# User's Guide TPS546A24A SWIFT<sup>™</sup> Step-Down Converter Evaluation Module User's Guide

# TEXAS INSTRUMENTS

#### ABSTRACT

This user's guide describes the characteristics, operation, and use of the TPS546A24AEVM-1PH evaluation module (EVM). The user's guide includes test information, descriptions, and results. A complete schematic diagram, printed-circuit board layouts, and bill of materials are also included in this document. Throughout this user's guide, the abbreviations EVM, TPS546A24AEVM-1PH, and the term evaluation module are synonymous with the TPS546A24AEVM-1PH, unless otherwise noted.

#### Trademarks

All trademarks are the property of their respective owners.

1



# **1** Description

The TPS546A24AEVM-1PH evaluation module uses the TPS546A24A device in a buck design. It designed for a nominal 12-V bus and to produce a regulated 1.2-V output at up to 10 A of load current. The TPS546A24AEVM-1PH provides a number of test points to evaluate the performance of the devices.

### 1.1 Before You Begin

The following warnings and cautions are noted for the safety of anyone using or working close to the TPS546A24AEVM-1PH. Observe all safety precautions.



Warning

The TPS546A24AEVM-1PH circuit module may become hot during operation due to dissipation of heat. Avoid contact with the board. Follow all applicable safety procedures applicable to your laboratory.



Caution

Do not leave the EVM powered when unattended.

#### WARNING

The circuit module has signal traces, components, and component leads on the bottom of the board. This may result in exposed voltages, hot surfaces, or sharp edges. Do not reach under the board during operation.

#### CAUTION

The circuit module may be damaged by over temperature. To avoid damage, monitor the temperature during evaluation and provide cooling, as needed, for your system environment.

### CAUTION

Some power supplies can be damaged by application of external voltages. If using more than 1 power supply, check your equipment requirements and use blocking diodes or other isolation techniques, as needed, to prevent damage to your equipment.

### CAUTION

The communication interface is not isolated on the EVM. Be sure no ground potential exists between the computer and the EVM. Also be aware that the computer is referenced to the battery- potential of the EVM.

### **1.2 Typical Applications**

The TPS546A24A device is designed for the following applications:

- High-density power solutions
- Wireless infrastructure
- Switcher
- Router network
- Server
- Storage
- Smart power systems

### 1.3 Features

This EVM has the following features:



- Regulated 1.2-V output up to 10-A<sub>DC</sub> steady-state output current
- The output voltage is marginable and trimmable using the PMBus interface
  - Programmable UVLO, soft-start, and enable via the PMBus interface
  - Programmable overcurrent warning and fault limits and programmable response to faults via the PMBus interface
  - Programmable overvoltage and undervoltage warning and fault limits and programmable response to faults via the PMBus interface
  - Programmable turn-on and turn-off delays
- Convenient test points for probing critical waveforms

3



# **2 Electrical Performance Specifications**

Table 2-1 lists the electrical performance specifications in room temperature (20 to 25°C). Characteristics are given for an input voltage of VIN = 12 V, unless otherwise specified.

| Parameter                                             | Test Conditions                                           | MIN | TYP   | MAX | Unit    |
|-------------------------------------------------------|-----------------------------------------------------------|-----|-------|-----|---------|
| Input Characteristics                                 |                                                           | -1  | 1     |     |         |
| Input voltage range, V <sub>IN</sub>                  |                                                           | 5   | 12    | 18  | V       |
| Full load input current                               | I <sub>OUT</sub> = 10 A                                   |     | 1.13  |     | A       |
| Full load input current                               | V <sub>IN</sub> = 5 V, I <sub>OUT</sub> = 10 A            |     | 2.6   |     | A       |
| No load input current                                 | I <sub>OUT</sub> = 0 A, switching enabled                 |     | 65    |     | mA      |
| Enable switching threshold                            | Set by default resistor divider, JP4 pins 3 and 4 shorted |     | 4.7   |     | V       |
| Disable switching threshold                           | Set by default resistor divider, JP4 pins 3 and 4 shorted |     | 4.22  |     | V       |
| Output Characteristics                                |                                                           |     |       |     |         |
| Output voltage, V <sub>OUT</sub>                      |                                                           |     | 1.2   |     | V       |
| Output load current, I <sub>OUT</sub>                 |                                                           | 0   |       | 10  | A       |
|                                                       | Line Regulation: V <sub>IN</sub> = 5 V to 18 V            |     | 0.1%  |     |         |
| Output voltage regulation                             | Load Regulation: I <sub>OUT</sub> = 0 A to 10 A           |     | 0.1%  |     |         |
| Output voltage ripple                                 | I <sub>OUT</sub> = 10 A                                   |     | 7     |     | mVpp    |
| Output voltage undershoot                             | I <sub>OUT</sub> = 2.5-A to 7.5-A step at 10 A/μs         |     | 90    |     | mV      |
| Output voltage overshoot                              | I <sub>OUT</sub> = 7.5-A to 2.5-A step at 10 A/μs         |     | 90    |     | mV      |
| Output overcurrent fault threshold                    | Phase current limit programmed by MSEL2                   |     | 14    |     | A       |
| Systems Characteristics                               |                                                           |     |       |     |         |
| Switching frequency                                   | Programmed by MSEL1                                       |     | 650   |     | kHz     |
| Full load efficiency, V <sub>OUT</sub> <sup>(1)</sup> | I <sub>OUT</sub> = 10 A                                   |     | 89.2% |     |         |
| Operating case temperature                            | I <sub>OUT</sub> = 10 A, 10 minute soak                   |     | 37    |     | °C      |
| Loop bandwidth                                        | 10.4                                                      |     | 37    |     | kHz     |
| Phase margin                                          | I <sub>OUT</sub> = 10 A                                   | 61  |       |     | 0       |
| PMBus Interface and Pin-Strapping                     |                                                           |     |       |     |         |
| PMBus address                                         | Programmed by NVM and ADRSEL                              |     | 36    |     | Decimal |
| Voltage reference                                     | Default setting of VOUT_COMMAND programmed by<br>VSEL     |     | 1.2   |     | V       |
| Soft-start time (TON_RISE)                            | Default setting of TON_RISE programmed by MSEL2           |     | 3     |     | ms      |
|                                                       |                                                           | 1   | 1     | 1   | 1       |

(1) The efficiency is measured using the test points listed in Table 6-1 to minimize the effect of DC drops caused by onboard copper traces.



# **3 Schematic**

Figure 3-1 through Figure 3-2 illustrate the TPS546A24AEVM-1PH schematics.

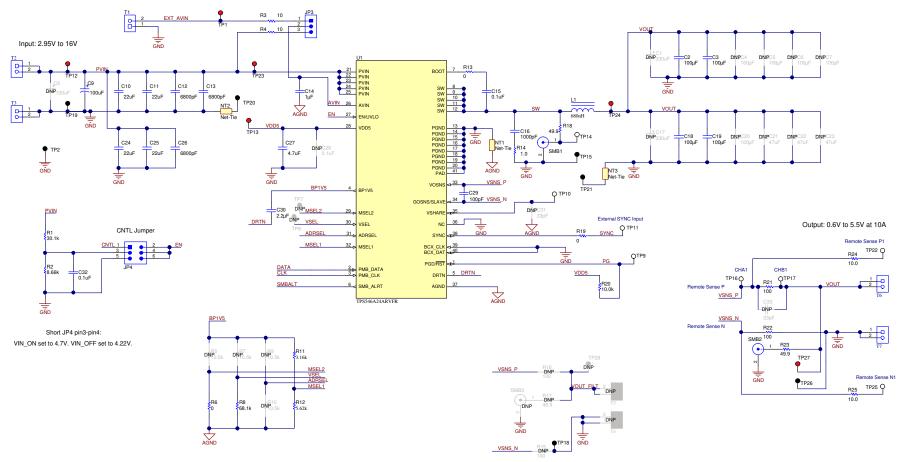



Figure 3-1. TPS546A24AEVM-1PH Schematic - Main Circuit



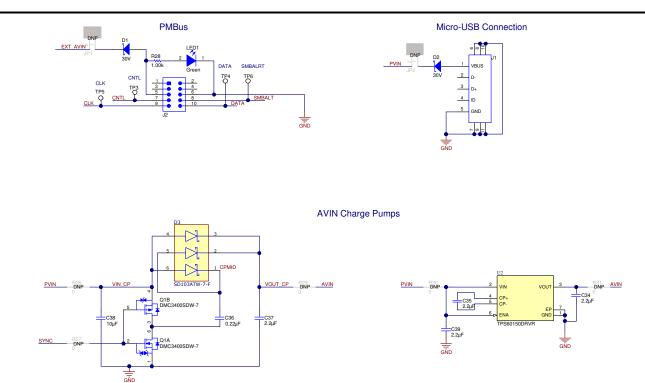



Figure 3-2. TPS546A24AEVM-1PH Schematic - Connectors and Charge Pumps



# 4 Test Setup

### 4.1 Test and Configuration Software

To change any of the default configuration parameters on the EVM through PMBus, obtain the *TI Fusion Digital Power Designer* software.

#### 4.1.1 Description

The *TI Fusion Digital Power Designer* is the graphical user interface (GUI) used to configure and monitor the Texas Instruments TPS546A24A power converter installed on this evaluation module. The application uses the PMBus protocol to communicate with the controller over serial bus by way of a TI USB adapter described in Section 4.2.6.

#### 4.1.2 Features

Some of the tasks you can perform with the GUI include:

- Turn on or off the power supply output, either through the hardware control line or the PMBus operation command.
- Monitor real-time data. Items such as input voltage, output voltage, output current, die temperature, and warnings and faults that are continuously monitored and displayed by the GUI.
- Configure common operating characteristics such as V<sub>OUT</sub> trim and margin, UVLO, soft-start time, warning
  and fault thresholds, fault response, and On/Off modes.

#### 4.2 Test Equipment

#### 4.2.1 Voltage Source

The input voltage source  $V_{IN}$  should be a 0-V to 20-V variable DC source capable of supplying a minimum of 3  $A_{DC}$  to support 10-A load with 5-V input. Connect input VIN and GND to T2 and T3. If the output voltage of the EVM is increased, the power supply may need to be capable of supplying more current.

#### 4.2.2 Multimeters

TI recommends using two separate multimeters: one meter to measure  $V_{IN}$  and the other to measure  $V_{OUT}$ .

#### 4.2.3 Output Load

A variable electronic load is recommended for the test setup. To test the full load current this EVM supports, the load should be capable of sinking at least 10 A.

#### 4.2.4 Oscilloscope

When using an oscilloscope to measure the switching node voltage or voltage ripple, measure using a *Tip-and-Barrel* method as Figure 4-1 shows, or better.

#### 4.2.5 Fan

During prolonged operation at high loads, it may be necessary to provide forced air cooling with a small fan aimed at the EVM. Maintain the surface temperature of the devices on the EVM below their rated temperature.

#### 4.2.6 USB-to-GPIO Interface Adapter

A communications adapter is required between the EVM and the host computer. This EVM is designed to use TI's USB-to-GPIO Adapter. Purchase this adapter at http://www.ti.com/tool/usb-to-gpio.

#### 4.2.7 Recommended Wire Gauge

- Input VIN and GND to T2 and T3 (GND) (12-V input) The recommended wire size is AWG #18 or better, with the total length of wire less than 2 feet (1 foot input, 1 foot return).
- Output T6 and GND T7 (1.2-V output) The recommended wire size is AWG #16 or better, with the total length of wire less than 2 feet (1 foot output, 1 foot return). A thicker wire gauge may be required to minimize the voltage drop in the wires.

#### 4.3 Tip and Barrel Measurement

Figure 4-1 illustrates the tip and barrel measurement for switching node waveform on TP14 with TP15.

7



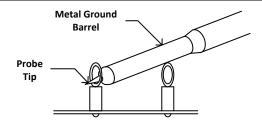



Figure 4-1. Tip and Barrel Measurement

#### 4.4 List of Test Points, Jumpers, and Connectors

 Table 4-1 lists the test point functions.

#### Table 4-1. Test Point Functions

| Test<br>Point | Туре     | Name        | Description                                                                |  |
|---------------|----------|-------------|----------------------------------------------------------------------------|--|
| TP1           | T-H Loop | EXT_AVIN    | AVIN measurement point                                                     |  |
| TP2           | T-H Loop | GND         | GND reference                                                              |  |
| TP3           | T-H Loop | CNTL        | CNTL signal on J2 header                                                   |  |
| TP4           | T-H Loop | DATA        | DATA signal on J2 header                                                   |  |
| TP5           | T-H Loop | CLK         | CLK signal on J2 header                                                    |  |
| TP6           | T-H Loop | SMBALRT     | SMBALERT signal on J2 header                                               |  |
| TP7           | T-H Loop | MSEL2       | MSEL2 measurement point for U1                                             |  |
| TP8           | T-H Loop | VSEL        | VSEL measurement point for U1                                              |  |
| TP9           | T-H Loop | PG          | PGOOD signal of U1                                                         |  |
| TP10          | T-H Loop | VSHARE      | VSHARE measurement point. Sensitive signal                                 |  |
| TP11          | T-H Loop | SYNC        | External SYNC input                                                        |  |
| TP12          | T-H Loop | PVIN        | VIN+ measurement point                                                     |  |
| TP13          | T-H Loop | VDD5        | VDD5 measurement point or external VDD5 input                              |  |
| TP14          | T-H Loop | SW          | Switching node, reference to TP15                                          |  |
| TP15          | T-H Loop | GND         | GND reference for switch node measurement                                  |  |
| TP16          | T-H Loop | CH_A        | INPUT for small signal loop gain measurements (B/A setup)                  |  |
| TP17          | T-H Loop | CH_B        | OUTPUT for small signal loop gain measurements (B/A setup)                 |  |
| TP18          | T-H Loop | GND         | GND reference                                                              |  |
| TP19          | T-H Loop | GND         | VIN- measurement point                                                     |  |
| TP20          | T-H Loop | GND         | GND reference for U1 PVIN for efficiency measurement                       |  |
| TP21          | T-H Loop | GND         | GND reference for VOUT for efficiency measurement                          |  |
| TP22          | T-H Loop | Remote SNS+ | OUTPUT remote sense + voltage point                                        |  |
| TP23          | T-H Loop | PVIN_EFF    | PVIN pin voltage of U1 measurement point for efficiency, reference to TP20 |  |
| TP24          | T-H Loop | VOUT_EFF    | VOUT measurement point for efficiency, reference to TP21                   |  |
| TP25          | T-H Loop | Remote SNS- | OUTPUT remote sense - voltage point                                        |  |
| TP26          | T-H Loop | GND         | VOUT - measurement point                                                   |  |
| TP27          | T-H Loop | VOUT        | VOUT + measurement point                                                   |  |
| TP28          | T-H Loop | VOUT_FILT   | VOUT_FILT measurement point when using second stage filter                 |  |

#### Table 4-2 lists the EVM jumpers.

8

#### Table 4-2. Jumpers

| Jumper | Туре                   | Name           | Description                                  |
|--------|------------------------|----------------|----------------------------------------------|
| JP1    | Header, 100 mil, 2 × 1 | Micro_USB-PVIN | Short to connect PVIN to Micro USB connector |
| JP2    | Header, 100 mil, 2 × 1 | PMBus3.3V-AVIN | Short to connect USB-to-GPIO 3.3V to AVIN    |
| JP3    | Header, 100 mil, 3 × 1 | AVIN Select    | AVIN input source selections                 |



| Table 4-2. Jumpers (continued)                              |  |  |  |  |  |  |
|-------------------------------------------------------------|--|--|--|--|--|--|
| Jumper Type Name Description                                |  |  |  |  |  |  |
| JP4 Header, 100 mil, 3 × 2 EN Select EN/UVLO pin selections |  |  |  |  |  |  |

#### Table 4-3 lists the options for the EN/UVLO pin selection.

#### Table 4-3. JP4 Selections

| Shunt Position     | Selection                    |
|--------------------|------------------------------|
| pin 1 to 2 shorted | PMBus adaptor control signal |
| pin 3 to 4 shorted | Resistor divider to PVIN     |
| pin 5 to 6 shorted | EN/UVLO short to ground      |

#### Table 4-4 lists the options for the AVIN selection.

#### Table 4-4. JP3 Selections

| Shunt Position     | Selection                                                                                                                |
|--------------------|--------------------------------------------------------------------------------------------------------------------------|
| pin 1 to 2 shorted | AVIN pin connected to AVIN input through 10- $\Omega$ resistor. Use this selection when testing with a split rail input. |
| pin 2 to 3 shorted | AVIN pin connected to PVIN through 10- $\Omega$ resistor                                                                 |

#### Table 4-5 lists the EVM connector functions.

| Connector | Туре                   | Name            | Description                                            |  |
|-----------|------------------------|-----------------|--------------------------------------------------------|--|
| J1        | Micro USB              | Micro USB       | Micro USB connector to power EVM from a 5 V USB source |  |
| J2        | Header, 100 mil, 5 × 2 | PMBus connector | PMBus socket for TI FUSION adaptor                     |  |
| T1        | Terminal block, 2 × 1  | Ext_AVIN        | External AVIN connector                                |  |
| T2        | Terminal block, 2 × 1  | PVIN            | VIN+ connector                                         |  |
| Т3        | Terminal block, 2 × 1  | GND             | VIN– connector                                         |  |
| T4        | Terminal block, 2 × 1  | GND             | VOUT_FILT- connector                                   |  |
| T5        | Terminal block, 2 × 1  | VOUT_FILT       | VOUT_FILT+ connector                                   |  |
| Т6        | Terminal block, 2 × 1  | VOUT            | VOUT+ connector                                        |  |
| Τ7        | Terminal block, 2 × 1  | GND             | VOUT- connector                                        |  |

#### Table 4-5. Connector Functions

### 4.5 Evaluating Split Rail Input

The default configuration of the EVM is for single rail input. Split rail input enables operation with 3.3V PVIN. For split rail operation, configure the jumpers on the EVM as follows:

- 1. Move the jumper JP3 to position 1-2 to disconnect the AVIN pin from the PVIN pin.
- 2. Apply the AVIN input to T1. 4-V or greater AVIN is required to bring the VDD5 voltage high enough to enable conversion.
- 3. If operation with 3.3-V PVIN is needed and the EN Select jumper (JP4) is in position 3-4, the resistor divider at the EN/UVLO will need to be changed. Alternately move the EN Select jumper to position 1-2 and use the control signal to enable conversion or use the *On/Off Config* and *OPERATION* commands to enable conversion.

#### 4.6 Configuring EVM to Overdrive VDD5

The EVM has a testpoint TP13 that can be used to overdrive VDD5. Externally applying VDD5 is useful to minimize the power dissipation in the TPS546A24A IC when using a single rail input by moving the loss from the internal LDO of the TPS546A24A to the external supply connected to TP13.

To overdrive the internal LDO, ensure the VDD5 output of the TPS546A24A is set below the external supply voltage connected from TP13 to ground (e.g. TP2).

9



### 4.7 Powering from a Single 3.3-V Input Power Supply

The EVM includes two charge pump options to enable powering the TPS546A24A from a single 3.3-V input supply. The operation of these charge pumps is discussed in the application note Powering the TPS546D24A Device Family from a Single 3.3-V Input Power Supply.

Before following the instructions below to use one of the charge pump circuits, it is first necessary to modify the conditions that enable power conversion. By default, the EVM is configured to start switching when PVIN goes above 4.7 V based on the R1 and R2 voltage divider to the EN pin. Increasing R2 from 8.66 k $\Omega$  to 16.2 k $\Omega$  sets the enable threshold to approximately 3.0 V. An alternative method is to use the Fusion GUI to change the *On/Off Config* setting to *Always Converting* such that the device is enabled whenever power is present, regardless of the state of the EN pin or the *OPERATION* command. The configuration screen is shown in Figure 10-3. Be sure to *Store Config to NVM* after writing the change to hardware such that the setting persists after power is removed and reapplied.

To use the discrete charge pump, modify the EVM as follows:

- 1. Modify the enable threshold or On/Off Config of the device as described previously.
- 2. Set SYNC pin as an output. This can be accomplished by doing *either* of the following:
  - a. Populate ADRSEL pin-strap resistor divider with R9 = 2.05 k $\Omega$  and R10 = 10 k $\Omega$ .
  - b. Use Fusion GUI to set the SYNC\_DIR bits of the SYNC\_CONFIG register to 01b: Enable SYNC OUT. This register can be set from the All Config tab in Fusion GUI, shown in Figure 10-8. Be sure to Store Config to NVM after writing the change to hardware.
- 3. Remove the jumper JP3 to disconnect AVIN from both the external AVIN header (T1) and from PVIN.
- 4. Populate the resistors R26, R27, and R29 with 0- $\Omega$  resistors.
- 5. Apply PVIN input voltage. Note that the output voltage of the discrete charge pump will be approximately 2 x PVIN (minus two diode drops). Pay careful attention that the applied PVIN remains below 9 V such that the generated AVIN does not exceed the 18-V rating of the converter IC.

To use the charge pump IC TPS60150, modify the EVM as follows:

- 1. Modify the enable threshold or On/Off Config of the device as described previously.
- 2. Remove the jumper JP3 to disconnect AVIN from both the external AVIN header (T1) and from PVIN.
- 3. Populate the resistors R30 and R31 with  $0-\Omega$  resistors.
- 4. Apply PVIN input voltage. Pay careful attention that the applied PVIN remains below the 5.5-V input rating of the TPS60150 charge pump IC.

#### Note

Only one charge pump circuit should be connected and used at a time. Remove the  $0-\Omega$  resistors that connect the charge pump to PVIN and AVIN (and SYNC for the discrete charge pump) before connecting the other charge pump, or before testing other conditions with higher input voltages that do not require the charge pump.



# 5 EVM Configuration Using the Fusion GUI

The TPS546A24A IC leaves the factory pre-configured. The factory default settings for the parameters can be found in the datasheet. If configuring the EVM to settings other than the factory defaults, use the software described in Section 4.1. It is necessary to have the input voltage applied to the EVM prior to launching the software so that the TPS546A24A may respond to the GUI and the GUI can recognize the device. The default configuration for the EVM to stop converting is set by the EN/UVLO resistor divider to a nominal input voltage of 4.22 V; therefore, an input voltage less than 4.22 V should be applied to avoid any converter activity during configuration. TI recommends an input voltage of 3.3 V.

### 5.1 Configuration Procedure

- 1. Adjust the input supply to provide 3.3 VDC, current limited to 1 A.
- 2. Apply the input voltage to the EVM. See Section 4.2 for connections and test setup.
- 3. Launch the Fusion GUI software. See the screen shots in Section 10 for more information.
- 4. Configure the EVM operating parameters as desired.



# **6 Test Procedure**

### 6.1 Line and Load Regulation and Efficiency Measurement Procedure

- 1. Set up the EVM as Section 4.2 and Section 6.2 describe.
- 2. Set the electronic load to draw 0  $A_{DC}$ .
- 3. Increase  $V_{IN}$  from 0 V to 12 V using voltage meter to measure input voltage.
- 4. Use the other voltage meter to measure output voltage  $V_{OUT}$ .
- 5. Vary the load from 0 to 10 A<sub>DC</sub>. V<sub>OUT</sub> should remain in regulation as defined in Table 2-1.
- 6. Vary  $V_{IN}$  from 5 V to 18 V.  $V_{OUT}$  should remain in regulation as defined in Table 2-1.
- 7. Decrease the load to 0 A.
- 8. Decrease  $V_{\text{IN}}$  to 0 V.

### 6.2 Efficiency Measurement Test Points

To evaluate the efficiency of the power train (device and inductor), it is important to measure the voltages at the correct location. This is necessary because otherwise the measurements will include losses that are not related to the power train itself. Losses incurred by the voltage drop in the copper traces and in the input and output connectors are not related to the efficiency of the power train, which should not be included in efficiency measurements.

Input current can be measured at any point in the input wires, and output current can be measured anywhere in the output wires of the output being measured.

Table 6-1 shows the measurement points for input voltage and output voltage. VIN and VOUT are measured to calculate the efficiency. Using these measurement points will result in efficiency measurements that excludes losses due to the wires and connectors as well as PCB voltage drops.

| Test Point | Node Name | Description                                       | Comment                                                                                                                                                                                        |
|------------|-----------|---------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TP23       | PVIN      | Input voltage measurement point for VIN+          | This pair of test points are connected to PVIN and PGND near the pins of U1. The voltage                                                                                                       |
| TP20 PGND  |           | Input voltage measurement point<br>for VIN– (GND) | drop between input terminal to the device pins is not included for efficiency measurement.                                                                                                     |
| TP24       | VOUT      | Output voltage measurement<br>point for VOUT+     | This pair of test points are connected to VOUT and GND near the output inductor. The voltage drop from the output point of the inductor to the output terminals is not included for efficiency |
| TP21       | GND       | Output voltage measurement point for VOUT– (GND)  | measurement.                                                                                                                                                                                   |

#### Table 6-1. Test Points for Efficiency Measurements

### 6.3 Control Loop Gain and Phase Measurement Procedure

The TPS546A24AEVM-1PH includes a 100.0- $\Omega$  series resistor in the feedback loop for V<sub>OUT</sub>. The resistor is accessible at the test points TP16 and TP17 for loop response analysis. These test points should be used during loop response measurements as the perturbation injecting points for the loop. See the description in Table 6-2.

#### Table 6-2. List of Test Points for Loop Response Measurements

| Test Point         Node Name         Description         Comment |      |                                        | Comment                                                                             |
|------------------------------------------------------------------|------|----------------------------------------|-------------------------------------------------------------------------------------|
| TP16                                                             | CH_A | Input to feedback divider of $V_{OUT}$ | The amplitude of the perturbation at this node should be limited to less than 30 mV |
| TP17                                                             | CH_B | Resulting output of V <sub>OUT</sub>   | Bode can be measured by a network analyzer with a CH_B/CH_A configuration           |

Measure the loop response with the following procedure:

- 1. Set up the EVM as described in Section 4.2.
- 2. For V<sub>OUT</sub>, connect the isolation transformer of the network analyzer from TP16 to TP17.
- 3. Connect the input signal measurement probe to TP16. Connect the output signal measurement probe to TP17.
- 4. Connect the ground leads of both probe channels to TP18.
- 5. On the network analyzer, measure the Bode as TP17/TP16 (Out/In).



## 7 Performance Data and Typical Characteristic Curves

Figure 7-1 through Figure 7-3 present typical performance curves for the TPS546A24AEVM-1PH. The input voltage is 12 V and the oscilloscope measurements use 20 MHz bandwidth limiting unless otherwise noted.

### 7.1 Efficiency

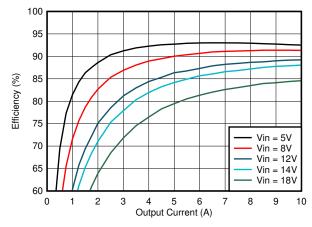
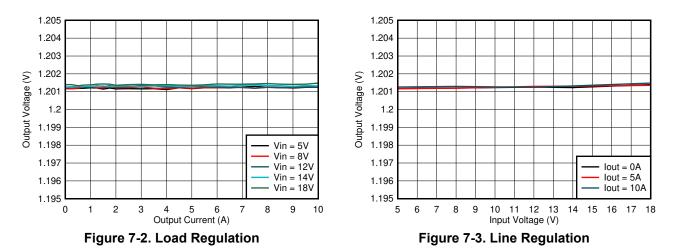
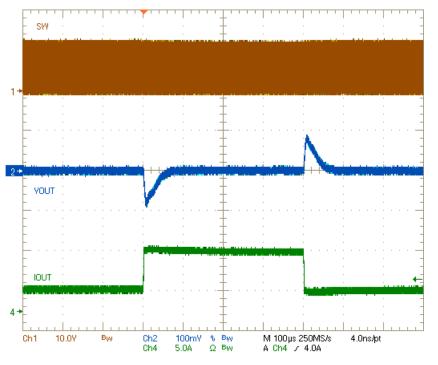




Figure 7-1. Efficiency


### 7.2 Load and Line Regulation (Measured Between TP27 and TP26)





### 7.3 Transient Response

Figure 7-4 shows the transient response waveform with a 2.5 A to 7.5 A transient at 10 A/µs





### 7.4 Control Loop Bode Plot

Figure 7-5 is the control loop bode plot.

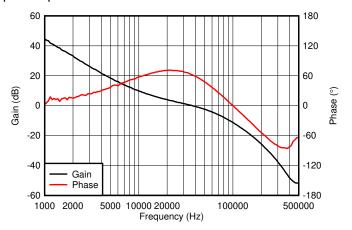



Figure 7-5. Bode Plot at 1.2-V Output at 12  $V_{\text{IN}},$  10-A Load



# 7.5 Output Ripple

Figure 7-6 and Figure 7-7 show the output ripple waveforms at 0-A and 10-A load.




Figure 7-7. Output Ripple With 10-A Load



### 7.6 Power MOSFET Drain-Source Voltage

Figure 7-8 and Figure 7-9 show the low-side and high-side MOSFET drain-source voltage ( $V_{DS}$ ) at 10-A load. The voltage is measured with 1-GHz bandwidth and at the solder mask openings near the U1 IC using a 1-GHz differential probe.



Figure 7-8. Low-side MOSFET  $V_{\text{DS}}$ 




Figure 7-9. High-side MOSFET  $V_{DS}$ 



# 7.7 Control On

Figure 7-10 illustrates the start-up from control on waveforms at 10-A output.

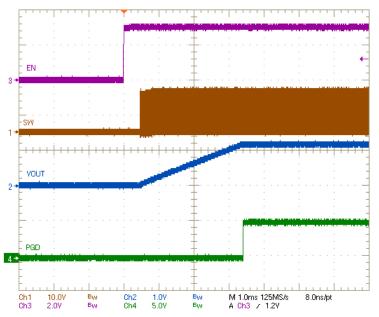



Figure 7-10. Start-Up From Control, 10-A CC Load

## 7.8 Control Off

Figure 7-11 illustrate the control off waveforms at 10-A output.

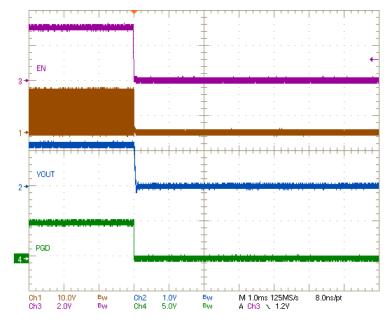



Figure 7-11. Shutdown From Control, 10-A CC Load



### 7.9 Control On With Pre-biased Output

Figure 7-12 illustrates the control on waveforms with a pre-biased output voltage.

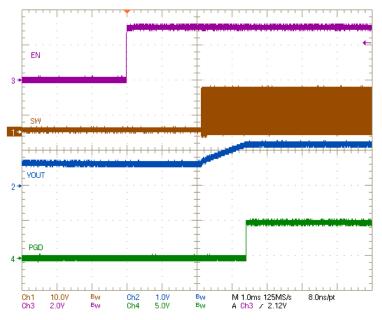
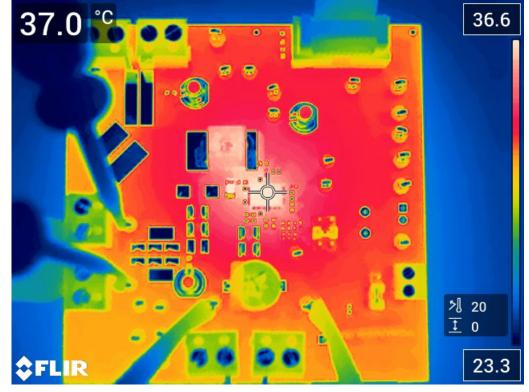




Figure 7-12. Start-Up From Control With Pre-biased Output

### 7.10 Thermal Image

Figure 7-13 shows the TPS546A24AEVM-1PH thermal image.



V<sub>IN</sub> = 12 V, I<sub>OUT</sub> = 10 A





# 8 EVM Assembly Drawing and PCB Layout

Figure 8-1 through Figure 8-12 show the design of the TPS546A24AEVM-1PH printed circuit board.

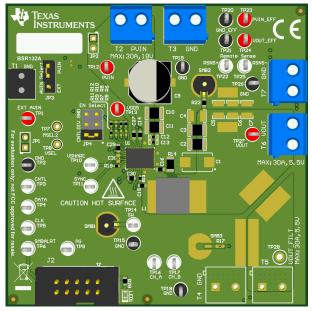



Figure 8-1. TPS546A24AEVM-1PH 3D Top View

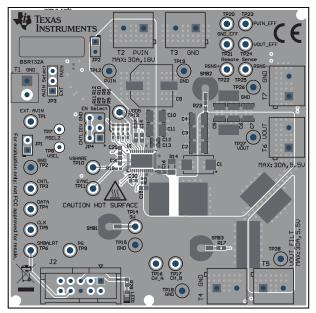



Figure 8-3. TPS546A24AEVM-1PH Top Side Component View (Top View)

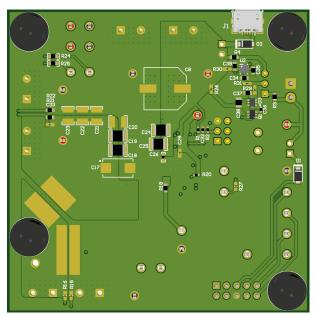



Figure 8-2. TPS546A24AEVM-1PH 3D Bottom View

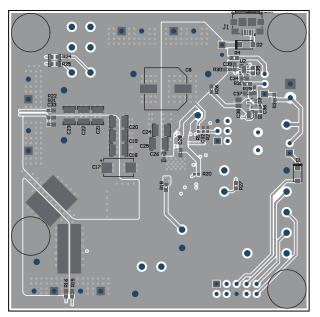
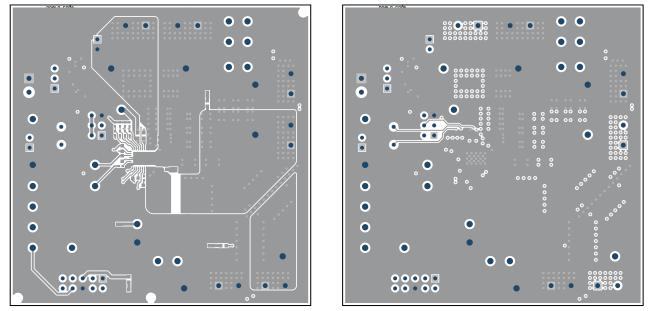




Figure 8-4. TPS546A24AEVM-1PH Bottom Side Component View (Bottom View)



View)



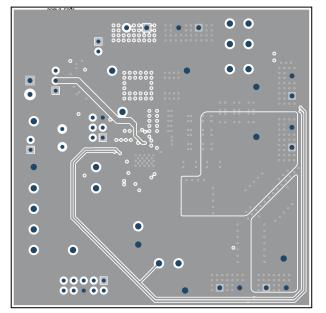



Figure 8-7. TPS546A24AEVM-1PH Internal Layer 2 (Top View)

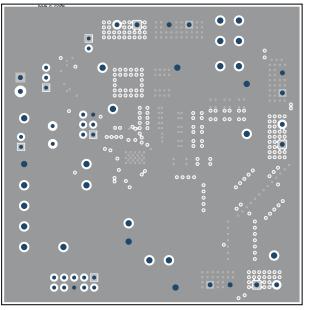
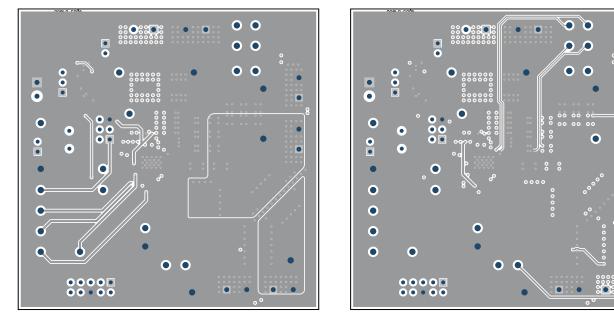




Figure 8-8. TPS546A24AEVM-1PH Internal Layer 3 (Top View)

6

.



(Top View)

Figure 8-9. TPS546A24AEVM-1PH Internal Layer 4 Figure 8-10. TPS546A24AEVM-1PH Internal Layer 5 (Top View)

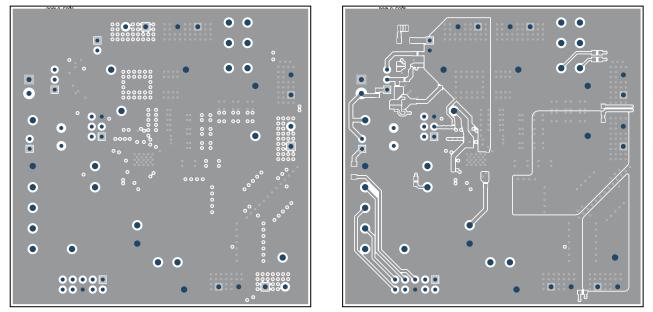



Figure 8-11. TPS546A24AEVM-1PH Internal Layer 6 Figure 8-12. TPS546A24AEVM-1PH Internal Bottom (Top View) Layer (Top View)

# 9 Bill of Materials

Table 9-1 lists the BOM for the TPS546A24AEVM-1PH.

| Table 9 | 9-1. | Bill c | of Mat | erials |
|---------|------|--------|--------|--------|
|---------|------|--------|--------|--------|

| Designator         | Quantity | Value  | Description                                                              | PackageReference                             | PartNumber           | Manufacturer                |
|--------------------|----------|--------|--------------------------------------------------------------------------|----------------------------------------------|----------------------|-----------------------------|
| IPCB1              | 1        |        | Printed Circuit Board                                                    |                                              | BSR132               | Any                         |
| C2, C3, C18, C19   | 4        | 100uF  | CAP, CERM, 100 µF, 6.3 V,+/- 20%, X7S, 1210                              | 1210                                         | GRM32EC70J107ME15L   | MuRata                      |
| C9                 | 1        | 100uF  | CAP, AL, 100 uF, 35 V, +/- 20%, 0.15 ohm, SMD                            | SMT Radial G                                 | EEE-FC1V101P         | Panasonic                   |
| C10, C11, C24, C25 | 4        | 22uF   | CAP, CERM, 22 uF, 25 V, +/- 10%, X6S, 1210                               | 1210                                         | GRM32EC81E226KE15L   | MuRata                      |
| C12, C13, C26      | 3        | 6800pF | CAP, CERM, 6800 pF, 50 V,+/- 10%, X7R, 0402                              | 0402                                         | GCM155R71H682KA55D   | MuRata                      |
| C14                | 1        | 1uF    | CAP, CERM, 1 uF, 25 V, +/- 10%, X7R, 0603                                | 0603                                         | C0603C105K3RACTU     | Kemet                       |
| C15                | 1        | 0.1uF  | CAP, CERM, 0.1 uF, 50 V, +/- 10%, X7R, 0603                              | 0603                                         | C0603C104K5RACTU     | Kemet                       |
| C16                | 1        | 1000pF | CAP, CERM, 1000 pF, 100 V, +/- 5%, X7R, 0603                             | 0603                                         | 06031C102JAT2A       | AVX                         |
| C27                | 1        | 4.7uF  | CAP, CERM, 4.7 uF, 10 V, +/- 10%, X5R, 0603                              | 0603                                         | C0603C475K8PACTU     | Kemet                       |
| C29                | 1        | 100pF  | CAP, CERM, 100 pF, 50 V, +/- 5%, C0G/NP0, 0603                           | 0603                                         | C1608C0G1H101J080AE  | TDK                         |
| C30                | 1        | 2.2uF  | CAP, CERM, 2.2 uF, 16 V, +/- 10%, X7R, 0603                              | 0603                                         | EMK107BB7225KA-T     | Taiyo Yuden                 |
| C32                | 1        | 0.1uF  | CAP, CERM, 0.1 uF, 50 V, +/- 10%, X7R, AEC-Q200 Grade 1, 0402            | 0402                                         | CGA2B3X7R1H104K050BB | TDK                         |
| C34, C35, C37, C39 | 4        | 2.2uF  | CAP, CERM, 2.2 µF, 25 V,+/- 10%, X7S, 0603                               | 0603                                         | GRM188C71E225KE11D   | MuRata                      |
| C36                | 1        | 0.22uF | CAP, CERM, 0.22 µF, 16 V,+/- 10%, X7R, AEC-Q200 Grade 1, 0402            | 0402                                         | GCM155R71C224KE02D   | MuRata                      |
| C38                | 1        | 10uF   | CAP, CERM, 10 µF, 25 V,+/- 20%, X6S, 0805                                | 0805                                         | GRM21BC81E106ME51L   | MuRata                      |
| D1, D2             | 2        | 30V    | Diode, Schottky, 30 V, 2 A, AEC-Q101, SOD-123FL                          | SOD-123FL                                    | MBR230LSFT1G         | ON Semiconductor            |
| D3                 | 1        |        | DIODE ARRAY SCHOTTKY 40V SOT363                                          | SOT363                                       | SD103ATW-7-F         | Diodes                      |
| H5, H6, H7, H8     | 4        |        | Bumpon, Hemisphere, 0.375 X 0.235, Black                                 | Black Bumpon                                 | SJ61A2               | 3M                          |
| J1                 | 1        |        | Connector, Receptacle, Micro-USB Type B, R/A, Bottom Mount SMT           | MICRO USB CONN, R/A                          | 1981568-1            | TE Connectivity             |
| J2                 | 1        |        | Header (shrouded), 100mil, 5x2, Gold, TH                                 | 5x2 Shrouded header                          | 5103308-1            | TE Connectivity             |
| JP3                | 1        |        | Header, 100mil, 3x1, Gold, TH                                            | PBC03SAAN                                    | PBC03SAAN            | Sullins Connector Solutions |
| JP4                | 1        |        | Header, 100mil, 3x2, Gold, TH                                            | Sullins 100mil, 2x3, 230 mil above insulator | PBC03DAAN            | Sullins Connector Solutions |
| L1                 | 1        | 680nH  | Inductor, Shielded, Composite, 680 nH, 37 A, 0.0014 ohm, SMD             | 8.1 x 8 x 8.6mm                              | XAL8080-681MEB       | Coilcraft                   |
| LBL1               | 1        |        | Thermal Transfer Printable Labels, 0.650" W x 0.200" H - 10,000 per roll | PCB Label 0.650 x 0.200 inch                 | THT-14-423-10        | Brady                       |
| LED1               | 1        | Green  | LED, Green, SMD                                                          | LED_0603                                     | 150060GS75000        | Wurth Elektronik            |
| Q1                 | 1        | 30V    | MOSFET, 2-CH, N/P-CH, 30 V, 0.65 A, SOT-363                              | SOT-363                                      | DMC3400SDW-7         | Diodes Inc.                 |
| R1                 | 1        | 30.1k  | RES, 30.1 k, 1%, 0.063 W, AEC-Q200 Grade 0, 0402                         | 0402                                         | CRCW040230K1FKED     | Vishay-Dale                 |
| R2                 | 1        | 8.66k  | RES, 8.66 k, 1%, 0.063 W, AEC-Q200 Grade 0, 0402                         | 0402                                         | CRCW04028K66FKED     | Vishay-Dale                 |
| R3, R4             | 2        | 10     | RES, 10, 5%, 0.1 W, AEC-Q200 Grade 0, 0603                               | 0603                                         | CRCW060310R0JNEA     | Vishay-Dale                 |
| R6, R13, R19       | 3        | 0      | RES, 0, 5%, 0.063 W, AEC-Q200 Grade 0, 0402                              | 0402                                         | CRCW04020000Z0ED     | Vishay-Dale                 |
| R8                 | 1        | 68.1k  | RES, 68.1 k, 1%, 0.063 W, AEC-Q200 Grade 0, 0402                         | 0402                                         | CRCW040268K1FKED     | Vishay-Dale                 |
| R11                | 1        | 3.16k  | RES, 3.16 k, 1%, 0.063 W, AEC-Q200 Grade 0, 0402                         | 0402                                         | CRCW04023K16FKED     | Vishay-Dale                 |
| R12                | 1        | 5.62k  | RES, 5.62 k, 1%, 0.063 W, AEC-Q200 Grade 0, 0402                         | 0402                                         | CRCW04025K62FKED     | Vishay-Dale                 |
| R14                | 1        | 1.0    | RES, 1.0, 5%, 0.25 W, AEC-Q200 Grade 0, 1206                             | 1206                                         | CRCW12061R00JNEA     | Vishay-Dale                 |
| R18, R23           | 2        | 49.9   | RES, 49.9, 1%, 0.1 W, AEC-Q200 Grade 0, 0603                             | 0603                                         | CRCW060349R9FKEA     | Vishay-Dale                 |
| R20                | 1        | 10.0k  | RES, 10.0 k, 1%, 0.063 W, 0402                                           | 0402                                         | RC0402FR-0710KL      | Yageo America               |
| R21, R22           | 2        | 100    | RES, 100, 1%, 0.1 W, AEC-Q200 Grade 0, 0603                              | 0603                                         | CRCW0603100RFKEA     | Vishay-Dale                 |

| Designator                                                              | Quantity | Value | Description                                                                                                               | PackageReference             | PartNumber         | Manufacturer        |
|-------------------------------------------------------------------------|----------|-------|---------------------------------------------------------------------------------------------------------------------------|------------------------------|--------------------|---------------------|
| R24, R25                                                                | 2        | 10.0  | RES, 10.0, 1%, 0.25 W, AEC-Q200 Grade 0, 0603                                                                             | 0603                         | CRCW060310R0FKEAHP | Vishay-Dale         |
| R28                                                                     | 1        | 1.00k | RES, 1.00 k, 1%, 0.1 W, AEC-Q200 Grade 0, 0603                                                                            | 0603                         | CRCW06031K00FKEA   | Vishay-Dale         |
| SH-JP3, SH-JP4                                                          | 2        | 1x2   | Shunt, 100mil, Gold plated, Black                                                                                         | Shunt                        | SNT-100-BK-G       | Samtec              |
| SMB1, SMB2                                                              | 2        |       | Connector, Receptacle, 50 ohm, TH                                                                                         | SMB Connector                | SMBR004D00         | JAE Electronics     |
| T1                                                                      | 1        |       | Terminal Block, 3.5mm Pitch, 2x1, TH                                                                                      | 7.0x8.2x6.5mm                | ED555/2DS          | On-Shore Technology |
| T2, T3, T6, T7                                                          | 4        |       | Terminal Block, 5.08 mm, 2x1, Brass, TH                                                                                   | 2x1 5.08 mm Terminal Block   | ED120/2DS          | On-Shore Technology |
| TP1, TP12, TP13, TP23,<br>TP24, TP27                                    | 6        |       | Test Point, Multipurpose, Red, TH                                                                                         | Red Multipurpose Testpoint   | 5010               | Keystone            |
| TP2, TP15, TP18, TP19,<br>TP20, TP21, TP26                              | 7        |       | Test Point, Multipurpose, Black, TH                                                                                       | Black Multipurpose Testpoint | 5011               | Keystone            |
| TP3, TP4, TP5, TP6, TP9,<br>TP10, TP11, TP14, TP16,<br>TP17, TP22, TP25 | 12       |       | Test Point, Multipurpose, White, TH                                                                                       | White Multipurpose Testpoint | 5012               | Keystone            |
| U1                                                                      | 1        |       | 2.95-16V 10A PMBUS Stackable Synchronous Buck Converter, RVF0040A<br>(LQFN-CLIP-40)                                       | RVF0040A                     | TPS546A24ARVFR     | Texas Instruments   |
| U2                                                                      | 1        |       | 5 V, Step-Up Charge Pump Regulator, 140 mA, 2.7 to 5.5 V Input, -40 to 85 degC, 6-pin SON (DRV6), Green (RoHS & no Sb/Br) | DRV0006A                     | TPS60150DRVR       | Texas Instruments   |
| C1, C17                                                                 | 0        | 330uF | CAP, Tantalum Polymer, 330 uF, 10 V, +/- 20%, 0.006 ohm, 7343-43 SMD                                                      | 7343-43                      | T530X337M010ATE006 | Kemet               |
| C4, C5, C6, C7, C20                                                     | 0        | 100uF | CAP, CERM, 100 µF, 6.3 V,+/- 20%, X7S, 1210                                                                               | 1210                         | GRM32EC70J107ME15L | MuRata              |
| C8                                                                      | 0        | 100uF | CAP, AL, 100 uF, 35 V, +/- 20%, 0.15 ohm, SMD                                                                             | SMT Radial G                 | EEE-FC1V101P       | Panasonic           |
| C21, C22, C23                                                           | 0        | 47uF  | CAP, CERM, 47 uF, 10 V, +/- 10%, X7R, 1210                                                                                | 1210                         | GRM32ER71A476KE15L | MuRata              |
| C28                                                                     | 0        | 0.1uF | CAP, CERM, 0.1 uF, 50 V, +/- 10%, X7R, 0603                                                                               | 0603                         | C0603C104K5RACTU   | Kemet               |
| C31, C33                                                                | 0        | 33pF  | CAP, CERM, 33 pF, 50 V, +/- 5%, C0G/NP0, 0603                                                                             | 0603                         | C0603C330J5GACTU   | Kemet               |
| FID1, FID2, FID3                                                        | 0        |       | Fiducial mark. There is nothing to buy or mount.                                                                          | N/A                          | N/A                | N/A                 |
| JP1, JP2                                                                | 0        |       | Header, 100mil, 2x1, Tin, TH                                                                                              | Header, 2x1, 100mil, TH      | 5-146278-2         | TE Connectivity     |
| R5, R7, R9, R10                                                         | 0        | 10.5k | RES, 10.5 k, 1%, 0.063 W, AEC-Q200 Grade 0, 0402                                                                          | 0402                         | CRCW040210K5FKED   | Vishay-Dale         |
| R15, R16                                                                | 0        | 100   | RES, 100, 1%, 0.1 W, AEC-Q200 Grade 0, 0603                                                                               | 0603                         | CRCW0603100RFKEA   | Vishay-Dale         |
| R17                                                                     | 0        | 49.9  | RES, 49.9, 1%, 0.1 W, AEC-Q200 Grade 0, 0603                                                                              | 0603                         | CRCW060349R9FKEA   | Vishay-Dale         |
| R26, R27, R29, R30, R31                                                 | 0        | 0     | RES, 0, 5%, 0.1 W, 0603                                                                                                   | 0603                         | RC0603JR-070RL     | Yageo               |
| SH-JP1, SH-JP2                                                          | 0        | 1x2   | Shunt, 100mil, Gold plated, Black                                                                                         | Shunt                        | SNT-100-BK-G       | Samtec              |
| SMB3                                                                    | 0        |       | Connector, Receptacle, 50 ohm, TH                                                                                         | SMB Connector                | SMBR004D00         | JAE Electronics     |
| T4, T5                                                                  | 0        |       | Terminal Block, 5.08 mm, 2x1, Brass, TH                                                                                   | 2x1 5.08 mm Terminal Block   | ED120/2DS          | On-Shore Technology |
| TP7, TP8                                                                | 0        |       | Test Point, Miniature, Red, TH                                                                                            | Red Miniature Testpoint      | 5000               | Keystone            |
| TP28                                                                    | 0        |       | Test Point, Multipurpose, Red, TH                                                                                         | Red Multipurpose Testpoint   | 5010               | Keystone            |

#### Table 9-1. Bill of Materials (continued)



# 10 Using the Fusion GUI

# 10.1 Opening the Fusion GUI

The Fusion GUI should include *IC\_DEVICE\_ID* in the scanning mode to find TPS546A24A. The EVM needs power to be recognized by the Fusion GUI. See Section 5 for the recommended procedure.

| Texas Instruments                                              |              |              |              |                            |                         |                                   |          |
|----------------------------------------------------------------|--------------|--------------|--------------|----------------------------|-------------------------|-----------------------------------|----------|
| Fusion Di<br>Version 7.1.2                                     | -            |              | -            | nər                        |                         |                                   |          |
| No Devices Fo<br>No compatible PMBus<br>power is supplied to y | devices were | found. Plea: | se check tha | t the serial cable         | e end of your USB adapt | er is attached to your device and |          |
| Scanning Mode:                                                 | DeviceI      | DAndCode     | AndICDe      | viceID                     |                         |                                   |          |
| USB Adapter Firr                                               | nware Versi  | on: 1.0.1    | .3           |                            |                         |                                   |          |
| Bus Speed:                                                     | Packet Er    | ror Checki   | ng:          |                            | ALERT Pullup:           | 2.2 kΩ 🔽                          |          |
| 🔾 100 kHz                                                      | • Enable     | ed           |              | <ol> <li>Serial</li> </ol> | CLOCK Pullup:           | 2.2 kΩ 🔽                          |          |
| • 400 kHz                                                      | 🔿 Disabl     | ed           |              |                            | DATA Pullup:            | 2.2 kΩ 🗸                          |          |
| Signals                                                        |              |              |              |                            |                         |                                   | 1        |
| SMBALERT#:                                                     | ACK: High    | (            | Refrest      |                            |                         |                                   |          |
| Control Lines:                                                 | #1           | #2           | #3           | #4                         | #5                      |                                   |          |
| (click to set)                                                 | High         | 🔾 High       | 🔵 High       | 🔾 High                     | O High                  | Refresh All                       |          |
|                                                                | ◯ Low        | Low          | • Low        | Low                        | Low                     |                                   |          |
|                                                                |              |              |              |                            |                         |                                   |          |
|                                                                |              |              |              |                            |                         |                                   | <u> </u> |
| Ct                                                             | hange Device | Scanning Op  | tions        | Retry                      | Offline Mode Exit F     | Program I2C GUI                   |          |

Figure 10-1. Select Device Scanning Mode



### **10.2 General Settings**

Figure 10-2 shows the General Settings that can be used to configure the following:

- Vout settings, power good limits and margin voltages
- OC Fault, OC Warn and Fault response
- OT Fault, OT Warn (Die Temperature) and Fault response
- Vin on and off UVLO
- On/Off Config
- · Soft Start (Output rise time), other Turn On Timing and Turn Off Timing
- Switching frequency
- Compensation

After clicking *Write to Hardware* to make changes to one or more configurable parameters, the changes can be committed to nonvolatile memory by clicking *Store Config to NVM*. This action prompts a pop-up, and if confirmed, the changes are committed to nonvolatile memory to store all the modifications in non-volatile memory.

Both the loop master device and the loop slave device are tied to same bus interface. In a two-phase stacking system, the master device will receive and respond to all PMBus communication and slave devices do not need to be connected to the PMBus. If the master receives commands which require updates to the PMBus registers of the slave, the master will relay these commands to the slaves. All commands on this tab are for PHASE = 0xFF.

| Configuration TP5546D2           | 4A @ PMBus Addr 36d (24h) / 12C Addr 72d (48h)                                 |                                   |                             |  |  |  |
|----------------------------------|--------------------------------------------------------------------------------|-----------------------------------|-----------------------------|--|--|--|
| File Device Tools                |                                                                                |                                   |                             |  |  |  |
| 🖞 Write to Hardware 🛛 🗙 Dis      | card Changes Store Config to NVM Restore NVM Config 🐰 Error Checking           |                                   |                             |  |  |  |
| Configure                        | General Setting SMBALERT# Mask Device Info Phase Commands Pin Strapping All Co | onfig                             |                             |  |  |  |
|                                  | Voltage Settings                                                               | Rail On/Off Settings              |                             |  |  |  |
|                                  | Vout Max: 1.500000 🗸 V                                                         | On/Off Config: 0x17 V (CONTROL F  | in Only)                    |  |  |  |
|                                  | Over Fault: 0.317404 ⊕ ∨ 14.8 ↔ % Response: Respo ∨                            | - Turn On Timing                  | Turn Off Timing             |  |  |  |
|                                  | Over Warn: 0.870538 ⊕ ∨ 9.0 ♠ %                                                | Turn On Delay: 0.0 🗇 ms           | Turn Off Delay: 0.0 💭 ms    |  |  |  |
|                                  | Margin High: 0.833334 ⊕ ∨ 5.1 ♠ %                                              | Rise Time: 3.00 🗇 ms              | Fall Time: 0.50 💭 ms        |  |  |  |
|                                  | Yout: 0.798828 😌 V 📄 Synchronize margins/limits/ PG to Vout                    | Max Turn On:<br>No limit          |                             |  |  |  |
|                                  | Margin Low: 0.758263 ⊕ ∨ -5.1 ♠ %                                              | [♥] ro min                        |                             |  |  |  |
|                                  | Under Warn: 0.727058 ⊕ ∨ -9.0 ♠ %                                              | Turn On Fault Response: Respons 🗸 |                             |  |  |  |
|                                  | Under Fault: 0.678632 ⊕ ∨ -15.0 ♠ % Response: Respo ♥                          | Vin On: 2.75 🗇                    | v                           |  |  |  |
|                                  | Vout Min: 0.500000 ⊕ ∨                                                         | Vin Off: 2.50 🚭                   | v                           |  |  |  |
|                                  | Vout Scale Loop: 0.500 🗸                                                       |                                   |                             |  |  |  |
|                                  | Vout Mode: Relative; 🗸                                                         |                                   |                             |  |  |  |
|                                  | Vout Trim: 0.000000 ⊕ ∨                                                        |                                   |                             |  |  |  |
|                                  |                                                                                |                                   |                             |  |  |  |
|                                  | Current & Temperature Settings                                                 | USER_DATA_01 (Compensation)       | USER_DATA_05 (Power Stage)  |  |  |  |
|                                  | Iout Cal Offset: 0.0000 💭 A                                                    | SEL_GMV 50 V µs                   | VDD5 regulator voltage 4,7V |  |  |  |
|                                  | Iout Cal Gain: 1.000 🕆                                                         | SEL_GMI 100 V µs                  | FREQUENCY_SWITCH            |  |  |  |
|                                  | Iout OC Warn Limit: 80.0 💭 A                                                   | SEL_RVV 40 V kQ                   | 550 V kHz                   |  |  |  |
|                                  | Iout OC Fault Limit: 104.0 💭 A                                                 | SEL_CPV 18.75 V PF                | 330 V KH2                   |  |  |  |
|                                  | Iout OC Fault Response: Response= 🗸                                            | SEL_RVI 40 V kQ                   |                             |  |  |  |
|                                  | Temp Warn Limit: 125 🚔 °C                                                      | SEL_CPI 9.6 V PF                  |                             |  |  |  |
|                                  | Temp Fault Limit: 150 💭 *C                                                     | CZI_MULT 80                       |                             |  |  |  |
|                                  | OT Fault Response: Response= 🗸                                                 | CZI 239.76 🗸                      |                             |  |  |  |
|                                  |                                                                                | CZV 750 🗸                         |                             |  |  |  |
|                                  |                                                                                |                                   |                             |  |  |  |
|                                  |                                                                                |                                   |                             |  |  |  |
| 🤣 Configure                      |                                                                                |                                   | <u>^</u>                    |  |  |  |
| 🊸 Monitor                        |                                                                                |                                   |                             |  |  |  |
| 🤣 Status                         | PMBus Log                                                                      |                                   | <br>````                    |  |  |  |
| Fusion Digital Power Designer v7 | .1.28.Beta TPS546D24A @ PMBus Address 36d (24h) * Not Saved                    |                                   |                             |  |  |  |

#### Figure 10-2. General Settings

### 10.3 Changing ON\_OFF\_CONFIG

Changing the *On/Off Config* prompts a pop-up window with details of the options shown in Figure 10-3. This pop-up gives multiple options on what turns on and off power conversion. By default the TPS546A24A is configured to *CONTROL Pin Only*. This is the EN/UVLO pin.



| 👆 Configuration TP5546D2         | 24A @ PMBus Addr 36d (24h) / I2C Addr 72d (48h)                                               | . • 🗙                                                                                                        |  |  |  |  |
|----------------------------------|-----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|--|--|--|--|
| File Device Tools                |                                                                                               |                                                                                                              |  |  |  |  |
| 🖞 Write to Hardware 🛛 🗙 Dis      | coard Changes Store Config to NVM Restore NVM Config 🔓 Error Checking                         |                                                                                                              |  |  |  |  |
| Configure                        | General Setting SMBALERT# Mask Device Info Phase Commands Pin Strapping All Co                | nfig                                                                                                         |  |  |  |  |
|                                  | Voltage Settings                                                                              | Rail On/Off Settings                                                                                         |  |  |  |  |
|                                  | Vout Max: 1.500000 🗇 V                                                                        | On/Off Config: 0x17 🗸 (CONTROL Pin Only)                                                                     |  |  |  |  |
|                                  | Over Fault:         0.317404 ⊕         ∨         14.8 ⊕         % Response:         Response: | Turn On Timing On / Off Control                                                                              |  |  |  |  |
|                                  | Over Warn: 0.870598 ⊕ ∨ 9.0 ⊕ %                                                               | Unit powers up any time power is present,                                                                    |  |  |  |  |
|                                  | Margin High: 0.833394 🖕 V 5.1 🔆 %                                                             | Rise Time: regardless of state of the CONTROL pin or ns<br>Max Turn On: OPERATION command.                   |  |  |  |  |
|                                  | Vout: 0.798828 🐨 V 🔄 Synchronize margins/limits/ PG to Vout                                   | CONTROL Pin Only                                                                                             |  |  |  |  |
|                                  | Margin Low: 0.758263 💮 V -5.1 💭 %                                                             | OPERATION command from serial bus. Power                                                                     |  |  |  |  |
|                                  | Under Warn: 0.727058 🐨 V -9.0 🐨 %                                                             | Turn On Fault Response: Re O OPERATION Only                                                                  |  |  |  |  |
|                                  | Under Fault: 0.678692 🕆 V -15.0 🔨 % Response: Respo V                                         | Vin On: The device ignores the CONTROL pin. Power is                                                         |  |  |  |  |
|                                  | Vout Min: 0.500000 🐳 V                                                                        | Vin Off: Converted when the on/off portion of the OPERATION command is on.                                   |  |  |  |  |
|                                  | Vout Scale Loop: 0.500 🗸                                                                      | Both CONTROL Pin & OPERATION     The CONTROL pin must be active and the                                      |  |  |  |  |
|                                  | Vout Mode: Relative; 🗸                                                                        | on for the device to convert power.                                                                          |  |  |  |  |
|                                  | Vout Trim: 0.000000 🖉 V                                                                       | Control Pin Polarity                                                                                         |  |  |  |  |
|                                  |                                                                                               | Active low (Pull pin low to start the unit)                                                                  |  |  |  |  |
|                                  | Current & Temperature Settings           Jout Cal Offset:                                     | USER_DATA_01 (Compensatio                                                                                    |  |  |  |  |
|                                  |                                                                                               | SEL_GMV 50 Control Pin Turo Off Configuration                                                                |  |  |  |  |
|                                  | Iout Cal Gain:         1.000 ⊕           Iout OC Warn Limit:         80.0 ⊕ A                 | SEL_GMI         100         Control Pin Turn Off Configuration           SEL_RVV         40         Soft Off |  |  |  |  |
|                                  | Iout OC Fault Limit: 104.0 🗘 A                                                                | SEL_CPV 18.75 V Use the turn off delay configured by V kHz                                                   |  |  |  |  |
|                                  | Iout OC Fault Response: Response= V                                                           | SEL RVI                                                                                                      |  |  |  |  |
|                                  | Temp Warn Limit: 125 🗇 *C                                                                     | SEL_CPI 9.6 Immediately Off<br>Turn off the output and stop transferring                                     |  |  |  |  |
|                                  | Temp Fault Limit: 150 💭 °C                                                                    | CZI_MULT 80                                                                                                  |  |  |  |  |
|                                  | OT Fault Response: Response= V                                                                | CZI 239.76 🗸                                                                                                 |  |  |  |  |
|                                  |                                                                                               | CZV 750 V                                                                                                    |  |  |  |  |
|                                  |                                                                                               |                                                                                                              |  |  |  |  |
|                                  |                                                                                               |                                                                                                              |  |  |  |  |
| 🚸 Configure                      |                                                                                               |                                                                                                              |  |  |  |  |
| 🚸 Monitor                        |                                                                                               |                                                                                                              |  |  |  |  |
| 🤣 Status                         | PMBus Log                                                                                     | <br>3                                                                                                        |  |  |  |  |
| Fusion Digital Power Designer vi | 7.1.28.Beta   TPS546D24A @ PMBus Address 36d (24h)   * Not Saved                              |                                                                                                              |  |  |  |  |

Figure 10-3. Configure – ON\_OFF\_CONFIG



#### 10.4 Pop-up for Some Commands While Conversion is Enabled

Some commands will cause a pop-up like the one shown in Figure 10-4 when trying to change them while conversion is enabled. The settings in the GUI which will cause this pop-up include *FREQUENCY\_SWITCH*, *USER\_DATA\_01 (Compensation)*, *Vout Mode* and *Vout Scale Loop*. To change these settings to a new value, click on *Stop Power Conversion* then *Close and continue*. The GUI will automatically disable conversion, write the new value, and enable conversion again.

| 👆 Stop Power Conversi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ion on TP5546D24A @ PMBus Address 36d                                                        | _ 🗆 🔀              |  |  |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|--------------------|--|--|--|--|--|--|
| One or more of the configuration changes you made requires that power conversion be stopped before writing a new value to the device.  • FREQUENCY_SWITCH: modified value = 650 kHz [0x028A]; device value = 550 kHz [0x0226] @ Click on "Stop Power Conversion" if you would like GUI to stop power conversion on rails. @ Click on "Abort" will abort write operation. Power conversion will be restored its original state if changed. @ Click on "Close and continue" will close this window, and continue with write operation. Upon completion, power conversion will be restored to its original state if changed. |                                                                                              |                    |  |  |  |  |  |  |
| Timestamp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Message                                                                                      |                    |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                              |                    |  |  |  |  |  |  |
| Force ON_OFF_CONF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | IG to use OPERATION command to turn rai(s) off Copy to Clipboard Stop Power Conversion Abort | Close and continue |  |  |  |  |  |  |

Figure 10-4. Pop-up When Trying to Change FREQUENCY\_SWITCH With Conversion Enabled



### 10.5 SMBALERT# Mask

The sources of SMBALERT which can be masked are found and configured on the *SMBALERT* # *Mask* tab (Figure 10-5).

| 1 Write to Hardware | X Discard Changes Store Config to NVM Restore | NVM Config 🛛 🐥 Error Checking            |                                                   |  |
|---------------------|-----------------------------------------------|------------------------------------------|---------------------------------------------------|--|
| Configure           |                                               | vice Info Phase Commands Pin Strapping   | All Config                                        |  |
| conngare            | VOUT Mask                                     | STATUS_IOUT_Mask                         |                                                   |  |
|                     |                                               |                                          |                                                   |  |
|                     | 7 Vout OV Fault                               | 7 🔲 IOUT OC Fault                        | 7 Vin OVF                                         |  |
|                     | 6 Over OV Warning                             | 6 Not supported                          | 6 View Not supported                              |  |
|                     | 5 Vout UV Warning                             | 5 IOUT OC Warning                        | 5 🗹 <del>Vin UVW</del>                            |  |
|                     | 4 🗌 Vout UV Fault                             | 4 V Not supported                        | 4 Not supported                                   |  |
|                     | 3 AAX/MIN Warn                                | 3 V Not supported                        | 3 V Unit off: Insufficient Vin                    |  |
|                     | 2 DN_MAX Fault                                | 2 Not supported                          | 2 Not supported                                   |  |
|                     | 1 V Not supported                             | 1 Not supported                          | 1 Not supported                                   |  |
|                     | 0 Not supported                               | 0 Not supported                          | 0 Not supported                                   |  |
|                     | STATUS_TEMPERATURE_Mask                       | STATUS_CML_Mask                          | STATUS_OTHER_Mask 7                               |  |
|                     | 7 OT Fault                                    | 7 🔲 Invalid Command                      | 7 Not supported                                   |  |
|                     | 6 🔲 OT Warning                                | 6 🗌 Invalid Data                         | 6 Not supported                                   |  |
|                     | 5 Not supported                               | 5 D PEC Fault                            | 5 Not supported                                   |  |
|                     | 4 Not supported                               | 4 Memory Fault                           | 4 Not supported                                   |  |
|                     | 3 Not supported                               | 3 Processor Fault                        | 3 Not supported                                   |  |
|                     | 2 Not supported                               | 2 Not supported                          | 2 Not supported                                   |  |
|                     | 1 Not supported                               | 1 Other Comms Fault                      | 1 Not supported                                   |  |
|                     | 0 Not supported                               | 0 🗌 Other Memory/Logic Fault             | 0 🔽 Ist to ALERT                                  |  |
|                     | STATUS_MFR_SPECIFIC_Mask                      |                                          |                                                   |  |
|                     | 7 POR                                         |                                          |                                                   |  |
|                     |                                               |                                          |                                                   |  |
|                     | 5 Not supported                               |                                          |                                                   |  |
|                     | 4 Not supported                               |                                          |                                                   |  |
|                     | 3 RESET                                       |                                          |                                                   |  |
|                     | 2 BCX                                         |                                          |                                                   |  |
|                     |                                               |                                          |                                                   |  |
|                     | 0 Not supported                               |                                          |                                                   |  |
|                     |                                               |                                          |                                                   |  |
|                     | Key: Fault Bit that Contributes to SMBALE     | RT# Warning Bit that Contributes to SMBA | LERT# Bit Masked from SMBALERT# Bit Not Supported |  |
|                     |                                               |                                          |                                                   |  |
| 🚸 Configure         |                                               |                                          |                                                   |  |
| Monitor             |                                               |                                          |                                                   |  |
|                     |                                               |                                          |                                                   |  |

Figure 10-5. Configure – SMBALERT # Mask



### 10.6 Device Info

The device information, Write Protection options, the configuration of *Vout Scale Loop*, *Vout Transition Rate*, and *lout Cal Offset* are found on the *Device Info* tab (see Figure 10-6).

| 🜵 Configuration TP5546D2        | 4A @ PMBus Addr 36d (24h) / I2C Addr 72d (48h)                                                                                                                                                                                                              |                                                                                                                                                                                                                                                      | _ 🗆 🔀 |  |
|---------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--|
| File Device Tools               |                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                      |       |  |
| 1 Write to Hardware $	imes$ Dis | card Changes Store Config to NVM Restore NVM Config 🛛 🖧 Error Checking                                                                                                                                                                                      |                                                                                                                                                                                                                                                      |       |  |
| Configure                       | General Setting SMBALERT# Mask Device Info Phase Commands Pin Strapping A                                                                                                                                                                                   | II Config                                                                                                                                                                                                                                            |       |  |
|                                 | Device Constants                                                                                                                                                                                                                                            | Write Protect                                                                                                                                                                                                                                        |       |  |
|                                 | IC Device ID: 0x544954602441 (TP5546024A) IC Device REV: 0x4000 Revision: 0x4000 PMBus Revision: 1.3,1.3 - Part II: 1.3, Part II: 1.3 Capability: Maximum Supported Bus Speed: 1000 kHz Packet Error Checking (PEC) Supported: Yes SMBALERT# Supported: Yes | Disable all writes except to the     WRITE_PROTECT command     Disable all writes except to the     WRITE_PROTECT, and OPERATION     commands     Disable all writes except to the     WRITE_PROTECT, OPERATION,     ON_OFF_CONFIG. and YOUT_COMMAND |       |  |
|                                 | Whether the device has an SMBALERT# pin and                                                                                                                                                                                                                 | commands                                                                                                                                                                                                                                             |       |  |
|                                 | supports the SMBus Alert Response protocol.                                                                                                                                                                                                                 | Enable writes to all commands                                                                                                                                                                                                                        |       |  |
|                                 | Format: Linear/DIREC                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                      |       |  |
|                                 | Identification                                                                                                                                                                                                                                              | Calibration                                                                                                                                                                                                                                          |       |  |
|                                 | MFR_MODEL: 0x000000                                                                                                                                                                                                                                         | Vout Scale Loop: 0.500 V                                                                                                                                                                                                                             |       |  |
|                                 | MFR_REVISION: 0x000000                                                                                                                                                                                                                                      | Vout Transition Rate: 1.0000 ⊕ m∨µs                                                                                                                                                                                                                  |       |  |
|                                 | MFR_SERIAL: 0x000000                                                                                                                                                                                                                                        | Iout Cal Offset:                                                                                                                                                                                                                                     |       |  |
|                                 |                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                      |       |  |
| Configure                       |                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                      | ^     |  |
| 🧄 Status                        | PMBus Log                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                      |       |  |
|                                 | 7.1.28.Beta TPS546D24A @ PMBus Address 36d (24h) * Not Saved                                                                                                                                                                                                |                                                                                                                                                                                                                                                      |       |  |

Figure 10-6. Configure – Device Info



### 10.7 Phase Commands

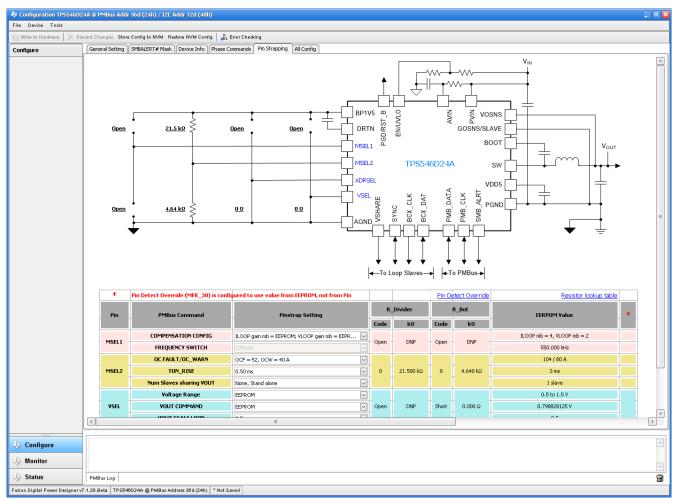
Use the *Phase Command* tab (see Figure 10-7) to calibrate the *IOUT/Temp* of each phase.

| 🜵 Configuration TP5546D       | )24A @ PMBus Addr 36d (24h)       | ) / I2C Addr 72d (48h)          |                                   | _ 🗆 🔀        |
|-------------------------------|-----------------------------------|---------------------------------|-----------------------------------|--------------|
| File Device Tools             |                                   |                                 |                                   |              |
| 1 Write to Hardware 🛛 🗙 D     | Piscard Changes Store Config to N |                                 |                                   |              |
| Configure                     | General Setting SMBALERT;         | # Mask Device Info Phase        | Commands Pin Strapping All Config |              |
|                               | Calibration - Iout/Temp           |                                 |                                   |              |
|                               |                                   | Phase 0                         | Phase 1                           |              |
|                               | Iout Cal Offset:                  | 0.0000 A                        | A 💭 0.000.0                       |              |
|                               | Iout Cal Gain:                    | 1.000                           | 1.000                             |              |
|                               | Iout OC Warn Limit:               | 40.0 🔨 A                        | 40.0 🔨 A                          |              |
|                               | Iout OC Fault Limit:              | 52.0 🔨 A                        | 52.0 🔨 A                          |              |
|                               | Temp Warn Limit:                  | 125 🔷 ℃                         | 125 💭 ℃                           |              |
|                               | Temp Fault Limit:                 | 150 ↔ °⊂                        | 150 ♠ ↔C                          |              |
|                               |                                   |                                 |                                   |              |
|                               |                                   |                                 |                                   |              |
|                               |                                   |                                 |                                   |              |
|                               |                                   |                                 |                                   |              |
|                               |                                   |                                 |                                   |              |
|                               |                                   |                                 |                                   |              |
|                               |                                   |                                 |                                   |              |
|                               |                                   |                                 |                                   |              |
|                               |                                   |                                 |                                   |              |
|                               |                                   |                                 |                                   |              |
|                               |                                   |                                 |                                   |              |
|                               |                                   |                                 |                                   |              |
|                               |                                   |                                 |                                   |              |
|                               |                                   |                                 |                                   |              |
|                               |                                   |                                 |                                   |              |
|                               |                                   |                                 |                                   |              |
|                               |                                   |                                 |                                   |              |
| 🧄 Configure                   |                                   |                                 |                                   | ^            |
| 🌵 Monitor                     |                                   |                                 |                                   |              |
|                               | -                                 |                                 |                                   | $\checkmark$ |
| 🤣 Status                      | PMBus Log                         |                                 |                                   | Î            |
| Fusion Digital Power Designer | v7.1.28.Beta TPS546D24A @ PM      | //Bus Address 36d (24h) * Not 9 | Saved                             |              |

### Figure 10-7. Phase Commands



# 10.8 All Config


Use the *All Config* tab (Figure 10-8) to configure all of the configurable parameters, which also shows other details like Hex encoding.

|                     | General Setting SMBALERT# Mask Device | Info    Phase ( | Commands Pin Strap | ping All Confi | a                            |      |            |          |
|---------------------|---------------------------------------|-----------------|--------------------|----------------|------------------------------|------|------------|----------|
| Sort Parameters By: | Command                               | Code            | ¥alue/Edit         | Hex/Edit       | Command                      | Code | ¥alue/Edit | Hex/Edit |
| Command Name        | ▼ Calibration                         |                 |                    |                | ▼ Manufacturer Info          |      |            |          |
| Command Code        | IOUT_CAL_GAIN phase ALL               | 0x38            | 1.000 👽            | 0xC880         | CAPABILITY                   | 0×19 | 0xD0 🗸     | 0xD0     |
| Group by Category   | IOUT_CAL_OFFSET phase ALL             | 0×39            | 0.0000 🗘 A         | 0×E000         | MFR_MODEL                    | 0×9A |            | 0x00 🗸   |
|                     | YOUT_SCALE_LOOP                       | 0×29            | 0.500 🗸            | 0xC840         | MFR_REVISION                 | 0×9B |            | 0x00 🗸   |
|                     | VOUT_TRIM                             | 0x22            | 0.000000 🏠 V       | 0×0000         | MFR_SERIAL                   | 0×9E |            | 0x00 🗸   |
|                     | ▼ Configuration                       |                 |                    |                | PMBUS_REVISION               | 0×98 | 0x33 🗸     | 0x33     |
|                     | FREQUENCY_SWITCH                      | 0×33            | 550 🔽 kHz          | 0×0226         | ▼ On/Off Configuration       |      |            |          |
|                     | IC_DEVICE_ID                          | 0×AD            | 0x54495 🗸          | 0x54 🗸         | ON_OFF_CONFIG phase ALL      | 0x02 | 0×17 🗸     | 0×17     |
|                     | IC_DEVICE_REV                         | 0×AE            | 0x4000 🗸           | 0x4000 🗸       | OPERATION                    | 0×01 | 0x04 🖂     | 0x04     |
|                     | INTERLEAVE                            | 0×37            | Group ID 🗸         | 0x0020         | TOFF_DELAY                   | 0x64 | 0.0 🕁 ms   | 0×F800   |
|                     | MISC_OPTIONS [MFR 29]                 | 0×ED            | PEC: Fals 🗸        | 0x0000         | TOFF_FALL                    | 0×65 | 0.50 🔶 ms  | 0×F002   |
|                     | PGOOD_CONFIG [MFR 19]                 | 0×E3            | PGood O 🖂          | 0×009F         | TON_DELAY                    | 0x60 | 0.0 🐺 ms   | 0×F800   |
|                     | PIN_DETECT_OVERRIDE [MFR 30]          | 0×EE            | Stack Co 🗸         | 0×1F2F         | TON_MAX_FAULT_LIMIT          | 0x62 | 0 🗸 ms     | 0×F800   |
|                     | SMBALERT_MASK_CML                     | 0×1B            | 00000000 🗸         | 0x00           | TON_MAX_FAULT_RESPONSE       | 0x63 | Click 🗸    | 0×3B     |
|                     | SMBALERT_MASK_INPUT                   | 0×1B            | 11101000 🗸         | 0×E8           | TON_RISE                     | 0x61 | 3.00 🐥 ms  | 0×F00C   |
|                     | SMBALERT_MASK_IOUT                    | 0×1B            | 00011000 🗸         | 0×18           | ▼ Status                     |      |            |          |
|                     | SMBALERT_MASK_MFR_SPECIFIC            | 0×1B            | 01000010 🖂         | 0x42           | NVM_CHECKSUM [MFR 32]        | 0×F0 | Checksu 🗸  | 0×E9E0   |
|                     | SMBALERT_MASK_OTHER                   | 0×1B            | 00000001 🖂         | 0x01           | READ_IOUT phase ALL          | 0x8C | -0.52 A    | 0×B5F0   |
|                     | SMBALERT_MASK_TEMPERATURE             | 0×1B            | 00000000 🗸         | 0x00           | READ_TEMPERATURE_1 phase ALL | 0×8D | 23 °C      | 0×0017   |
|                     | SMBALERT_MASK_VOUT                    | 0×1B            | 00000010 🗸         | 0x02           | READ_VIN phase ALL           | 0×88 | 3.301 V    | 0xC34D   |
|                     | STACK_CONFIG [MFR 28]                 | 0xEC            | Bcx Stop 🗸         | 0×0001         | READ_VOUT phase ALL          | 0x8B | 0.009766 V | 0×0005   |
|                     | SYNC_CONFIG [MFR 20]                  | 0xE4            | SYNC_DI 🗸          | 0xF0           | STATUS_BYTE                  | 0×78 | 01000000 🗸 | 0×40     |
|                     | <                                     |                 |                    |                | STATUS CMI                   | 0v7E | 0000000    | 0200     |

Figure 10-8. Configure – All Config

# 10.9 Pin Strapping

Use the *Pin Strapping* tab (Figure 10-8) to aid in selection of external pin strapping resistors used to program some of the PMBus commands at power-up. The *EEPROM Value* column shows the values currently configured to the related PMBus commands.



#### Figure 10-9. Configure – Pin Strapping



### 10.10 Monitor

When the *Monitor* screen (Figure 10-10) is selected, the screen changes to display real-time data of the parameters that are measured by the device. This screen provides access to:

- Graphs of Vout, Iout, Vin, Pout, and Temperature
- Start and Stop Polling which turns ON or OFF the realtime display of data
- Quick access to On/Off Config
- Control pin activation and OPERATION command
- · Margin control
- Clear Fault: Selecting Clear Faults clears any prior fault flags.

With two devices stacked together, the *lout* reading is the total load supported by both devices. There is also an *lout* which shows the current in each phase.

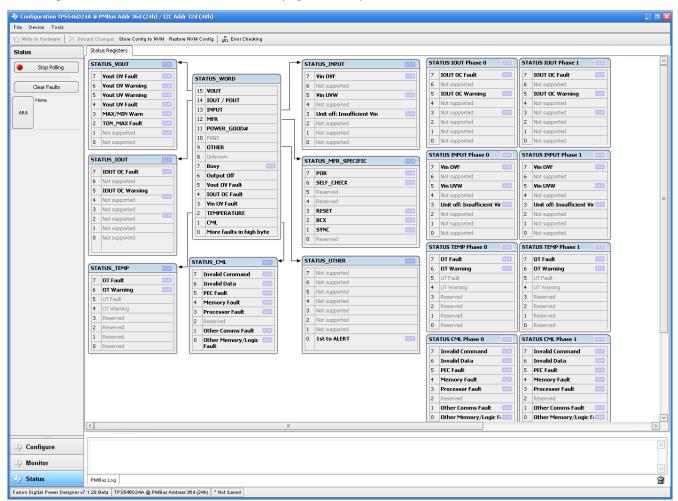

| 4 Configuration TP5546D2                                 | 4A @ PMBus Addr 36d (24h) / 12E Addr 72d (48h)                            |                                                                                                                                                                                                                                                                                                   | . • 🛛                               |  |  |
|----------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|--|--|
| File Device Tools                                        |                                                                           |                                                                                                                                                                                                                                                                                                   |                                     |  |  |
| 1 Write to Hardware $1$ X Dis                            | ard Changes Store Config to NVM Restore NVM Config 🛛 🦧 Error Checking     |                                                                                                                                                                                                                                                                                                   |                                     |  |  |
| Monitor                                                  | PMBus Readings                                                            | Vin - Input Voltage                                                                                                                                                                                                                                                                               | Vout - Output Voltage               |  |  |
| Show/Hide Plots:                                         | Total phases Ph0 Ph1                                                      | Max Y: 26.00 😴 Min Y: 0.00 😴                                                                                                                                                                                                                                                                      | Max Y: 1.00 😴 Min Y: 0.00 😴         |  |  |
| Vin Vout                                                 | Vin 12.000 V 12.016 V 11.984 V                                            | OVF: 21 🔆 V UVW: 2.50 💭 V                                                                                                                                                                                                                                                                         | OVF: 0.917404 🖉 adj = 0.733 V       |  |  |
| ✓ Iout Iout-phase<br>Vout-phase Vin-phase                | Vout 0.796875 V 0.796875 V 0.925781 V                                     | VinON: 2.75 🐡 V VinOFF: 2.50 😴 V                                                                                                                                                                                                                                                                  | OVW: 0.870598 → adj = 0.695 V       |  |  |
| 🗌 Pout(calc) 🗹 Temp                                      | Iout 33.19 A 16.81 A 16.34 A                                              | Write                                                                                                                                                                                                                                                                                             |                                     |  |  |
| Temp-phase                                               | Temp 31 ℃ 30 ℃ 30 ℃                                                       | 26.00                                                                                                                                                                                                                                                                                             |                                     |  |  |
| Fit All Plots on Screen                                  |                                                                           |                                                                                                                                                                                                                                                                                                   | UVW: 0.727058 🚔 adj = 0.581 V       |  |  |
| <ul> <li>Scale Plots to Screen</li> <li>Width</li> </ul> |                                                                           | 20.80                                                                                                                                                                                                                                                                                             | UVF: 0.678692 💭 adj = 0.542 V Write |  |  |
| Height: 200 🕀                                            | Status Registers/Lines                                                    | J 15 60                                                                                                                                                                                                                                                                                           | 1.00                                |  |  |
| Width: 400 🜩                                             | Vout: OK                                                                  | 15.60                                                                                                                                                                                                                                                                                             | 0.80                                |  |  |
| Show Warn & Fault Limit<br>Editors                       | lout: OK                                                                  | 10.40 12.000 ¥                                                                                                                                                                                                                                                                                    | 0.60 0.10                           |  |  |
| Show Value Labels<br>on Plots                            | Temp: OK<br>Input: OK                                                     | 10.40                                                                                                                                                                                                                                                                                             |                                     |  |  |
|                                                          | CML: OK<br>Miso: OK                                                       | 5.20                                                                                                                                                                                                                                                                                              | 0.40                                |  |  |
| Polling Rate: 500 💭<br>(msec)                            | Mfr: OK                                                                   |                                                                                                                                                                                                                                                                                                   | 0.20                                |  |  |
|                                                          | SMBALERT# Not Asserted                                                    | 0.00 27:20 27:40 28:00 28:20                                                                                                                                                                                                                                                                      | 0.00                                |  |  |
| Stop Polling                                             | Clear Faults                                                              | 27:20 27:40 28:00 28:20                                                                                                                                                                                                                                                                           | 27:20 27:40 28:00 28:20             |  |  |
|                                                          | On/Off Config                                                             | Iout - Output Current                                                                                                                                                                                                                                                                             | Temperature                         |  |  |
|                                                          | 0x17 V Mode: CONTROL Pin Only; Control: Active High, Turn off Immediately | Max Y:         130.00 <sup>+</sup> / <sub>☉</sub> Min Y:         -1.00 <sup>+</sup> / <sub>☉</sub> OCF:         104.0 <sup>+</sup> / <sub>☉</sub> A         OCW:         80.0 <sup>+</sup> / <sub>☉</sub> A           OTF:         105.0 <sup>+</sup> / <sub>☉</sub> A         Write         0TF: |                                     |  |  |
|                                                          |                                                                           |                                                                                                                                                                                                                                                                                                   |                                     |  |  |
|                                                          |                                                                           | 130.00                                                                                                                                                                                                                                                                                            | 188.00                              |  |  |
|                                                          | OPERATION                                                                 |                                                                                                                                                                                                                                                                                                   |                                     |  |  |
|                                                          | On/Off: On                                                                | 103.80                                                                                                                                                                                                                                                                                            | 150.40                              |  |  |
|                                                          | Immediate Off                                                             |                                                                                                                                                                                                                                                                                                   |                                     |  |  |
|                                                          | ◯ Soft Off                                                                | 77.60                                                                                                                                                                                                                                                                                             | 112.80                              |  |  |
|                                                          | Margining: None Margin Fault Action: Act on Fault                         |                                                                                                                                                                                                                                                                                                   |                                     |  |  |
|                                                          | ⊖ Luw  ③ Ignore Fault                                                     | 51.40                                                                                                                                                                                                                                                                                             | 77.70                               |  |  |
|                                                          |                                                                           | 31.40                                                                                                                                                                                                                                                                                             | 75.20                               |  |  |
|                                                          | Control Line (USB)                                                        | 33.19 A                                                                                                                                                                                                                                                                                           |                                     |  |  |
|                                                          | High     Low                                                              | 25.20                                                                                                                                                                                                                                                                                             | 37.60                               |  |  |
|                                                          | 0.00                                                                      |                                                                                                                                                                                                                                                                                                   | 31.0 %                              |  |  |
|                                                          |                                                                           | -1.00 27:20 27:40 28:00 28:20                                                                                                                                                                                                                                                                     | 0.00 27:20 27:40 28:00 28:20        |  |  |
|                                                          |                                                                           |                                                                                                                                                                                                                                                                                                   |                                     |  |  |
| Configure                                                |                                                                           |                                                                                                                                                                                                                                                                                                   | <u>^</u>                            |  |  |
| In Monitor                                               |                                                                           |                                                                                                                                                                                                                                                                                                   |                                     |  |  |
| 🤄 Status                                                 | PMBus Log                                                                 |                                                                                                                                                                                                                                                                                                   |                                     |  |  |
| Fusion Digital Power Designer v7                         | .1.28.Beta TPS546D24A @ PMBus Address 38d (24h) * Not Saved               |                                                                                                                                                                                                                                                                                                   |                                     |  |  |

Figure 10-10. Monitor Screen



### 10.11 Status

Selecting Status screen from lower left corner (Figure 10-11) shows the status of the device.



#### Figure 10-11. Status Screen

### **11 Revision History**

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

# Changes from Revision \* (September 2020) to Revision A (April 2021) Page

| • | Jpdated user's guide title | 2 |
|---|----------------------------|---|
|---|----------------------------|---|

### IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2022, Texas Instruments Incorporated