instead of being ignored.
This means that the RX state machine continues acting upon the under/over run signals
that can be affected by external signals or even noise coming in on the device pins. For
example, if the SerDes device pins are connected to a link partner's active transmitter,
the port is not able to remain initialized in loopback since the under/over run signals are
following the link traffic. Unreliable digital loopback has also been observed without an
active transmitting device attached.

Workaround: Avoid using the digital loopback mode. TX-to-RX loopback is also supported within the
SerDes macros themselves. This internal SerDes loopback mode incorporates the
complete RapidIO data path (including the RX FIFO) and eliminates the above
mentioned issue. SerDes loopback is very stable and can be enabled with the following
bits in the RapidIO SerDes registers:

RIO_SERDES_CFG1_CNTL[7:6] = 0b10
RIO_SERDES_CFGRXn_CNTL[1] = 0b1
RIO_SERDES_CFGTXn_CNTL[1] = 0b1

Note that loopback needs to be individually enabled for each port, or each lane of a 4X
port, by setting bit 1 of the appropriate RIO_SERDES_CFGRXn_CNTL and
RIO_SERDES_CFGTXn_CNTL register.

74 TMS320TCI6482 Digital Signal Processor— Silicon Revisions 3.1, 2.1, 2.0, 1.1 SPRZ235R–October 2005–Revised January 2012
Submit Documentation Feedback

Copyright © 2005–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRZ235R


www.ti.com Silicon Revision 2.0 Usage Notes and Known Design Exceptions to Functional Specifications

4 Silicon Revision 2.0 Usage Notes and Known Design Exceptions to Functional
Specifications

NOTE: All usage notes and advisories for TCI6482 silicon revision 2.0 also apply to silicon revision
2.1. For details, see Section 3, Revision 2.1 Usage Notes and Known Design Exceptions to
Functional Specifications

75SPRZ235R–October 2005–Revised January 2012 TMS320TCI6482 Digital Signal Processor— Silicon Revisions 3.1, 2.1, 2.0, 1.1
Submit Documentation Feedback

Copyright © 2005–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRZ235R


Silicon Revision 1.1 Usage Notes and Known Design Exceptions to Functional Specifications www.ti.com

5 Silicon Revision 1.1 Usage Notes and Known Design Exceptions to Functional
Specifications

This section describes the usage notes and advisories that apply to revision 1.1 of the TCI6482 device.

5.1 Usage Notes for Silicon Revision 1.1

Some silicon revision 1.1 applicable usage notes have been found on later silicon revisions; for more
detail, see Section 2.1, Usage Notes for Silicon Revision 3.1.

5.1.1 EMAC: RMII Reference Clock Will Be Changed to Input on Silicon Revision 2.0 and Later

Due to Advisory 1.1.5, EMAC: RMII Cannot Be Used to Talk to a Switch, the RMII reference clock
(RMREFCLK) will be changed from an output pin to an input pin on silicon revision 2.0 and later. This
change has also been reflected in the TMS320TCI6482 Communications Infrastructure Digital Signal
Processor data manual (literature number SPRS246).

76 TMS320TCI6482 Digital Signal Processor— Silicon Revisions 3.1, 2.1, 2.0, 1.1 SPRZ235R–October 2005–Revised January 2012
Submit Documentation Feedback

Copyright © 2005–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/lit/pdf/SPRS246
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRZ235R


www.ti.com Silicon Revision 1.1 Usage Notes and Known Design Exceptions to Functional Specifications

5.2 Silicon Revision 1.1 Known Design Exceptions to Functional Specifications

Table 17. Silicon Revision 1.1 Advisory List

Title ...................................................................................................................................... Page

Advisory 1.1.0 —Reset: RESETSTAT Pin Not Active When POR Pin is Active............................................... 78
Advisory 1.1.1 —Serial RapidIO: Master Enable Bit Does Not Gate Out-Going Requests .................................. 78
Advisory 1.1.2 —EMIFA: Internal Clock Source Cannot Be Divided by a Number Greater Than Eight .................... 79
Advisory 1.1.3 —Reset: Internal Pullup and Pulldown Resistors Disabled During POR Low Pulse ........................ 79
Advisory 1.1.4 —EMAC: RGMII Cannot be Used to Communicate With Devices that Do Not Use In-Band Signaling .. 80
Advisory 1.1.5 —EMAC: RMII Cannot be Used to Talk to a Switch............................................................. 80
Advisory 1.1.6 —Bootloader: Serial RapidIO Configurations 1, 2, and 3 Cannot be Used for Booting..................... 80

Advisory 1.1.7 —EDMA: Lower Priority Queue Does Not Get Serviced When Higher Priority Queue has Pending
Event............................................................................................................................ 81

77SPRZ235R–October 2005–Revised January 2012 TMS320TCI6482 Digital Signal Processor— Silicon Revisions 3.1, 2.1, 2.0, 1.1
Submit Documentation Feedback

Copyright © 2005–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRZ235R


Silicon Revision 1.1 Usage Notes and Known Design Exceptions to Functional Specifications www.ti.com

Advisory 1.1.0 Reset: RESETSTAT Pin Not Active When POR Pin is Active

Revision(s) Affected: 1.1

Details: The RESETSTAT pin is used by the DSP to signal the end of a reset sequence,
including power-on reset. For more details on the TCI6482 reset sequences, see the
TMS320TCI6482 Communications Infrastructure Digital Signal Processor data manual
(literature number SPRS246) .

During device power-up, the RESETSTAT pin will be in a high-impedance state;
therefore, the RESETSTAT pin should not be polled to determine when the power-on
reset sequence completes.

Workaround(s): After the POR pin is brought high, wait 15,000 CLKIN1 cycles before polling the
RESETSTAT pin to determine if the DSP power-on reset sequence is complete.

Internal Tracking Number: 2

Advisory 1.1.1 Serial RapidIO: Master Enable Bit Does Not Gate Out-Going Requests

Revision(s) Affected: 1.1

Details: The Master Enable bit in the RapidIO Port General Control CSR Register
(RIO_SP_GEN_CTL - address 02D0 113C) should control whether a device is allowed
to issue requests into the system.

On the TCI6482 device, the Master Enable bit does not control whether out-going
requests can be sent by the DSP.

Workaround(s): The CPU must poll the Master Enable bit until it becomes "1" before enabling out-going
requests such as Direct I/O, Maintenance, Doorbell, or Message Passing.

Internal Tracking Number: 22

78 TMS320TCI6482 Digital Signal Processor— Silicon Revisions 3.1, 2.1, 2.0, 1.1 SPRZ235R–October 2005–Revised January 2012
Submit Documentation Feedback

Copyright © 2005–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/lit/pdf/SPRS246
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRZ235R


www.ti.com Silicon Revision 1.1 Usage Notes and Known Design Exceptions to Functional Specifications

Advisory 1.1.2 EMIFA: Internal Clock Source Cannot Be Divided by a Number Greater Than Eight

Revision(s) Affected: 1.1

Details: The PLL1 controller SYSCLK4 signal is used as the EMIFA internal clock. The frequency
of SYSCLK4 is controlled by divider D4. The RATIO field of the PLL1 Controller Divider
4 Register (PLLDIV4) is used to specify the divide-by value of divider D4. For more
information on the PLL1 controller, see the PLL1 Controller section of the
TMS320TCI6482 Communications Infrastructure Digital Signal Processor data manual
(literature number SPRS246 revision B and later) .

On the TCI6482 device, the RATIO field can only be set to a value of 000b (/1) through
111b (/8). This means SYSREFCLK (used as CPU clock) cannot be divided by a value
greater than eight. When the device is configured such that EMIFA uses an internal
clock, care must be taken so that the maximum clock speed of EMIFA is not violated.

Workaround(s):

1. Do not use SYSCLK4 to clock EMIFA. Instead, provide an external clock source for
EMIFA through the AECLKIN pin by pulling the AEA15 pin low during reset.

2. Slow down the frequency of SYSREFCLK so that SYSCLK4 does not run above the
maximum clock speed of EMIFA. Note: slowing down SYSREFCLK directly affects
the CPU clock speed.

Internal Tracking Number: 7

Advisory 1.1.3 Reset: Internal Pullup and Pulldown Resistors Disabled During POR Low Pulse

Revision(s) Affected: 1.1

Details: A number of pins, including configuration pins, on the TMS320TCI6482 device include
internal pullup/pulldown (IPU/IPD) resistors. These IPU/IPD resistors define the state of
the pins while neither the DSP nor an external force is driving them.

During device power-up, the TCI6482 device requires that the POR pin be low. Once the
device's power supplies are stable, the POR pin can be brought high to bring the device
out of reset. When the POR pin transitions from low to high, the device configuration
pins are latched. For more details on IPU/IPD resistors, power-up, and reset sequences,
see the TMS320TCI6482 Communications Infrastructure Digital Signal Processor data
manual (literature number SPRS246) .

On the TCI6482 device, the IPU/IPD resistors are disabled whenever the POR pin is
low. As most pins will be in a high-impedance state until the POR pin goes high, the
IPU/IPD resistors should not be relied upon to set the state of the device pins while POR
is low; this is especially important for device configuration pins. Also, since a large
number of pins are floating, i.e., in a high-impedance state, the DVDD33 supply draws a
large amount of current (up to 500 mA).

Workaround(s): To ensure the configuration of the device following power-on reset, attach external pullup
and pulldown resistors to the device configuration pins.

Note: if the end application requires that other DSP pins have a valid state during
power-up, then an external pullup or pulldown resistor must be used.

Internal Tracking Number: 1

79SPRZ235R–October 2005–Revised January 2012 TMS320TCI6482 Digital Signal Processor— Silicon Revisions 3.1, 2.1, 2.0, 1.1
Submit Documentation Feedback

Copyright © 2005–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/lit/pdf/SPRS246
http://www.ti.com/lit/pdf/SPRS246
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRZ235R


Silicon Revision 1.1 Usage Notes and Known Design Exceptions to Functional Specifications www.ti.com

Advisory 1.1.4 EMAC: RGMII Cannot be Used to Communicate With Devices that Do Not Use
In-Band Signaling

Revision(s) Affected: 1.1

Details: The Reduced Gigabit Media Independent Interface (RGMII) industry standard (version
2.0) has a list of in-band signaling features that are required and some that are optional.
The optional features can be used to set the link rate, duplex mode, and also to carry the
link status. The EMAC on the TCI6482 DSP always uses these optional features, making
them a requirement. This means that the EMAC cannot communicate with PHYs or
switches that do not support these optional features.

Workaround(s): None.

Internal Tracking Number: 12

Advisory 1.1.5 EMAC: RMII Cannot be Used to Talk to a Switch

Revision(s) Affected: 1.1

Details: The RMII reference clock output, RMREFCLK, on the TCI6482 DSP may be used to talk
to a PHY, but it is highly likely that this will not work with a switch. In a system with
multiple TCI6482 DSPs, each DSP would have a RMREFCLK output and there is a slim
chance these clocks will be aligned. Furthermore, a switch would only have a single
reference clock input.

Note that the clock used by the PHY or switch cannot be fed into CLKIN2 such that all
devices use a common clock. This is because the CLKIN2 input is passed through the
DSP's PLL2, which changes the alignment of the clock with respect to the original clock.

Workaround(s): There is no workaround for this advisory; however, on silicon revision 2.0 and later, the
RMREFCLK pin will be changed to an input such that this issue can be avoided.

Internal Tracking Number: 13

Advisory 1.1.6 Bootloader: Serial RapidIO Configurations 1, 2, and 3 Cannot be Used for Booting

Revision(s) Affected: 1.1

Details: Serial RapidIO boot is selected when BOOTMODE[3:0] = 1000b through 1011b.
BOOTMODE[1:0] selects one of four boot configurations of the Serial RapidIO
peripheral; i.e., "00b" refers to Serial RapidIO Boot Configuration 0, "01b" refers to Serial
RapidIO Boot Configuration 1, etc.

However, the SerDes 1, 2, and 3 configuration registers are not set up properly for Serial
RapidIO Boot Configurations 1, 2, and 3. Therefore, Serial RapidIO Configurations 1, 2,
and 3 cannot be used for booting. Only Serial RapidIO Boot Configuration 0 can be used
for Serial RapidIO boot; this configuration utilizes SerDes 0 in 1X mode.

Workaround(s): Use Serial RapidIO Configuration 0 to boot a second-level bootloader. The second-level
bootloader can be used to correctly set up the SerDes 1, 2, and 3 and force
re-initialization of the link to come up in 4X mode.

Internal Tracking Number: 8

80 TMS320TCI6482 Digital Signal Processor— Silicon Revisions 3.1, 2.1, 2.0, 1.1 SPRZ235R–October 2005–Revised January 2012
Submit Documentation Feedback

Copyright © 2005–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRZ235R


www.ti.com Silicon Revision 1.1 Usage Notes and Known Design Exceptions to Functional Specifications

Advisory 1.1.7 EDMA: Lower Priority Queue Does Not Get Serviced When Higher Priority Queue
has Pending Event

Revision(s) Affected: 1.1

Details: The TCI6482 DSP EDMA channel controller contains four event queues (Q0, Q1, Q2,
and Q3). By default, each queue maps directly to a corresponding transfer controller
(TC), i.e., Q0 maps to TC0, Q1 maps to TC1, etc.

If events are pending in more than one queue and the corresponding TCs are
"available," then the lowest numbered queue is processed first; i.e., if all four queues
have an event pending and all the corresponding TCs are available, Q0 will be
processed first.

If Q0 and Q1 both have pending events and TC0 is busy (meaning not ready to accept a
new TR) and TC1 is available then it should be possible for Q1 to be serviced resulting
in a transfer request (TR) submission to TC1. This maximizes overall performance by
making sure the TCs are kept busy as much as possible with TRs.

The issue on the TCI6482 DSP (Rev 1.1) is that a lower priority queue is not serviced as
long as a higher priority queue has pending events even if the TC associated with the
higher priority queue is busy. If Q0 and Q1 both have pending events, TC0 is busy and
TC1 is available, a TR will not be submitted to TC1. Q1 is not processed as long as Q0
has events pending.

This results in the low priority TCs going unused (thereby delaying the submission of
TRs on these queues) until the events in all queues that are higher priority are submitted
to their corresponding TCs.

Workaround(s):

1. The destination queue (and hence, the TC used) for an event can be selected
through EDMA registers. When selecting the destination queue for an event, care
must be taken to ensure that traffic on higher priority queues is kept to a minimum
(both in event frequency and in transfer duration) such that lower priority queues can
be serviced.

When selecting a queue for an event, keep in mind that each TC has access to only
specific DSP modules. Table 18 shows which modules are accessible by each TC.

Table 18. TC Connection Matrix

Configuration DDR2 Memory C64X+TCP2 VCP2 McBSPs UTOPIA2 VLYNQ PCI EMIFACrossbar Controller Megamodule

TC0 Y Y N N N N N Y Y Y

TC1 N N Y Y Y Y Y Y Y Y

TC2 N N N N N Y Y Y Y Y

TC3 N N N N N Y Y Y Y Y

2. By default, each queue maps directly to a corresponding transfer controller (TC); i.e.,
Q0 maps to TC0, Q1 maps to TC1, etc. If there is a real-time requirement for
servicing a peripheral which cannot be accessed via TC0, then Q0 can be mapped to
the TC through which the peripheral can be accessed. Queue to TC mapping can be
changed via software through the QUETCMAP register (see Figure 16 and Table 19)
as long as only one queue maps to one TC.

For example, abiding by the default settings, McBSP events need to be submitted on
Q1 since TC1 is the only TC with connectivity to this peripheral. McBSP transfers
might be at risk if there are events pending on Q0. In order to reduce this risk, the
default mapping of Q0 can be changed such that it maps to TC1. In this manner, an
event on Q0 results in a TR submission to TC1 thus minimizing the risk of a real-time
miss due to this issue.

81SPRZ235R–October 2005–Revised January 2012 TMS320TCI6482 Digital Signal Processor— Silicon Revisions 3.1, 2.1, 2.0, 1.1
Submit Documentation Feedback

Copyright © 2005–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRZ235R


Silicon Revision 1.1 Usage Notes and Known Design Exceptions to Functional Specifications www.ti.com

Opting for this workaround has other implications on the system. For example, if Q0 is
mapped to TC1 then another queue must be mapped to TC0. If Q1 is mapped to TC0,
the VCP2 and TCP2 events must be submitted on Q1. Whether this is acceptable would
need to be determined by the user.

31 16

Reserved

R-0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Rsvd TCNUMQ3 Rsvd TCNUMQ2 Rsvd TCNUMQ1 Rsvd TCNUMQ0

R-0 R/W-3 R-0 R/W-2 R-0 R/W-1 R-0 R/W-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Figure 16. QUETCMAP Register (02A0 0280h)

Table 19. QUETCMAP Register Field Descriptions

BIT FIELD VALUE DESCRIPTION

31:15 Reserved

15:0 TCNUMQn TC Number for Queue n
Defines the TC number to which Event Queue n TRs are submitted.

Internal Tracking Number: 15

82 TMS320TCI6482 Digital Signal Processor— Silicon Revisions 3.1, 2.1, 2.0, 1.1 SPRZ235R–October 2005–Revised January 2012
Submit Documentation Feedback

Copyright © 2005–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRZ235R


www.ti.com Revision History

Revision History

Changes from Q Revision (June 2011) to R Revision .................................................................................................... Page

• Changed JTAG ID Register Value for Silicon Revision 3.1 ......................................................................... 7

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

83SPRZ235R–October 2005–Revised January 2012 Revision History
Submit Documentation Feedback

Copyright © 2005–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRZ235R


IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are
sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where
mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide
adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual
property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional
restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not
responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in
such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated
products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products Applications

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive

Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications

Data Converters dataconverter.ti.com Computers and Peripherals www.ti.com/computers

DLP® Products www.dlp.com Consumer Electronics www.ti.com/consumer-apps

DSP dsp.ti.com Energy and Lighting www.ti.com/energy

Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial

Interface interface.ti.com Medical www.ti.com/medical

Logic logic.ti.com Security www.ti.com/security

Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID www.ti-rfid.com

OMAP Mobile Processors www.ti.com/omap

Wireless Connectivity www.ti.com/wirelessconnectivity

TI E2E Community Home Page e2e.ti.com

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com/audio
http://www.ti.com/automotive
http://amplifier.ti.com
http://www.ti.com/communications
http://dataconverter.ti.com
http://www.ti.com/computers
http://www.dlp.com
http://www.ti.com/consumer-apps
http://dsp.ti.com
http://www.ti.com/energy
http://www.ti.com/clocks
http://www.ti.com/industrial
http://interface.ti.com
http://www.ti.com/medical
http://logic.ti.com
http://www.ti.com/security
http://power.ti.com
http://www.ti.com/space-avionics-defense
http://microcontroller.ti.com
http://www.ti.com/video
http://www.ti-rfid.com
http://www.ti.com/omap
http://www.ti.com/wirelessconnectivity
http://e2e.ti.com

	TMS320TCI6482 Digital Signal Processor Silicon Revisions 3.1, 2.1, 2.0, 1.1
	Table of Contents
	1 Introduction
	1.1 Device and Development-Support Tool Nomenclature
	1.2 Package Symbolization and Revision Identification

	2 Silicon Revision 3.1 Usage Notes and Known Design Exceptions to Functional Specifications
	2.1 Usage Notes for Silicon Revision 3.1
	2.1.1 DDR2 Memory Controller: Chip Enable Pin Remains Low, Always Active
	2.1.2 PLL: Hosts Should Not Access the DSP While PLL Registers are Being Configured
	2.1.3 EMIFA: Chip Enable Pin Must Be Used to Interface With Devices Connected to EMIFA
	2.1.4 EMIFA: EDMA FIFO Addressing Mode Should Not Be Used When Reading from EMIFA
	2.1.4.1 Recommended Implementations for Read/Writes to FIFO Connected to EMIFA

	2.1.5 HPI: Certain HPIC Register Bits Will Reset to Default Value Only With Power-On Reset
	2.1.6 DDR2 Memory Controller and EMIFA: PRIO_RAISE Bits Should Be Changed From Default Following Reset
	2.1.7 Device: Heatsink/Airflow Recommended to Lower Case Temperature
	2.1.8 McBSP: Receiver and/or Transmitter Must Out of Reset to Enable Frame-Sync Detection
	2.1.9 McBSP: Performance Degradation Can Be Seen When Using PCI, UTOPIA, or VLYNQ
	2.1.10 Boundary Scan: Warnings Relating to the RSV32 and RSV34 Pins May Be Observed When Using Boundary Scan
	2.1.11 PCI: DSP PCI Cannot Burst More Than 64 Bytes When Used in Master Mode
	2.1.12 DDR2 Memory Controller: Maximum Addressable Memory Increased to 512MB in 32-bit Mode
	2.1.13 EMAC: Gigabit Mode Cannot Be Used With CPU Running at Speeds Lower Than 750 MHz
	2.1.14 DDR2 EMIF: Delay Before CKE Goes High With Different Combinations of REFRESH_RATE and DDR Clock
	2.1.15 Manual Cache Coherence Operation
	2.1.16 AEA3 Must be Tied High with a 1-kΩ Resisitor if Power is Applied to the SRIO Supply Pins

	2.2 Silicon Revision 3.1 Known Design Exceptions to Functional Specifications

	3 Silicon Revision 2.1 Usage Notes and Known Design Exceptions to Functional Specifications
	3.1 Usage Notes for Silicon Revision 2.1
	3.2 Silicon Revision 2.1 Known Design Exceptions to Functional Specifications

	4 Silicon Revision 2.0 Usage Notes and Known Design Exceptions to Functional Specifications
	5 Silicon Revision 1.1 Usage Notes and Known Design Exceptions to Functional Specifications
	5.1 Usage Notes for Silicon Revision 1.1
	5.1.1 EMAC: RMII Reference Clock Will Be Changed to Input on Silicon Revision 2.0 and Later

	5.2 Silicon Revision 1.1 Known Design Exceptions to Functional Specifications


	Revision History

