

SBOU015A - SEPTEMBER 2002 - REVISED AUGUST 2003

FEATURES

- EASY TESTING OF VCA2611, VCA2612, VCA2613, VCA2616
- SINGLE-ENDED INPUT INTO LNA
- SINGLE-ENDED TO DIFFERENTIAL INPUT VIA TRANSFORMERS FOR VCA
- ADJUSTABLE GAIN RANGES

DESCRIPTION

The VCA261xEVM is designed to provide ease of use in evaluating the performance of the VCA2611, VCA2612, VCA2613 and VCA2616 variable gain amplifier family.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

All trademarks are the property of their respective owners.

INITIAL CONFIGURATION

By using simple slide and DIP-switches, the VCA261xEVM can be configured to accommodate several different modes of operation. Before using the evaluation board, the user should determine the configuration and required settings needed for their specific evaluation. The demonstration board comes from the factory with the following preset configuration:

Slide Switches:

SW1, SW3, SW5, and SW7 are set to position 2. SW2, SW4, SW6, and SW8 are set to position 1.

JP1 and JP2 have connections made at position B.

DIP-switch S1 has the following settings:

- · MGS1 is set low
- · MSG2 and MGS3 are set high
- VCAinSEL is set low
- FBSWcntl is set low

Components C20 and C29 are not populated.

POWER SUPPLY

The VCA261xEVM requires \pm 5V supplies (Connector J7) for the output amplifiers (U1 and U3) and a separate +5V supply (Connector J4) for the VCA261x. This configuration allows for the monitoring of supply currents to the VCA261x independently of the rest of the evaluation board. If monitoring of the supplies is not required, a single +5V supply can be substituted by connecting the two separate +5V supplies (J4 and J7) together. In this case the -5V supply is still required.

SIGNALS

INPUT SIGNALS

The input signals are applied to SMA connectors J3 and J6 for using the LNA and J2 and J8 for bypassing the LNA. The input signals should be provided from low impedance source. The inputs are ac-coupled into the LNA of the VCA261x through 0.01μ F capacitors and through transformers into the VCA inputs.

OUTPUT SIGNALS

The outputs of the evaluation board are located at SMA connectors J1 and J9. When testing the EVM board, the outputs J1 and J9 should be terminated into 50Ω loads such as that of the inputs to a Spectrum Analyzer. This will result in a 6dB loss of the signal magnitude. This loss should be taken into account when taking all measurements.

OUTPUT CONFIGURATION

By utilizing the switches provided at the inputs to amplifiers U1 and U3, the outputs of the VCA261x can be monitored on SMA connectors J1 and J9. Amplifiers U1 and U3 are configured to have a gain of 1/2 in all modes except where the signals are terminated to ground through a 500Ω equivalent resistance. Table I shows the switch positions and the resulting output.

	SINGLE-ENDED NONINVERTING	Single-Ended Inverting	DIFFERENCE ⁽¹⁾	NO OUTPUT AT J5 AND J6 (output at test points)
U1				
SW1	1	2	2	1
SW3	2	1	2	1
U3				
SW2	1	2	2	1
SW4	2	1	2	1
NOTE: (1) Denotes Factory Preset.				

TABLE I. Output Configuration.

The outputs of the VCA261x can be terminated through 500Ω on each output, and the output signals can then be observed at test points TP1 and TP2 and test points TP3 and TP4, respectively.

SWITCHES

The five dip-switches (S1) control the gain range bits (MGS1, MGS2, and MGS3) of the PGA, the input selection (VCA_{IN} SEL) to select between input into the LNA or into the VCA, and the feedback select switch to enable the switched-feedback configuration. Table II shows the MGS settings and the corresponding gain ranges.

MGS SETTING	ATTENUATOR GAIN VCA _{CNTL} = 0V to 3V	DIFFERENTIAL PGA GAIN	ATTENUATOR + DIFF. PGA GAIN
000	–24dB to 0dB	24dB	0dB to 24dB
001	-27dB to 0dB	27dB	0dB to 27dB
010	-30dB to 0dB	30dB	0dB to 30dB
011	-33dB to 0dB	33dB	0dB to 33dB
100	-36dB to 0dB	36dB	0dB to 36dB
101	–39dB to 0dB	39dB	0dB to 39dB
110	-42dB to 0dB	42dB	0dB to 42dB
111	–45dB to 0dB	45dB	0dB to 45dB

TABLE II. MGS Settings.

LNA

There are two sets of solder switches (JP1 and JP2) that enable setting the LNA gain. The following table outlines the gain settings for the LNA and the corresponding switch connections.

USED	PART TYPE	DESIGNATOR	FOOTPRINT	DESCRIPTION	PART NUMBER	MFG
6	0.01 <i>µ</i> F	C4, C12, C19 C22, C27, C32	805	Multilayer Ceramic—0805 Size	C0805C103J4RAC	Kemet
8	0.1µF	C1, C14, C16, C18, C21, C30, C33, C35	805	Multilayer Ceramic—0805 Size	C0805C104J4RAC	Kemet
5	1µF	C25, C26, C28 C23, C31	3216	Low Profile Tantalum Capacitor	T491A105M016AS	Kemet
4	2.2µF	C15, C17, C36, C37	3216	Low Profile Tantalum Capacitor	T491A225M016AS	Kemet
2	4.7pF	C5, C10	805	Multilayer Ceramic—0805 Size	C0805C479D3GAC	Kemet
5	10k	R15, R16, R17, R18, R19	805	1/10W 0805 Chip Resistor		
3	10µF	C24, C34, C38	3528	Low Profile Tantalum Capacitor	T491B106M016AS	Kemet
2	49.9	R1, R14	805	1/10W 0805 Chip Resistor	CRCW080549R9F	Dale
2	56pF	C3, C13	805	Multilayer Ceramic—0805 Size	C0805C560J3GAC	Kemet
4	169	R3, R4, R11, R12	805	1/10W 0805 Chip Resistor		Dale
2	250	R2, R13	805	1/10W 0805 Chip Resistor	CRCW08052500F	Dale
4	330pF	C6, C7, C8, C9	805	Multilayer Ceramic—0805 Size	C0805C331K3GAC	Kemet
2	332	R6, R10	805	1/10W 0805 Chip Resistor	CRCW08053320F	Dale
2	499	R5, R9	805	1/10W 0805 Chip Resistor	CRCW08054990F	Dale
2	549	R7, R8	805	1/10W 0805 Chip Resistor	CRCW08055490F	Dale
2	1nF	C2, C11	805	Multilayer Ceramic—0805 Size	C0805C102K3GAC	Kemet
1	CON_2TERM_SCREW	J4	2P-TERM	2 Terminal Screw Connector	ED-1514-ND	Digi-Key
1	CON_3TERM_SCREW	J7	3P-TERM	3 Terminal Screw Connector	ED-1515-ND	Digi-Key
2	Not Installed	C20, C29	805	Multilayer Ceramic—0805 Size		
2	OPA642N	U1, U3	SOT25	High-Speed, Low THD Op Amp	OPA642N	ТІ
7	SMA_PCB_MT_MOD	J1, J2, J3 J5, J6, J8, J9	SMA_JACK	SMA_JACK_STRAIGHT	142-0701-231	Johnson
8	SPDT_SLIDE	SW1-SW8	SPDT_SLIDE_500MIL	C&K/TS01-C-K-E	EG-1903-ND	Digi-Key
1	SW DIP-5	S1	5_SPST_DIP_SW	DIP Switch	CKN3004-ND	Digi-Key
2	T1-1T-KK81_XFMR	T1, T2	MC_KK81	RF Transformer MINI-Circuits T1-1T	T1-1T-KK81	MINI-Circuits
1	VCA261x	U2	48-TQFP(PFB)	Voltage Controlled Amplifier	VCA261x	ті

TABLE III. Schematic Parts List.

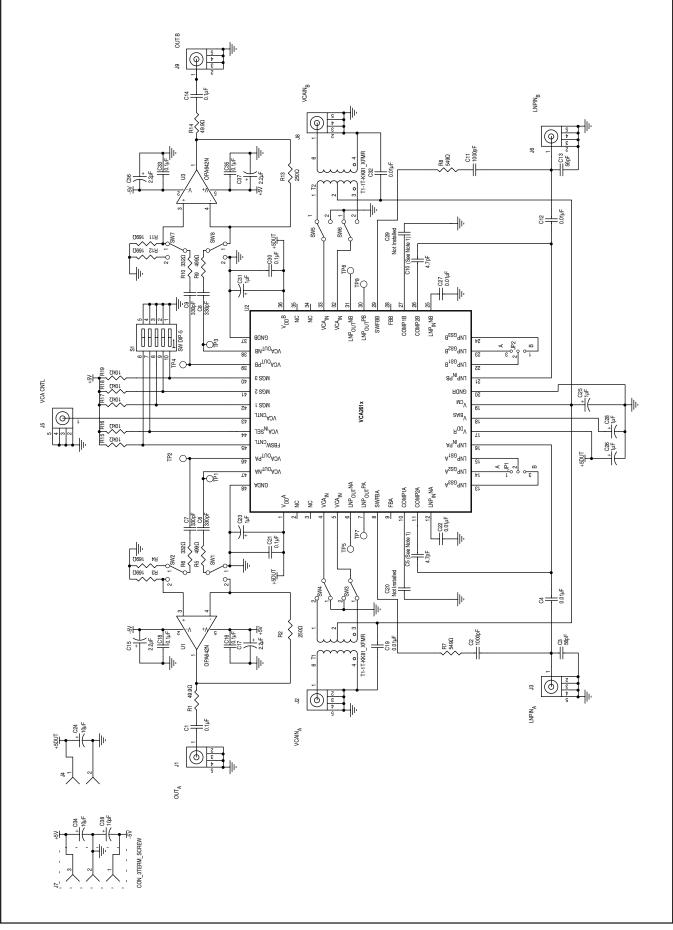


FIGURE 1. Schematic.

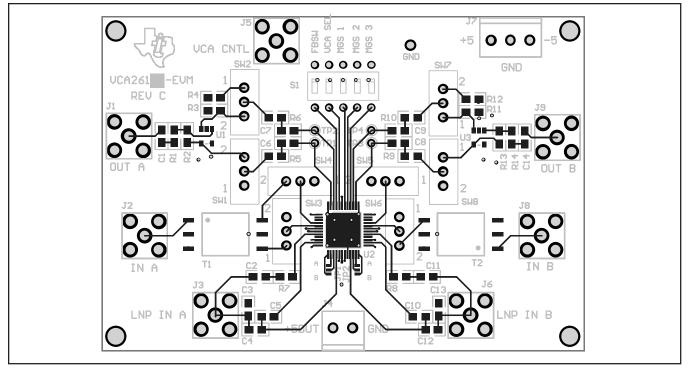


FIGURE 2. Top Layer and Silkscreen.

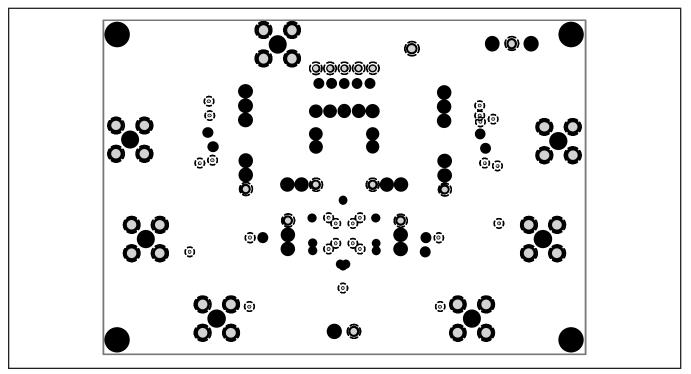


FIGURE 3. Ground Layer.

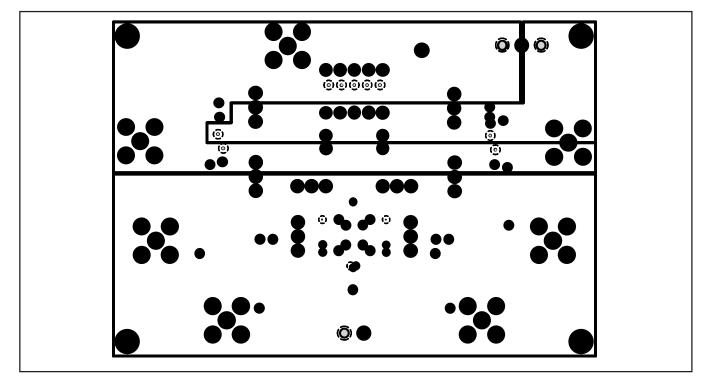


FIGURE 4. Power Layer.

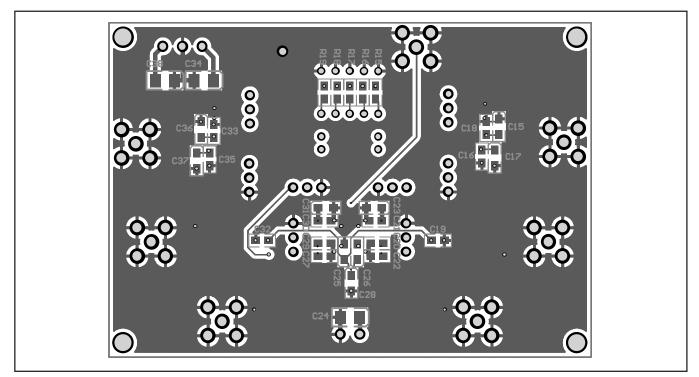


FIGURE 5. Bottom Layer and Silkscreen.

EVM IMPORTANT NOTICE

Texas Instruments (TI) provides the enclosed product(s) under the following conditions:

This evaluation kit being sold by TI is intended for use for **ENGINEERING DEVELOPMENT OR EVALUATION PURPOSES ONLY** and is not considered by TI to be fit for commercial use. As such, the goods being provided may not be complete in terms of required design-, marketing-, and/or manufacturing-related protective considerations, including product safety measures typically found in the end product incorporating the goods. As a prototype, this product does not fall within the scope of the European Union directive on electromagnetic compatibility and therefore may not meet the technical requirements of the directive.

Should this evaluation kit not meet the specifications indicated in the EVM User's Guide, the kit may be returned within 30 days from the date of delivery for a full refund. THE FOREGOING WARRANTY IS THE EXCLUSIVE WARRANTY MADE BY SELLER TO BUYER AND IS IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED, IMPLIED, OR STATUTORY, INCLUDING ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE.

The user assumes all responsibility and liability for proper and safe handling of the goods. Further, the user indemnifies TI from all claims arising from the handling or use of the goods. Please be aware that the products received may not be regulatory compliant or agency certified (FCC, UL, CE, etc.). Due to the open construction of the product, it is the user's responsibility to take any and all appropriate precautions with regard to electrostatic discharge.

EXCEPT TO THE EXTENT OF THE INDEMNITY SET FORTH ABOVE, NEITHER PARTY SHALL BE LIABLE TO THE OTHER FOR ANY INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES.

TI currently deals with a variety of customers for products, and therefore our arrangement with the user is not exclusive.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein.

Please read the EVM User's Guide and, specifically, the EVM Warnings and Restrictions notice in the EVM User's Guide prior to handling the product. This notice contains important safety information about temperatures and voltages. For further safety concerns, please contact the TI application engineer.

Persons handling the product must have electronics training and observe good laboratory practice standards.

No license is granted under any patent right or other intellectual property right of TI covering or relating to any machine, process, or combination in which such TI products or services might be or are used.

Mailing Address:

Texas Instruments Post Office Box 655303 Dallas, Texas 75265

Copyright 2003, Texas Instruments Incorporated

EVM WARNINGS AND RESTRICTIONS

It is important to operate this EVM within the specified input and output ranges described in the EVM User's Guide.

Exceeding the specified input range may cause unexpected operation and/or irreversible damage to the EVM. If there are questions concerning the input range, please contact a TI field representative prior to connecting the input power.

Applying loads outside of the specified output range may result in unintended operation and/or possible permanent damage to the EVM. Please consult the EVM User's Guide prior to connecting any load to the EVM output. If there is uncertainty as to the load specification, please contact a TI field representative.

During normal operation, some circuit components may have case temperatures greater than 60°C. The EVM is designed to operate properly with certain components above 60°C as long as the input and output ranges are maintained. These components include but are not limited to linear regulators, switching transistors, pass transistors, and current sense resistors. These types of devices can be identified using the EVM schematic located in the EVM User's Guide. When placing measurement probes near these devices during operation, please be aware that these devices may be very warm to the touch.

Mailing Address:

Texas Instruments Post Office Box 655303 Dallas, Texas 75265

Copyright 2003, Texas Instruments Incorporated

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
RFID	www.ti-rfid.com	Telephony	www.ti.com/telephony
Low Power Wireless	www.ti.com/lpw	Video & Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2007, Texas Instruments Incorporated