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1 Design Summary 

The design requirements are as follows: 

 DAC Supply Voltage: +5 V dc 

 Amplifier Supply Voltage: ±15 V dc 

 Input: 3-wire, 24-bit SPI 

 Output: ±10 V dc 

The design goals and performance are summarized in Table 1.  Figure 1 depicts the measured transfer 
function of the design with a triangle wave output. 

Table 1: Comparison of Design Goal, Simulation, and Measured Performance 

 Goal Simulated Measured 

Total Unadjusted Error (%FSR) 0.250 0.230 0.0939 

Capacitive Drive (nF) 20 20 20 

 

 

Figure 1: Full-Scale Output of Design 
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2 Theory of Operation 

A more complete schematic for this design, including capacitive load compensation, is shown in Figure 2. 
The dc transfer function is based on the ratio of the feedback resistor RFB and gain setting resistors RG1 
and RG2. 
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Figure 2: Complete Circuit Schematic 

The dc transfer function for this design is defined as: 
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2.1 Choosing Resistor Values 

The amplifier in this circuit uses negative feedback to ensure that the voltage at the inverting and non-
inverting terminals are equal. When the DAC output is at zero-scale (0 V) the inverting terminal is a virtual 
ground so no current will flow across RG1, this causes the circuit to function as an inverting amplifier with 
gain equal to RFB / RG2. When the DAC output is full-scale (VREF) the inverting terminal potential is equal to 
VREF so no current will flow across RG2, this causes the circuit to function as a non-inverting amplifier with 
gain equal to (1 + RFB / RG1). 

A simple three-step process can be used to select the resistor values used to realize any bipolar output 
range using any generic unipolar DAC. For this design VREF was selected to be 2.5 V, a very common 
internal reference value for a generic DAC and a readily available external reference value. The desired 
output range for this design is ±10 V. 

First, using the transfer function shown in Equation 1, consider the negative full-scale output case when 
VDAC is equal to 0 V, VREF is equal to 2.5 V, and VOUT is equal to -10 V. This case is used to calculate the 
ratio of RFB to RG2 and is shown explicitly in Equation 2. 
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Second, consider the positive full-scale output case when VDAC is equal to 2.5 V, VREF is equal to 2.5 V, 
and VOUT is equal to 10 V. This case is used to calculate the ratio of RFB to RG1 and is shown explicitly in 
Equation 3. 
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Finally, seed the ideal value of RG2 to calculate the ideal values of RFB and RG2. The key considerations for 
seeding the value of RG2 should be the drive strength of the reference source as well as choosing small 
resistor values to minimize noise contributed by the resistor network. For this design RG2 was chosen to be 
8.25kΩ which will limit the peak current draw from the reference source to ~333µA under nominal 
conditions, which is well within the 20mA limit of the DAC8560. In this case, the ideal and nearest 0.1% 
tolerance, 0603 package values for each resistor are identical. 

Table 2: Values of Resistor Network 

Resistor Value 

RG1 11kΩ 

RG2 8.25kΩ 

RFB 33kΩ 

Standard values for 0.1% resistors can be an obstacle for this design and it may take multiple iterations of 
seeding the values to find real components or they may not exist. Work-arounds can include utilizing 
multiple resistors in series and/or parallel, using potentiometers for analog trim calibration, or providing 
extra gain in the output circuit and applying digital calibration. In systems where the output voltage must 
reach the design goal end-points (±10 V) it may be desirable to apply additional gain to the circuit. This 
approach may contribute additional overall system error since the end-point errors will vary from system to 
system. For this design, the exact values calculated in the design process will be used to keep error 
analysis easy to follow. 

To deliver a “near-universal” cable drive solution, CLOAD is chosen to be relatively large compared to typical 
cable capacitance such that its capacitance will dominate the reactive load seen by the output amplifier. To 
drive larger capacitive loads RISO, CCOMP, and CLOAD may need to be adjusted. 
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3 Component Selection 

3.1 DAC Selection 

For convenience, devices with an external reference option or devices with accessible internal references 
are desirable in this application since the reference is used to create an offset. The DAC selection in this 
design should primarily be based on dc error contributions typically described by offset-error, gain-error, 
and integral non-linearity error. Occasionally additional specifications are provided that summarize end-
point errors of the DAC typically called zero-code error and full-scale error. For ac applications additional 
consideration may be placed on slew rate and settling time. 

3.2 Amplifier Selection 

Amplifier input offset voltage (VOS) is a key-consideration for this design. VOS of an operational amplifier is 
a typical datasheet specification but in-circuit performance is also impacted by drift over temperature, the 
common-mode rejection ratio (CMRR), and power supply rejection ratio (PSRR) so consideration should 
be given to these parameters as well. For ac operation additional considerations should be made 
concerning slew rate and settling time. Input-bias current (IB) can also be a factor, but typically the resistor 
network is implemented with sufficiently small resistor values that the effects of input-bias current are 
negligible. 

3.3 Passive Component Selection 

Resistor matching for the op amp resistor network is critical for the success of this design and components 
should be chosen with tight tolerances. For this design 0.1% resistor values are implemented but this 
constraint may be adjusted based on application specific design goals. Resistor matching will contribute to 
both offset error and gain error in this design, as shown in the simulation section of this document. The 
tolerance of stability components RISO and CCOMP is not critical and 1% components are acceptable. 
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4 Simulation 

4.1 DAC DC Transfer Function 

The TINA-TI™ schematic shown in Figure 3 implements the circuit using an ideal op amp and the ideal 
resistor values as obtained in the design process. This model is used to simulate system offset and gain 
errors that are contributed by the DAC8560. The DAC8560 is modeled by an ideal voltage source 
sweeping from 0 V to 2.50 V along with a non-inverting amplifier with gain to simulate the effects of the 
DAC8560 typical gain error of ±0.05% FSR. Additionally, a series voltage source of 5 mV is included to 
model the typical  DAC8560 offset error. Since an INL model is not as straight forward, it will be calculated 
from the datasheet. This will not mimic the real device behavior since it does not include a zero-code error 
model, but will be sufficient to estimate performance over the linear region of operation of the DAC. 

-
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Figure 3: TINA-TI™ - DAC End-Point Error Schematic 

The dc transfer function simulation results of the circuit in Figure 3 are shown in Figure 3 and Figure 4. 
The results will be used along with the simulation results of the op amp and resistor tolerances to 
determine overall system offset error, gain error, and total unadjusted error (TUE). 

Table 3: Simulated DAC Performance 

Parameter Simulated Value 

Negative Full-Scale Voltage (V) -9.96 

Zero-Scale Voltage (V) 0.04 

Positive Full-Scale Voltage (V) 10.05 

Offset Error (% FSR) 0.200 

Gain Error (% FSR) 0.050 

INL Error (%FSR) 0.006 

Total Unadjusted Error (%FSR) 0.206 



 

www.ti.com 

SLAU525-June 2013-Revised June 2013 Bipolar +/-10V Analog Output from a Unipolar Voltage Output DAC 7 
Copyright © 2013, Texas Instruments Incorporated 

10.05 V

-9.96 V

40 mV

DAC Voltage (V)

0.00 1.25 2.50

O
u

tp
u

t 
V

o
lt
a

g
e

 (
V

)

-10.00

-5.00

0.00

5.00

10.00

40 mV

-9.96 V

10.05 V

 

Figure 4: TINA-TI™ - DC Transfer Characteristic 

The following equations were used to calculate the error parameters in Table 3 based on the information in 
Figure 4. The total unadjusted error equation uses a root-sum-squared (RSS) technique to sum 
uncorrelated error sources. 
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4.2 Op Amp & Passives DC Transfer Function 

The TINA-TI™ schematic shown in Figure 5 implements the OPA188 model and Monte-Carlo analysis for 
the resistor network with 0.1% tolerances and a normal distribution. In this simulation the DAC will be 
represented by an ideal voltage source sweeping from 0 V to 2.5 V. This model is used to simulate the 
offset error and gain error contributed by the resistors and op amp. The Monte Carlo dc transfer function is 
depicted in Figure 6. 
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Figure 5: TINA-TI™ - DC Transfer Characteristic 

VOUT[9]

DAC Voltage (V)

0.00 1.25 2.50

O
u

tp
u

t 
V

o
lt
a

g
e

 (
V

)

-20.00

-10.00

0.00

10.00

20.00

VOUT[9]

  VOUT[1]   A:(1.25; -107.339128u)

  VOUT[2]   A:(1.25; 684.300937u)

  VOUT[3]   A:(1.25; -448.4154u)

  VOUT[4]   A:(1.25; 107.987098u)

  VOUT[5]   A:(1.25; -786.022041u)

  VOUT[6]   A:(1.25; -1.738254m)

  VOUT[7]   A:(1.25; -969.044351u)

  VOUT[8]   A:(1.25; -443.762704u)

  VOUT[9]   A:(1.25; -56.172436u)

  VOUT[10]   A:(1.25; 1.785828m)

  VOUT[1]   A:(2.5; 9.994267)

  VOUT[2]   A:(2.5; 10.005706)

  VOUT[3]   A:(2.5; 9.999384)

  VOUT[4]   A:(2.5; 10.000151)

  VOUT[5]   A:(2.5; 10.000798)

  VOUT[6]   A:(2.5; 9.999518)

  VOUT[7]   A:(2.5; 9.999575)

  VOUT[8]   A:(2.5; 10.001931)

  VOUT[9]   A:(2.5; 9.996543)

  VOUT[10]   A:(2.5; 9.996942)

  VOUT[1]   A:(0; -9.994482)

  VOUT[2]   A:(0; -10.004337)

  VOUT[3]   A:(0; -10.00028)

  VOUT[4]   A:(0; -9.999935)

  VOUT[5]   A:(0; -10.00237)

  VOUT[6]   A:(0; -10.002995)

  VOUT[7]   A:(0; -10.001513)

  VOUT[8]   A:(0; -10.002818)

  VOUT[9]   A:(0; -9.996655)

  VOUT[10]   A:(0; -9.99337)

 

Figure 6: TINA-TI™ - Monte-Carlo Simulation of Output Circuit 
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The results of a 10 iteration Monte-Carlo simulation of the output circuit are shown in Table 4. 

Table 4: Output Circuit Monte-Carlo Results 

 Min Max Average Std. Dev. (σ) 

Offset Error (mV) -1.738 1.785 -0.197 0.958 

Full-Scale Range (V) 19.988 20.010 19.999 0.006 

Full-Scale |Error| (mV) 0.086 11.251 4.972 N/A 

The standard deviation of the Monte-Carlo results can be used to generate a more realistic error figure for 
the system by multiplying the standard deviation by 3, commonly referred to as a 3-σ system. This error 
figure should encompass 99.7% of the systems, leaving out absolute worst-case resistor mis-matches that 
are highly unlikely to occur. These errors are summarized in Table 5. The equations used to calculate 
each error are shown below: 
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Table 5: Simulated Output Circuit Performance 

Parameter Simulated Value 

Offset Error (% FSR) 0.0143 

Gain Error (% FSR) 0.1004 

INL Error (%FSR) 0.0000 

Total Unadjusted Error (%FSR) 0.1014 

4.3 System dc Transfer Function 

The combined accuracy of simulation results of the DAC and output circuit are summarized in Table 6. The 
values were calculated using a RSS technique similar to that shown in Equation 7. The output circuit 
contributes very low error to the system which allows for the DACs performance to dominate what is seen 
at the output. In this case the DAC errors are gained up  by 8 since the 0-2.5 V range was scaled up to 
±10 V. If less gain is applied to the DAC output signal its error contributions will decrease. 

Table 6: Simulated Circuit Performance 

Parameter Simulated Value 

Offset Error (% FSR) 0.200 

Gain Error (% FSR) 0.112 

INL Error (%FSR) 0.012 

Total Unadjusted Error (%FSR) 0.230 
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4.4 Step Response 

The step response of the design is shown in Figure 7. The results show that the output settles to the 
proper value with very little overshoot and ringing while driving the 20nF CLOAD, indicating a stable design.  
The stable response was obtained by manipulating the compensation components, RISO and CCOMP.  See 
Reference 1 more information on stability. 

Time (s)

0.00 25.00u 50.00u

O
u

tp
u

t 
V

o
lt
a

g
e

 (
V

)

6.00

6.05

6.10

6.15

6.20

 

Figure 7: TINA-TI™ - Step Response 
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5 PCB Design 

The PCB schematic and bill of materials can be found in Appendix A. 

5.1 PCB Layout 

The PCB layout for this design is shown in Figure 8. For this layout follow general PCB layout guidelines. 
Pay particular attention to placement and routing of the summing node at the inverting input of the op amp. 
This node should be kept small, placed as close to the inverting input terminal as possible, and a pour cut 
out should be included on all pours below the inverting node to reduce parasitic capacitance. 

 

Figure 8: PCB Layout 
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6 Verification & Measured Performance 

6.1 Transfer Function 

The graph in Figure 9 was collected by applying input codes ranging from 0 to 65535 to the DAC and 
measuring the output voltage on a single system. 
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Figure 9: Output Voltage vs. Input Code 

To easily visualize the error of the system the difference between the ideal output voltage and measured 
output voltage of the circuit in %FSR is plotted in Figure 10. The average error across the full-scale range 
of codes shown in Figure 10 is 0.017%FSR and the two-point line of best fit analysis of the same unit 
indicates a total unadjusted error of 0.0167%FSR – indicating that the two-point line of best fit is an 
accurate estimate of typical system accuracy, although there are outliers. 
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Figure 10: Output Voltage Error vs. Input Code 

The average results observed over 8 units are shown in Table 7. These results were measured using a 
two-point line of best fit measured at codes 485 and 64714 to be consistent with the specifications 
provided in the DAC8560 datasheet. The equations used to calculate these values are shown in Equations 
10 and 11. 

Table 7: Measured Circuit Performance 

Parameter Measured Value 

Offset Error (% FSR) 0.0705 

Gain Error (% FSR) 0.0125 

INL Error (%FSR) 0.0060 

Total Unadjusted Error (%FSR) 0.0939 

 

   
100*

)485()64714(

)485()64714()485()64714(

)(%

IDEALIDEAL

IDEALIDEALREALREAL

OUTOUT

OUTOUTOUTOUT

FSR
VV

VVVV
GainError




  (10)  

 

100*

10485*
48564714

)()(

)485()64714(

)485(

)(%

MINIDEALMAXIDEAL

REALREAL

REAL

OUTOUT

OUTOUT

OUT

FSR
VV

VV
V

rOffsetErro






















  

(11) 

 



  

 www.ti.com 

14 Bipolar +/-10V Analog Output from a Unipolar Voltage Output DAC SLAU525-June 2013-Revised June 2013 
Copyright © 2013, Texas Instruments Incorporated 

6.2 Transient Response 

To observe a full-scale step response and settling time of the system, a square wave corresponding to the 
zero-scale code and full-scale code were applied to the digital inputs of the DAC. Figure 11 shows this 
step response. 

 

Figure 11: Full-Scale Step Response 
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To test the small signal stability of the design a digital input corresponding to a 200mV output step 
response centered about midscale output of the system was applied to the DAC. Figure 12 illustrates the 
resulting step response that shows a small period of digital feedthrough followed by very little overshoot or 
ringing, indicating a stable design. 

 

Figure 12: Small-Signal Stability 
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7 Modifications 

The components selected in this design were chosen based on the design goals outlined at the beginning 
of this document. The DAC selection can be very open since the output circuit is applicable to any device 
and should be made based on specific design goals. Alternative DACs may provide enhanced linearity, 
gain error, and offset error as well as alternative interface options, channel count, resolution, and other 
auxiliary features. Table 7 shows a few DACs that may be used in place of the DAC8560. 

Modifications to improve the accuracy of this design are possible by choosing a more precise DAC and by 
utilizing an external reference source. For this design, delivering a very low-cost solution was a critical 
parameter and some sacrifices were made. Additionally, the implementation of external calibration can 
greatly enhance results. 

Table 8: Alternate DAC Options 

DAC Gain Error (Typ) 
Offset Error 

(Typ) 
INL Error (Typ) Resolution Channel Count 

DAC8560 ±0.05 %FSR ±5 mV ±8 LSB 16 bits 1 

DAC8562/3 ±0.01 %FSR ±1 mV ±4 LSB 16 bits 2 

DAC8564 ±0.05 %FSR ±5 mV ±4 LSB 16 bits 4 

DAC8568 ±0.01 %FSR ±1 mV ±4 LSB 16 bits 8 

DAC8411 ±0.05 %FSR ±0.05 mV ±1 LSB 16 bits 1 

DAC8881 ±4 LSB ±4 LSB ±0.5 LSB 16 bits 1 

The OPA188 is an excellent wide-supply amplifier with very low input offset voltage and input offset 
voltage drift due to its chopper topology. Other op amps may be selected that offer lower noise, zero 
cross-over distortion, or higher bandwidth. Designs that deliver a smaller output range have many more 
options available since the supply voltage requirements are lowered. 

Table 9: Alternate Op Amp Options 

Amplifier 
Max Supply 

Voltage 
Offset Voltage 

(Typ) 
Offset Drift (Typ) Bandwidth 

Quiescent 
Current 

OPA180 36 V 15 µV 0.1 µV/C 2 MHz 450 µA 

OPA188 36 V 6 µV 0.085 µV/C 2 MHz 450 µA 

OPA170 36 V 0.25 mV 0.3 µV/C 1.2 MHz 110 µA 

OPA211 36 V 30 µV 0.35 µV/C 80 MHz 3.6 µA 

OPA227 36 V 10 µV 0.1 µV/C 1 MHz 790 µA 

OPA140 36 V 30 µV 0.35 µV/C 11 MHz 1.8 mA 

OPA277 36 V 10 µV 0.1 µV/C 1 MHz 790 µA 
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Appendix A.  

A.1 Electrical Schematic  

 

Figure A-1: Electrical Schematic  

 

Passive Name in Text Passive Name in Schematic 
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RG2 R2 
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A.2 Bill of Materials 

 

Figure A-2: Bill of Materials 
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