
Subsystem Design
CAN to UART Bridge

Yuhao Zhao

Design Description

This subsystem demonstrates how to build a CAN-UART bridge. CAN-UART bridge allows a device to send or
receive information on one interface and receive or send the information on the other interface Download the
code for this example.

Figure 1-1 shows a functional diagram of this subsystem.

MSPM0 MCU

CANFDSignal Processing &
FIFO (in software)

CAN TX

I/O I/O

CAN
Transceiver

UART

CAN RX

UART RX

UART TX

Figure 1-1. Subsystem Functional Block Diagram

Required Peripherals

This application requires CANFD and UART.

Table 1-1. Required Peripherals
Sub-block Functionality Peripheral Use Notes

CAN interface (1x) CANFD Called MCAN0_INST in code

UART interface (1x) UART Called UART_0_INST in code

Compatible Devices

Based on the requirements in Table 1-1, this example is compatible with the devices in Table 1-2. The
corresponding EVM can be used for prototyping.

Table 1-2. Compatible Devices
Compatible Devices EVM

MSPM0G35xx, LP-MSPM0G3507

Design Steps
1. Determine the basic setting of CAN interface, including CAN mode, bit timing, message RAM configuation

and so on. Consider which setting is fixed and which setting is changed in the application. In example code,
CANFD is used with 250kbit/s arbitration rate and 2Mbit/s data rate.
a. Key features of the CAN-FD peripheral include:

i. Dedicated 1KB message SRAM with ECC
ii. Configurable transmit FIFO, transmit queue and event FIFO (up to 32 elements)

www.ti.com

SLAAEJ2 – DECEMBER 2023
Submit Document Feedback

CAN to UART Bridge 1

Copyright © 2023 Texas Instruments Incorporated

https://dev.ti.com/tirex/explore/node?a=a3PaaoK__1.10.01.05&node=A__AJTHbGUqXPzAqTFfSFdGnA__MSPM0-SDK__a3PaaoK__LATEST
https://dev.ti.com/tirex/explore/node?a=a3PaaoK__1.10.01.05&node=A__AJTHbGUqXPzAqTFfSFdGnA__MSPM0-SDK__a3PaaoK__LATEST
https://www.ti.com
https://www.ti.com/lit/pdf/SLAAEJ2
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAEJ2&partnum=

iii. Up to 32 dedicated transmit buffers and 64 dedicated receive buffers. Two configurable receive
FIFOs (up to 64 elements each)

iv. Up to 128 filter elements
b. If CANFD mode is enabled:

i. Full support for 64-byte CAN-FD frames
ii. Up to 8Mbit/s bit rate

c. If CANFD mode is disabled:
i. Full support for 8-byte classical CAN frames
ii. Up to 1Mbit/s bit rate

2. Determine the CAN frame, including data length, bit rate switching, identifier, data and so on. Consider which
part is fixed and which part need to be changed in the application. In example code, identifier, data length
and data can change in different frames, while others are fixed. Note that users need to modify the code if
protocol communication is required.

/**
 * @brief Structure for MCAN Rx Buffer element.
 */
typedef struct {
 /*! Identifier */
 uint32_t id;
 /*! Remote Transmission Request
 * 0 = Received frame is a data frame
 * 1 = Received frame is a remote frame
 */
 uint32_t rtr;
 /*! Extended Identifier
 * 0 = 11-bit standard identifier
 * 1 = 29-bit extended identifier
 */
 uint32_t xtd;
 /*! Error State Indicator
 * 0 = Transmitting node is error active
 * 1 = Transmitting node is error passive
 */
 uint32_t esi;
 /*! Rx Timestamp */
 uint32_t rxts;
 /*! Data Length Code
 * 0-8 = CAN + CAN FD: received frame has 0-8 data bytes
 * 9-15 = CAN: received frame has 8 data bytes
 * 9-15 = CAN FD: received frame has 12/16/20/24/32/48/64 data bytes
 */
 uint32_t dlc;
 /*! Bit Rat Switching
 * 0 = Frame received without bit rate switching
 * 1 = Frame received with bit rate switching
 */
 uint32_t brs;
 /*! FD Format
 * 0 = Standard frame format
 * 1 = CAN FD frame format (new DLC-coding and CRC)
 */
 uint32_t fdf;
 /*! Filter Index */
 uint32_t fidx;
 /*! Accepted Non-matching Frame
 * 0 = Received frame matching filter index FIDX
 * 1 = Received frame did not match any Rx filter element
 */
 uint32_t anmf;
 /*! Data bytes.
 * Only first dlc number of bytes are valid.
 */
 uint16_t data[DL_MCAN_MAX_PAYLOAD_BYTES];
} DL_MCAN_RxBufElement;

3. Determine the basic setting of UART interface, including UART mode, baud rate, word length, FIFO and so
on. Consider which setting is fixed and which setting is changed in the application. In example code, UART
is used with 9600 baud rate.
a. Key features of the UART peripheral include:

i. Standard asynchronous communication bits for start, stop, and parity

www.ti.com

2 CAN to UART Bridge SLAAEJ2 – DECEMBER 2023
Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAAEJ2
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAEJ2&partnum=

ii. Fully programmable serial interface
iii. Separated transmit and receive FIFOs support DAM data transfer
iv. Support transmit and receive loopback mode operation

4. Determine the UART frame. Typically UART is transmitted in bytes. To achieve high-level communication,
users can implement frame communication through software. If necessary, users can also introduce specific
communication protocols. In example code, the message format is < 55 AA ID1 ID2 ID3 ID4 Length Data1
Data2 ...>. Users can send data to the CAN bus from the terminal by entering data as the same format. 55
AA is the header. ID area is 4 bytes. Length area is 1 byte, indicating the data length. Note that if users need
to modify the UART frame, the code for frame acquisition and parsing also need to be modified.

Table 1-3. UART Frame Form
Header Address Data Length Data

0x55 0xAA 4 bytes 1 byte (Data Length) bytes

5. Determine the bridge structure, including what messages need to be converted, how to convert messages
and so on.
a. Consider whether the bridge is one-way or two-way. Typically each interface has two functions: receiving

and sending. Consider whether only some functions need to be included (such as UART reception and
CAN transmission). In example code, CAN-UART bridge is a two-way structure.

b. Consider what information to convert and the corresponding carrier(variable, FIFO). In example code,
identifier, data and data length are convert from one interface to the other interface. There are two FIFOs
defined in code as shown below.

Interrupt

Receive
message
from UART

Receive
message
from CAN

Main()

Transmit
message to
CAN

Transmit
message to
UART

U2C_out

0

1

2

34

5

6

7

U2C_in

U2C_count = 2

typedef struct {
 /*! Identifier */
 uint32_t id;
 /*! Data Length Code*/
 uint32_t dlc;
 /*! Data bytes*/
 uint16_t data[64];
} Custom_Element;

U2C_FIFO

C2U_FIFO

U2C_in++
U2C_count++

C2U_out++
C2U_count--

C2U_in++
C2U_count++

U2C_out++
U2C_count--

Figure 1-2. Bridge structure
6. (Optionally) Consider priority design, congestion situation, error handling, and so on.

Design Considerations
1. Consider the information flow in the application to determine the information to be received or sent by

each interface, the protocols to be followed, and design appropriate information transfer carriers to connect
different interfaces.

2. The recommendation is to test the interface separately first, and then implement the overall bridge function.
In addition, consider the handling of abnormal situations, such as communication failure, overload, frame
format error, and so on.

3. The recommendation is to implement interface functions through interrupts to make sure of timely
communication. In example code, interface functions are usually implemented in the interrupt, and the
transfer of information is completed in the main() function.

www.ti.com

SLAAEJ2 – DECEMBER 2023
Submit Document Feedback

CAN to UART Bridge 3

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAAEJ2
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAEJ2&partnum=

Software Flowchart

The following figure shows the code flow diagram for CAN-UART bridge which explains how the messages
received in one interface and sent in the other interface. The CAN-UART bridge can be divided into four
independent tasks: receive from UART, receive from CAN, transmit through CAN, transmit through UART. Two
FIFOs implement bidirectional message transfer and message caching.

Interrupt

Receive message from UART

Receive message from CAN

Main()

Transmit message to CAN

Transmit message to UART

UART TX Interrupt

getUartRxMsg

processUartRxMsg

getCANRxMsg

processCANRxMsg

U2C_FIFO

C2U_FIFO

Overload control

Overload control

processCANTxMsg

sendCANTxMsg

processUartTxMsg

start sendUartTxMsgsendUartTxMsg

Figure 1-3. Application Software Flowchart

www.ti.com

4 CAN to UART Bridge SLAAEJ2 – DECEMBER 2023
Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAAEJ2
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAEJ2&partnum=

Device Configuration

This application makes use of TI System Configuration Tool (SysConfig) graphical interface to generate the
configuration code for the CAN and UART. Using a graphical interface to configure the device peripherals
streamlines the application prototyping process.

The code for what is described in Figure 1-3 can be found in the files from example code as shown in Figure 1-4.

Figure 1-4. File Structure

Application Code

The following code snippet shows where to modify the interface function. Functions in table are categorized
into different files. Functions for UART receive and transmit are included in bridge_uart.c and bridge_uart.h.
Functions for CAN receive and transmit are included in bridge_can.c and bridge_can.h. Structure of FIFO
element is defined in user_define.h.

Users can easily separate functions by file. For example, if only UART functions are needed, users can reserve
bridge_uart.c and bridge_uart.h to call the functions.

See the MSPM0 SDK and DriverLib documentation for the basic configuration of peripherals.

Table 1-4. Functions and Descriptions
Tasks Functions Description Location
UART receive getUartRxMsg() Get the received UART message bridge_uart.c

bridge_uart.hprocessUartRxMsg() Convert the received UART message format and store the
message into gUART_RX_Element

UART transmit processUartTxMsg() Convert the gUART_TX_Element format to be sent through
UART

sendUartTxMsg() Send message through UART

CAN receive getCANRxMsg() Get the received CAN message bridge_can.c
bridge_can.hprocessCANRxMsg() Convert the received CAN message format and store the

message into gCAN_RX_Element

CAN transmit processCANTxMsg() Convert the gCAN_TX_Element format to be sent through
CAN

sendCANTxMsg() Send message through CAN

www.ti.com

SLAAEJ2 – DECEMBER 2023
Submit Document Feedback

CAN to UART Bridge 5

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAAEJ2
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAEJ2&partnum=

Custom_Element is the structure defined in user_define.h. Custom_Element is used as the structure of FIFO
element, output element of UART/CAN transmit and input element of UART/CAN receive. Users can modify the
structure according to the need.

typedef struct {
 /*! Identifier */
 uint32_t id;
 /*! Data Length Code*/
 uint32_t dlc;
 /*! Data bytes*/
 uint16_t data[64];
} Custom_Element;

For FIFO, there are 2 global variables used as FIFO. 6 global variables are used to trace the FIFO.

Custom_Element U2C_FIFO[U2C_FIFO_SIZE];
Custom_Element C2U_FIFO[C2U_FIFO_SIZE];
uint16_t U2C_in = 0;
uint16_t U2C_out = 0;
uint16_t U2C_count = 0;
uint16_t C2U_in = 0;
uint16_t C2U_out = 0;
uint16_t C2U_count = 0;

Results

By using the XDS110 on the launchpad, users can use the PC to send and receive messages on the UART
side. As a demonstration, two launchpads can be used as two CAN-UART bridges to form a loop. When the PC
sends UART messages through one of the launchpads, XDS110 can receive UART messages from the other
launchpad.

Figure 1-5. Demonstration

www.ti.com

6 CAN to UART Bridge SLAAEJ2 – DECEMBER 2023
Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAAEJ2
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAEJ2&partnum=

Figure 1-6. PC Terminal Program

Additional Resources
• Download the MSPM0 SDK
• Learn more about SysConfig
• MSPM0G Technical Reference Manual (TRM)
• MSPM0G LaunchPad development kit
• MSPM0 CAN academy
• MSPM0 UART academy

www.ti.com

SLAAEJ2 – DECEMBER 2023
Submit Document Feedback

CAN to UART Bridge 7

Copyright © 2023 Texas Instruments Incorporated

https://dev.ti.com/tirex/explore/node?node=A__AMztb67RYAJCCVC9dL423Q__com.ti.MSPM0_SDK__nu1HVN8__LATEST
https://www.ti.com/tool/SYSCONFIG
https://www.ti.com/lit/pdf/slau846
http://www.ti.com/tool/LP-MSPM0G3507
https://dev.ti.com/tirex/explore/node?node=A__AIeATtU8BJIvwb73IOPaMw__MSPM0-ACADEMY__2f1Egw1__LATEST
https://dev.ti.com/tirex/explore/node?node=A__AVkPxX6hRXRpPST-l6LGfQ__MSPM0-ACADEMY__2f1Egw1__LATEST
https://www.ti.com
https://www.ti.com/lit/pdf/SLAAEJ2
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAEJ2&partnum=

IMPORTANT NOTICE AND DISCLAIMER
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD
PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable
standards, and any other safety, security, regulatory or other requirements.
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these
resources.
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for
TI products.
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2023, Texas Instruments Incorporated

https://www.ti.com/legal/terms-conditions/terms-of-sale.html
https://www.ti.com

