Prototyping the TI TMS320C40 to the
Cypress VICO68/VACO68 Interface

Application Report

Peter F. Siy and David L. Merriman
The MITRE Corporation
Timothy V. Blanchard
Cypress Semiconductor

SPRA105
February 1994

T b TEXAS 2s

SOYINK - NSTRUM ENTS Printed on Recycled Paper

&

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any
semiconductor product or service without notice, and advises its customers to obtain the latest
version of relevant information to verify, before placing orders, that the information being relied
on is current.

Tlwarrants performance of its semiconductor products and related software to the specifications
applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality
control techniques are utilized to the extent Tl deems necessary to support this warranty.
Specific testing of all parameters of each device is not necessarily performed, except those
mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death,
personal injury, or severe property or environmental damage (“Critical Applications”).

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES
OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of Tl products in such applications is understood to be fully at the risk of the customer.
Use of Tl products in such applications requires the written approval of an appropriate Tl officer.
Questions concerning potential risk applications should be directed to Tl through a local SC
sales office.

In order to minimize risks associated with the customer’s applications, adequate design and
operating safeguards should be provided by the customer to minimize inherent or procedural
hazards.

Tl assumes no liability for applications assistance, customer product design, software
performance, or infringement of patents or services described herein. Nor does Tl warrant or
representthat any license, either express or implied, is granted under any patent right, copyright,
mask work right, or other intellectual property right of Tl covering or relating to any combination,
machine, or process in which such semiconductor products or services might be or are used.

Copyright 0 1996, Texas Instruments Incorporated

Introduction

The Texas Instruments TMS320C40 digital signal processor (DSP) represents a state-of-the-art solution
to many signal processing problems via its high-speed central processor unit (CPU), unique parallel
processing 1/0O capability, and robust interface to other system components [1]. Likewise, the Cypress
Semiconductor VIC068 VMEbus Interface Controller and its companion VAC068 VMEbus Address
Controller provide a complete VMEbus interface, including master and slave capability [2,3]. Since these
components are effective in a wide variety of applications and since the VIC068/VACO068 is a single- or
multiple-TMS320C40 VMEbus card design, we developed a single TMS320C40 VMEDbus card for use in
a satellite modem application [4].

The VIC068/VACO068 is designed to interface with the Motorola 68000 family of microprocessors, so it
was determined that the interfacing to a TMS320C40 required a logic simulation or some form of
programmable, configurable prototype. When this design was initiated, only preliminary documentation
existed for the VMEbus chip set, and no simulation models were available for either the chip set or the
TMS320C40 DSP. Therefore, we first prototyped the interface of these components in a wire-wrap
environment before proceeding to a printed circuit board design. This paper provides the high-level as well
as low-level details of the prototyping effort so that others may examine our approach and techniques to
minimize design time for subsequent efforts. Note that this design has not been optimized for either size
or speed. Section 2 outlines the design goals established before design began and gives relevant background
regarding the devices involved. The paper focuses on the hardware details, programmable logic source
code, and schematics that follow. In addition, the software initialization of the chip set by the 'C40 is
described. Throughout this paper, we assume that you are familiar with the 'C40 architecture as well as with
the VMEDbus and its protocol(s). You can refer to [5,6] for more details on the VMEbus. Figure 1 shows
the VIC068/VACO068 prototype block diagram.

Figure 1. TMS320 — VIC/VAC Prototype Block Diagram

Comm Port 3 —4—» —4—»— Comm Port 0
Comm Port 4 <> <> Comm Port 1
Comm Port 5 TMS320C40 Comm Port 2
—4—P 4>
JTAG Scan Path Clock In
—4—P —4—
L 2 @
4 4 C40Bus 4
High Low Control
Data Address/Dat C40-VIC/VAC 128K Words 128K Words
a PLD Interface Program Program SRAM
EPROM
Master Cycle .
Generation High
Slave Cycle | Address
Generation
A Pseudo-68000 A
vy Signals Yy
Data Bus VIC068 VMEBuUSs VACO068

A

Buffers

a
Controller -~ VMEBuUSs ¢
Intefface

Serial Parallel
1/0

VMEBuUS
(A24 D32)

Prototype Design

Design Goals

We began by developing a set of design goals for the VME interface that were based on our particular needs.
We were interested in a 'C40 card that provided both (VMEbus) master and slave capability for reads,
writes, read-modify-writes, write posting, and slave block transfers. We designed the address/data
capability according to the most prevalent configuration (for other cards available commercially): 24-bit
address and 32-bit data (i.e., A24/D32); however, the design presented here does not preclude 32-bit
addressing with minor modifications. Via the VIC068, this design also features system controller
capability. We did not incorporate VMEbus interrupt support, because we provided application-specific
interrupt inputs directly to the 'C40. We utilized the VACO068 for address control/mapping of the two
Universal Asynchronous Receiver/Transmitters (UARTS) that were required for our application, and for
general-purpose parallel I/O. The new Cypress CY6C964 Bus Interface Logic Circuit can be used instead
of the VACO068. In addition to the VMEbus functionality, we required the interface to be compatible with
both the existing 'C40-40 (50-nanosecond cycle time) and the faster 'C40 (40-nanosecond).

Design Considerations

First, we thoroughly examined the VIC068 and VACO068 and reviewed the 680x0 family bus signals and
cycles. In particular, we referred to the 68020 user’s manual [7] extensively. The VIC068 and VAC068
interface directly to the Motorola 680x0 family data, address, and control signals and are driven with the
familiar 680x0 address and data strobes (F2S. An asynchronous transfer protocol is implemented via
data transfer and size acknowledgment signals DSA&GKIODSACK1 In addition to these signals, the
transfer size signals SIZ0 and SIZ1 are essential elements in the 680x0’s dynamic bus sizing capability and,
with the lower address lines, encode the size of the transfer in progress. Also, during the transfer, the
function code signals (FCO—FC2) provide information of importance in multiuser environments. Bus
arbitration is an integral part of the 680x0 via the bus reques), (BR grant (B and bus grant
acknowledge (BGACK signals and is used directly by the VIC068. Finally, as in many other
general-purpose microprocessors, bus cycles for the 680x0 are several clock cycles long.

While the VIC068 and VACO068 are driven by (and can drive) the familiar 680x0 bus signals, the 'C40 bus
signals show little similarity to those of the 680x0 family. The 'C40’s bus protocol is common to the
TMS320 floating- point DSP product line. An external ready signal allows for wait-state generation and
controls the rate of transfer in a synchronous fashion (i.e., cycles can be extended an integer number of
clock cycles). As described in [1], the 'C40 has two identical external interfaces: the global memory
interface and the local memory interface. Each consists of a 32-bit data bus, a 31-bit address bus, and two
sets of control signals. The benchmark of all DSP technology, the 'C40 executes single-cycle instructions
(see the 'C4x user’s guide for complete details) and relies on a multistage pipeline for execution speed.
Detailed bus status, including type of instruction and type of access, is given for each cycle via the STAT
lines. Individual control lines can put the address, data, and control bus(es) in the high-impedance state.
There is no read-modify-write signal (as on the 680x0); however, an instruction-driven i@ is
available. Each cycle is controlled by a strobe (STRBgnal in conjunction with the corresponding
read/write (R/W¥strobe. One of the 'C40’s notable features is its range of configuration options. The 'C40
has evolved fromits earlier floating-point counterparts into a truly flexible interface via the local and global
bus configuration control registers.

Figure 2. TMS320C40 — VIC/VAC Prototype 'C40 Global Bus

GAO-GA30

Reset

IR R R E R NE NS N R R R M NN R R RN N RN E = +5V +5V Vector
Ao O|ofw|ju|julo|lajla(n|ojlu|oja|lO|o|u|loja|n|u(o|ojo|lulmfOo(a|m Location
27Y¥03Ler 2290389533838 35885888
CLCCCCCLCLCLCCCLCLCELCELCELCECCCCL
— AD30 STRBO
AF3! R/WO 16
RESETLOC1
ACS3 b cE0 15
v32 | —— RESETLOCO
RDYO SW1 —
CEo — |} A3 ——
RESET[O———O RESET
ACS3 STRBT
_|AC3 RIWT
AB32
war| PAGEL TMS320C40GFL
RDY1
vaa| — ROMEN
CE1
xipF——
3 xarcLKIN AL
DE AC3
(A3 — H1 H1CLK
A& H3A05 H3CLK
ADS2Y 7aTo
AES3] SraT1
AF34
———1 STAT2
AE31
was | STAT3
—{ LocK
O 4 N M ST W OM~OWMOOMO A NMSTLWmW O©N™~OWOOO o
O 4 N M T W O~ WD A o A o A A o d NN NNNNNNNNOM
[alyalyaiyalyalyalyalalyalyalalalalallalalalalaialyalalyalaiyalyalyalyalyaiyalyaiya)
Ol N| S| A S| N A S| N A SN O O] N S | M| O | N O S | M| O |
el Bl Rl Bl Kl Rl el Bl Bl Bl Bl Kl Bl Bl Bl Bl Kl B2l Bl Eel Bl Kl B2l Kyl Bl Bl Kl Evl Evl Bl Nl B
DOI>| D<ol ZIE|SaldZIXS7-SXI|oxXu I|luaalolo||ww
(GDO-GD31
U16 U17A
ouTlE 8 v1 2
1
Y2
ouTl- o [ey =
GSTRBO e I va |2
STRBO osc
GR/WO 40 MHz
S5E 74ACT11208
GSTRB1
GRDY1
GSTATO-
GSTAT3
GLOCK

High-Level Architecture

The high-level architecture for the card places fast 20-ns high-density 4-megabit{B23KCypress

CMOS SRAM modules on both local and global buses of the 'C40 (the size of the memory array does not
impact the 'C40-to-VIC068/VACO068 interface design). We designated the global side as program memory
and the local side as data memory for our application. In our environment, it is anticipated that the local
memory will be fully occupied by DMA coprocessor activity coupled with data fetches during
communications-oriented DSP operations. Given this, we chose to place the A24 VME spectrum on the
global (program) side, segmenting the local side I/O activity (the critical path for our application) from all
VMEDbus activity. (However, the interface documented herein can be used on either side because the global
and local buses are symmetric.) On the global side, in addition to program SRAM, we also placed two 128K
x 16 EPROMSs for embedded program store, using the boot load feature of the 'C40.

Because we limited our design to VMEbus A24 addressing, this range fits nicely anywhere in the 'C40
global side address spectrum, from 08000 0000h to OFFFF FFFFh. Therefore, VMEbus master access is
memory mapped into the 'C40 global side address range. When an access occurs in this predefined A24
range, the 'C40 bus signals are transformed into 680x0 bus signals, which drive the VIC068/VAC068 pair
and initiate a VMEDbus transfer. Global side accesses outside of this range do not generate such signals and
occur at full speed (i.e., the speed appropriate for that memory or peripheral). Regarding the “endianess”
[8,9] of the interface, we know that the 680x0 family maintains big-endian byte ordering (byte-addressable
memory organization) with little-endian bit ordering in each addressable unit. In contrast, the 'C40 is flat

in its byte endianess (32-bit word addressable only) and little-endian bit ordered. Therefore, no swapping
is done on the interface, because 32-bit word transfers (between processors) maintain DO as the least
significant bit. This forces a tradeoff of transfer speed for a wider range of transfers (byte, word, and three
byte) than the 'C40 offers. We chose to limit our transfers to D32. To make transfers of all sizes available,
you must preform additional setup and/or decoding before/during the transfer in progress.

Figure 3. TMS320C40 — VIC/VAC Prototype Program SRAM

GAO-GA16 T GDO-GD31
AO 128K-Word SRAM Module 1100
AL 1/01
A2 1102
A3 1103
A4 1/04
A5 1/05
A6 1106
A7 1107
1108
A9 1109
A10 1/010
All 1/011
A12 11012
A13 11013
Al4 11014
A15 CYM1836 11015
Al16 11016

11017
Cs1 11018
cs2 1/019

11020
cs3 11021
Cs4 11022

11023
OE 11024
SRWO — B 11025
11026
11027
11028
11029
1/030
1/031

i
w

194999499999994¢

+5V

32

GSTRBO

CEEEEELELEEELLLbrELEECTTrELEELTt

Hardware Description

After examining the VIC068/VACO068 interface and capabilities and comparing them with the 'C40, we
initiated a prototype design. Based on the preceding discussion, the strategy is to map from the given set
of 'C40 bus signals to a set of 680x0-like signals, driving their counterparts on the VIC068 and VAC068

for master cycles (the 'C40 is reading from or writing to the VMEbus). Not only can the 'C40 initiate
VMEDbus cycles as a bus master, but also the card should respond to slave cycles. Most often, slave access
is gained through shared memory on the (slave) card. On the 'C40-based VME card, one set of signals is
required to respond to bus requests from the VIC068/VAC068, and an additional set is required to “hold
off” the 'C40 global side during such transfers.

To accomplish this transformation of signals, programmable logic is applied. We wanted to keep the design
time to a minimum while maintaining the most flexible (i.e., programmable) design. Based on this, we used
the Texas Instruments TIB82S105BC programmable logic sequencer. This device is a field-programmable
Mealy-type state machine with 16 inputs, 8 outputs, 48 product terms, and 14 pairs of sum terms; it operates
at a maximum frequency of 50 MHz [10]. Development tools for these sequencers are plentiful and
inexpensive — we used Data I/O’'s ABEL version 4.0 for all programmable logic device (PLD)
development.

Figure 4. TMS320C40 — VIC/VAC Prototype Programmable Logic

u12
16R6 =
H1CLK b ik
1 oe
riso 22 Grrom
RESET 211 ri70 P mwR
GSTATO- rRi60 P2 7D
GSTAT3 ris0 P22 WwWR
<1 r1a0 P WRD
4y r130 22
55 >—
66 AL
GA28 ’ 17 <=12
GA29 816 10190
GA30 919 101200
GSTRB1
Bus Decode
u13 u14 u1s
FPLS - FPLS FPLS
H3CLK L ok LY ok 1 ok
29 pripE oE ~2 prioE 50E 22 priDE
RESET & I RESET — 10 RESET —] 10
MRD 811 vro — 1 s i
MWR q, VR — 12 55—
RRD 5113 RRD {13 rw -3
RWR S roo |28 TBG R — 14 ron 22— PAS mRmc —2 4 ror |8 DSACKD
GPROM a 13 F10 |2 GBE GproM —H 15 F10 |2 Bs sizo s F10 |2~ DSACKT
MWB 6 Fon |28 MoE e — 16 oS- RW sizs e Fon |25 TBERR
iBR 21y Fa0 X2 SOE Br -2 Fa0 22— RMC Fco —2{ 17 ra0 2> GSTREO
DEDLK 271\ Fan |X2— GROY1I DEDLK 2418 Fan sz pe1 -2 s Fan 22— GRWO
DSACKO 26 19 F50 12 DSACKO 26 19 F50 12 siz1 FC2 26 19 F50 12
DSACK1 2 Fo F— psAckt 22 110 reo - Fc1 TBG 22{i0 Fer F—
[BERR 244y Fo P BERR 2 111 Fo P2 Fe2 284 Fro P
GLOCK =1 P Grock 22112 230,
22113 22113 2213
=3 I 2L 114 24,
20115 29415 2915
Bus Control Master Bus Slave Bus
Cycle Generation Cycle Generation
Reset Circuitry

We found that the VIC068/VAC068 required a “global” reset to operate correctly. In particular, the VIC068
IRESETsignal should be driven with the incoming reset request. This signal can be buffered as shown to
provide the delayed signal to the IPbPut —thereby providing the required stimulus for a VIC068 global
reset. Given these inputs, the VIC068, in turn, drives the REHBETand the SYSRESEIlne if the

VICO068 is configured as a system controller) for 200 milliseconds. We used the RE§HIT on the
VICO068 to reset both the 'C40 and the VACO068, as well as programmable logic on-board.

Figure 5. TMS320C40 — VIC/VAC Prototype VICO68 VMEDbus Interface

Al-A7

AMO-AM5

DO-D7

DSA

DSgs8
DTACK
BERR

WRITEQ
LWORD

DO
K13

D1
K14

D2
L15

8 D3
J14

D4
K15

D5
J15

[
z 3
m It |0 [©
RREEER BEE
o x|x|x|x|x < < <K
M N | S| | N o O <
Zl ol x| Z| oo ol Z2|
N |0 XD [© |~ < |Z |-
clollglolec [CIE|G
cElgEEle 2[5
< ¥
= O
<
BCLR p-R14
BBSY | N12
Bro| R12
BR1 | P12
BRo |© NIT
BR3
BGoouT | M14
BG1OUT
BG20UT ,\N/.llg
BG30UT
U3A
VICO68_VME BGOIN
BG1IN p-P14
BG2IN | M13
BG3IN
'_
7 4
X Wz |z
O | |« |
0 |0 (WL |n
> > O[>
0 n I< n
0| W[M7 v
| ol x| =2
a T T M +5V
X | |4 |4
2|12 RN
oo [[
g Q2
n e <5
>—
7]

BCLR
BBSY

BRO
BR1
BR2
BR3

BGOOUT
BG10OUT
BG20UT
BG30OUT

BGOIN
BG1IN
BG2IN
BG3IN

Address Bus Decoding

The VIC068/VACO068 interface (and consequently the VMEDbus itself) is mapped into the 'C40 global side
at 0D000 0000h. In our application, we divided the global side into two halves viathe STRB ACTIVE field

in the 'C40 global memory control register. We placed zero-wait-state devices (fast SRAM) in the lower
half and placed slower memory (EPROM) and peripherals (the VIC068/VAC068 pair) in the upper half.
Therefore, the 'C40 addresses program memory via STRBO and addresses the VMEbus via STRB1. As
shown in the accompanying schematics, U12 is a 16R6 programmable device (in particular, a Texas
Instruments TIBAL16R6-5C was used). It decodes each global 'C40 STRB1 bus cycle by using the 'C40
H1 clock. Cycle type decoding is performed fully via the STAT lines (instead of using thetfRiW) and

allows for future expansion/reconfiguration if required. As shown, the STRB1 range is divided into eight
distinct segments by using GA28—GA30 (GA31 is implicitly a logic 1). Outputs of the decoding operation
are VMEbus master write (MWRmaster read (MR VIC068/VAC068 register write (RW)Rregister

read (RRD and EPROM read (GPROMThe VIC068/VAC068 documentation shows that the VAC068

is hard-wired, starting at address OFFFD 0000h, and designates VIC068 selection, starting at address
OFFFC 0000h. A memory map for the global side, as decoded by the 16R6 logic device, is shown in Table 1.
The ABEL source code is provided in the appendix.

Table 1. Global Side Memory Map

Address Unit Addressed

08000 0000h SRAM

0C000 0000h EPROM

0D000 0000h VMEbus A24
Address 00 0000h

OFFFC 0000h VIC068 Register Set

OFFFD 0000h VACO068 Register Set

Bus Control

Once a cycle in the VMEbus address range is detected by the address-decoding programmable logic, the
sequencers provide the signals required for both master and slave cycles. U13 is the first of three sequencers
and facilitates overall bus control, providing these enable signals: 'C40 global buy (@&fer cycle
sequencer output (MQFEslave cycle sequencer output (SOBVIEbus slave local bus grant (LBGnd

a 'C40 ready signal (GRDY/1Notice that a full complement of inputs is presented to the bus control
sequencer. This was done to accommodate all possible cycles and allow reconfiguration without hardware
changes. While the 'C40 H3 clock (20 MHz) was used here, this is not an absolute requirement, because
the array of sequencers operates asynchronously, once a master or slave cycle begins. However, using H3
simplifies the sequencer code because the H3 clock serves as a convenient reference to the 'C40 cycle in
progress.

A master cycle begins with U12 generating a master read or write signal or a register read or write. This
enables the output of the master bus cycle signal generation sequencer U14 (in fact, this signal is asserted
during all bus activity other than slave cycles). A master cycle ends with the assertion of the acknowledge
signals DSACK(and DSACKl1and/or the local bus error signal LBERE generated by the VIC068 in
response to acknowledge signals received over the VMEbus. The sequencer responds to these signals by
asserting GRDYo supply the ready signal RDYar this 'C40 STRB1 access. In this design, external

ready signals are used exclusively (versus ANDing or ORing with internal ready), and the generation of
the ready signal conforms to the second of two methods described in [1]: high between accesses.

Slave cycles are initiated by the assertion of the VIC068 local bus requestifipgRsignal. Then, U13
provides bus control by first disabling the 'C40 global bus (deasserting @RBEthe master cycle
sequencer output (MQEnd then by enabling the outputs on the slave cycle sequencdr (BGEWhen
the bus has been successfully “seized”, the local bus grant signa) {EBGserted. Slave cycles are
terminated by the deassertion of the local bus request input signal.

Figure 6. TMS320C40 — VIC/VAC Prototype VICOG68 Local Bus Interface

741514 741514
8 ol X 6 5 iREseT
ﬂﬂﬂﬂﬂ%ﬂﬂ{ﬂﬂ
P
o)
T — '~ N M SOOI~ OO |+ |N
sl EREEEEEEEEE
U} GAlASLAl :::::::§
T IV
X ICH N
oaa g7 |-
GA5 _ B6 —— | B15 ——
_GAS5 B6 o ABEN pp———— ABEN
. Ncae_cef o Labo |4 1apo
6 \oar_ssf Lol E2 sl
S N_eDo_Bs | o teoo [-22°iepo
O N_eb1_malf Leol 22 epy
GD2 A3 LD2 ooR 2 bR
—GD3 B4l . UWDENIN =22 GWDENIN
—GD4_GC5], ., TWDENN P2 TWoENIN
~Gps B3| o VIC068 SwoEn p-—
— GD6 A2 | LD6 DENO I)GLDENO
—GD7 C4 | —
LD7 ISOBE G15 5V
— E3
PAS ALl e LAEN |——— LAEN
ps —C¥ == R1
DSACKO DSACKG
DSACK1 BSACKT 2
LBERR L[BERR d)
RIW B sw2 c1
RMC m i I
- _
sizo B34 o
sizs A4
FC1 —C1n EC1 U4 US5A
Fe2 Al e
[BR ﬁm out |8 19 1, vip2
LBG s vo| -
- out - 8dat e
« N4 O | | [17 4 — | 3
3 o282 E RIS RIBIH|E s & | osceamhz G2 v4
aw|52BI1CPDE (e @ o
| o O s 125 |9 |« O |y < g p—
0|0 |m|= L 00 [2<I<|0|= x| O - 74ACT11208
N R CEECECECEEEEE
o T T a0 g a
RN1 741514 741514
8
BLT 4 E 2 1
UNTTERT S|4 |7 - [4 Il Qi
v LBIEEREERE RS s e
o e SRER A AISAEAES
> s nln = RN2
swi RN2 3 Y
4 13 2
Ing ‘m 5
0 (0
— w (W
xlx

10

Master Bus Cycle Generation

The master bus cycle generation sequencer U14 runs in tandem with the bus control sequencer U13, and
the sequencer code found in U13 and U14 results from one common state diagram. It was necessary to split
these functions because of the number of outputs per sequencer. Therefore, the inputs to U14 are identical
to those on U13. Master bus cycles proceed according to the appropriate cycle (read or write) definition

in [7]. The function code lines are driven to indicate the widest possible audience, supervisory data.
Termination of a master cycle ends with the assertion of the acknowledge signals D&#AdIBBACK1

and/or the local bus error signal LBERRdescribed above. Note that VIC068/VACO068 register accesses

are also master accesses in the 'C40 global side address range. While the sequencer code does not initiate
read-modify-write cycles, you could use the 'C40 GLO@Ggut to do this.

Figure 7. TMS320C40 — VIC/VAC Prototype VACO68 VME Interface

11

%
pd
2 x838 ‘g
2 835352
N| A MDA | | N
A8-A31 —\ U7A olo O|w|a Lul
zZxogFz|z
A8 o So 3152 K1
—g—— A9 = ID8
AL0 n Do | K2
- B
ALl ID10
— a1 D11 [
SR DT ID12 k/lzl
A10 Ald ID13
AlS5 D14 [N
all Al6 D15 [F3—
A17
A C1L
Al8 PIOO
—Bl {19 PIO1 ABlii
——A20 PIO2
A21 bi03 |B13
—A————— VAC068_VME o —
A22 PIO4
— A2 monfer
£ A24 PIO6 %
S
A25 Plo7[2
A26 PIO8
— a2 pI0g [B+—
_ R A PIO10 814
A15 A29 PIO11
A30 pio12 [P1°
B A3l pl013 [E—
VAS -
— AT
A4
— A7
- A3 I
A8 -
S —
AS
A19
B3
A20
A2
A21
c3
A22
B2
A23
Al

A24

Slave Bus Cycle Generation

Slave cycles are initiated by the VACO068 in response to a request over the VMEbus in the selected range
as determined in the appropriate VACO068 register (discus3d€C068/VAC068 Software Initialization,

page 15. Inputs to the sequencer are the common 680x0 bus signals driven by the VIC068 for slave cycles
(and alternately driven by the master sequencers for master cycles). Assertion of the local bus grant signal
LBG by U13 indicates the absence of the 'C40 on the global bus, thereby allowing access of shared global
SRAM by the VIC068/VAC068 pair. Assuming the correct transfer size, the memory strobe signals
GSTRBO and GR/WO0 are driven, providing access to the shared global SRAM. After this,
acknowledgement is provided via DSACKId DSACK1 ending the slave cycle. Note that while
VACO068 documentation states that its DSACK signals can be put in the high-impedance state on the
assertion of LAEN, we found this not to be the case with our configuration. Therefore, UBA was required
to artificially put those signals in the high-impedance state so that the slave sequencer could control the data
acknowledgement.

13

Figure 8. TMS320C40 — VIC/VAC Prototype VACOG68 Local Interface

219 |4
x |- o |6 |6 [P
3 B8 fEEE
)
! \ ™| M| N o a8l
< U7B o o|lL|o|2 S|lT|x|s
%)
G XY | | 6 X |- |4 X [©|d |4 |© |+
e me RECREREIEREREER
LA9 s I |7 W |O m 5 | 0 |IL |V |\ P6
Pt aeixE =S v alplp @ IQ |QLD16
LA10 - 5 > 0O Lp17 | GPO
G
A9 LALL Lp18 [R®
LA12 gDl
NV i E— LD19
_ |tA® LD20 |7
GA10 LA14 Lp21 | CP?
e [T YR
P15 LD22
LA16 GD3
e Ls23 | =
GA1l LD24
N13 LA18 Lp2s [2P
LA19 RS
LD26
LA20 Lpo27 | GD5
GAl2
Nid LA21 L Dog | P8
LA22 L GD6———
G LD29
LA23 N7
s W e EE— LD30
LA24 D31 | SP7
113
LA VAC068_LOC NS
LA26 lGbg
GAL4 Ao RS
M4
LA28 GD9
LA29 R———
GA15 LA30 GD10
A
LA31 P9
PAS GD11
GAl6 R10
N5 GD12
P10
GA17 GD13
K14 R11
m GD14
_GA18
3 P11
M15 o |g 3
PULLUP ERBIEERIE o w2 . [5 GD15
I |0l |@NNED I
& EREEEELCRRRERS 80D
K1t Rzl uwi Sk [<KIZFEIK £ o @
G) C
SR N3 JIS|22
LAEN L5 1 2 — & D—l o omm N - N
I o ok N 30 O
74F2441U8Am: W waa%éguuu
BA21 & u gk z o
12415 8
14|, 6
—161;&%2 4
psack1 84t 2
DSACKO __lv
5,@3

14

N

GDO - GD15

VIC068/VACO068 Software Initialization

While the VIC068/VACO068 pair register set is, at first glance, overwhelming, we found that very few
registers require attention before the pair can be used for either master or slave operations. The VAC068
should be initialized first because it controls both master and slave address mapping. When initialization
is complete, the VIC068 is programmed. You can fine-tune the interface by using the programmable delay
registers for the interface after initial capability is verified. As we programmed the VIC068/VACO068 using

C, we developed vic.h and vac.h header files, which give base and offset definitions for the complete
register set of each device.

Before programming the VIC068/VACO068 pair, you must bring the VAC068 out of its initial Force
EPROM mode (which asserts EPROMfo8all accesses) by reading from the EPROM space beginning

at OFF00 0000h. While the address-decoding programmable logic device U12 does not provide for access
to this range, we can initiate a dummy access to this region by manipulating the 'C40 global memory
interface control register. We first set the SWW and WTCNT fields so that the register will provide
zero-wait-state, internal ready dependent (only) accesses to the appropriate strobe (STRBL1 for our case).
We then perform a read from address OFF00 0000h, reset the SWW field to external ready accesses, and
perform a second read to the VAC068 — this time at the VAC068 register base OFFFD 0000h. This second
read provides the required access to snap the sequencers back to their default states.

After the Force EPROM mode is exited, we first verify that the VAC068 can be addressed by reading the
device ID via the VACO068 ID register. Then, we program the slave SLSELO base address register, the
SLSELO mask register, and the master A24 base address register. To enable the VAC068 decode and
compare functions, the last step is to write to the VACO068 ID register. The VIC068 ID register is similarly
polled; following the successful read of that register, we set the address modifier source register and the
slave select 0 control O register. This completes the initial programming of the pair. Now, we can extinguish
the SYSFAIL LED (if applicable) by writing to the interprocessor communication 7 register. The initial
register settings for our application are provided in Table 2.

Table 2. VIC068/VACO068 Initial Register Settings

Address Register Size (Bits) Setting

OFFFD 0200h VAC SLSELO Base 16 0010h

OFFFD 0300h VAC SLSELO Mask 16 00FOh

OFFFD 0800h VAC A24 Base 13 0D10h

OFFFD 2900h VAC ID 16 Write to Enable VAC
OFFFC 00B4h VIC Address Modifier 8 03Dh

OFFFC 00COh VIC Slave Select 0 Control 0 8 014h

15

5 Figure 9. TMS320C40 — VIC/VAC Prototype VMEbus Data Bus Interface
LWDENIN ®
LEDI ° .
DENO
LEDO ¢ *
® ®
UWDENIN U9 uU10 U1l
XCVR XCVR XCVR
2rnJGBA 2rnJGBA 2rnJGBA
zf CEBA Zf CEBA Zf CEBA
13 LEBA 13 LEBA 13 LEBA
NN [:] NIN[T:] 1 JcaB
14 14 14
CEAB CEAB CEAB
LEAB LEAB LEAB
] C] C] C
GD8 3 gy [TAT BI] qp22D8 GDI16 3) [TAT BI | (522D16 GD24 3 ¢ [TAT BII | ¢522D24
GDY 4 ¢ [TAZ B2T| (p21D9 | [GD17 4 ¢ [TAZ B2 | (21017 | [GD25 4 oy [TAZ B2 | 21D25
GD10 5 g3 [TAT B3| (20010 | |[GD18 5 ¢ [TAT B3 | (520018 | [GD26 5 oy [TAT B3 | ¢ 20D26
GDIl 6 ¢y [TAZ B2TT| ¢ pl9D1L GD19 6 o3 [TAZ BATT | y19D19 GD27 6 oy [TAZ BATT | y19D27
GD12 7 43 [TIAS B5TT| pL8D12 GD20 7 o3 [TAS B5T | ¢418D20 GD28 7 o3 [TAS BGUT | 418028
GDI3 8 43 [TAG BB | ¢pL7D13 GD2L 8 o3 [TAE BOL | pl7D21 GD19 8 o3 [TAE BEL | pLl7D29
GD14 9 o3 [TIA7 B77| ¢ pLl6D14 GD22 9 oo [TAT BT | qpl6D22 GD30 9 o [TAT BT | pL6D30
GDI5 10 ¢y, [TIAB BBT| L5015 GD23 10 o 3 [TAS BB | pl5D23 GD31 10 o 3 [TAB BB | 15031
GDs- / 74F543 74F543 74F543
GD31
D8—

D31

Conclusion

We have developed a prototype interface between the 'C40 DSP and the Cypress VIC068/VACO068 with
a minimum amount of programmable logic in the form of simple PLDs and sequencers. The result is a
reconfigurable, programmable interface for A24/D32 VMEbus master/slave capability. While the initial
transfer speed is low, you can improve it by increasing the sequencer’s clock rate and eliminating
unnecessary states in the prototype sequencer code. You can initiate read-modify-write cycles with the
existing hardware by using the 'C40 LOCK instruction group. Ultimately, the knowledge gained from this
effort could be used to develop an FPGA interface that improves both speed and size. In the future,
simulation models for state-of-the-art devices such as the 'C40 and VIC068/VAC068 should precede the
actual hardware release, allowing early proof-of-concept with in-place CAE tools.

Acknowledgements

The authors would like to thank James E. S. Wilkins of The MITRE Corporation for his essential
contributions to the prototype effort and also to David Fuchs, Texas Instruments, Waltham, Massachusetts,
for his timely support and encouragement. A special note of thanks go to the staff at Data 1/O for their
support of the ABEL programming language.

References

TMS320C4x User’s Guigdexas Instruments, 1991.
VIC068 VMEbus Interface Controller Specificati@ypress Semiconductor, 1991.
VACO068 VMEbus Address Controller SpecificatiGgpress Semiconductor, 1991.

A w0 Do

Siy, P. F., and W. T. Ralston, “Application of the Tl 'C40 in Satellite Modem Technology,” presented
at theThird Annual International Conference on Signal Processing Applications and Technology
Boston, MA, November, 1992.

5. IEEE Standard for a Versatile Backplane Bus: VMEIN®sw~ York: Wiley-Interscience, 1987.

W.D. PetersoriThe VMEbus HandbooKFEA International Trade Association, Scottsdale, AZ,
1990.

7. MC68020 32-Bit Microprocessor User’s Manu®otorola, Inc., 1984.

8. Henessey, J. L., and D. A. Pattersdamputer Architecture: A Quantitative Approach
San Mateo: Morgan Kaufmann Publishers, Inc., 1990.

9. Dewar, R. B. K., and M. Smosndicroprocessors: A Programmer’s View
New York: McGraw-Hill, Inc., 1990.

10. Programmable Logic Data BopKexas Instruments, 1990.

17

Appendix A: Address Bus Decoder — ABEL Source

Module Decode
Title Global Bus Decode
Date 24 March 1992
Revision 1.0
Part TIBPAL16R6-5C
Abel Version 4.00
Designer Peter F. Siy
Company MITRE Corp.
Location Bedford, MA
Project C40 1/0 Board
U12 device 'P16R6’;
"Inputs”
clk, reset pin 1,2; "clock, reset”
gstatO,gstatl,gstat2,gstat3 pin 3,4,5,6; "C40 status”
ga28,ga29,ga30 pin 7,8,9; "C40 address”
gstrbl pin 12; "C40 strobe 1”
oute pin 11; "output enable”
"Outputs”
mrd, mwr pin 13,14, "master read & write”
rrd,rwr pin 15,16; ’register read & write”
gprom pin 17; "PROM select”
"Misc”
ga3l =1, "dummy var”
"Sets”
stat = [gstat3,gstat2,gstatl,gstat0]; "status”
addr = [ga31,ga30,ga29,0a28]; "ms nibble”
output = [gprom,rwr,rrd,mwr,mrd]; "output”

HLXCZz=1,0,X.,.C.,.Z;

equations
output.c = clk;
output.oe = loute;

"Master Read”
Imrd :=reset & (addr == *hd) & (stat ==[1,0,X,X]) & !gstrbl;

"Master Write”
Imwr :=reset & (addr == ~*hd) & ((stat ==[1,1,0,1]) #
(stat ==[1,1,1,0])) & !gstrbl;

"Register Read”
Irrd := reset & (addr == ~hf) & (stat == [1,0,X,X]) & !gstrb1;

"Register Write”

Irwr ;= reset & (addr == ~hf) & ((stat ==[1,1,0,1]) #

(stat ==[1,1,1,0])) & !gstrbl;

"PROM Read”

Igprom :=reset & (addr == ~hc) & (stat ==[1,0,X,X]) & !gstrbl;

18

Appendix A (Continued)

test_vectors

([clk,reset,gstat3,gstat2,gstatl,gstat0,ga30,9a29,ga28,
gstrbl,oute] —> output)

CXXKXKXXX XX XL —> Z; "1 test for high-z"
C,0,X,X, X, X, X,X,X,X,0] —> "p11111;"2 test for reset”
c,1,1,0,X,X,1,0,1,0,0] —> "b11110;"3 test for master read”
c1,1,10,1,1,0,1,0,0] —> "b11101;"4 test for master write”
c1,1,1,1,0,1,0,1,0,0] —> "b11101;"5 test for master write”
c,1,1,0,X,X,1,1,1,0,0] —> Ab11011;"6 test for register read”
c11,1,0,1,1,1,1,0,0] —> Ab10111;"7 test for register write”
c11,11,0,1,1,1,0,0] —> "b10111;"8 test for register write”
c,1,1,0,X,X,1,0,0,0,0] —> "b01111;"9 test for PROM read”
C,1,1,0,X,X,0,0,0,0,0] —> Ap11111;"10 test bad address”
c,1,0,0,0,0,1,1,1,0,0] —> "b11111;"11 test bad status”
end decode

Appendix B: Bus Control Sequencer — ABEL Source

module bus_control

title 'C40 Bus Control
Date 30 March 1992
Revision 1.0

Part TIB82S105BC
Abel Version 4.00

Designer Peter F. Siy
Company MITRE Corp.
Location Bedford, MA
Project 'C401/0 Card”’

U13 device 'F105;

"Inputs”

clk, reset pin 1,9; "clock, reset”
mrd,mwr,rrd,rwr,gprom pin 8,7,6,5,4; "decoded cycle”

mwb,lbr pin 3,2; "master/slave requests”

dedlk pin 27; "m/s deadlock”
dsack0,dsackl,lberr pin 26,25,24; "cycle responses”

glock pin 23; "C40 lock”

oe pin 19; "output enable”

"Outputs”

Ibg pin 18 istype 'buffer,reg_RS’; "slave grant”
gbe pin 17 istype 'buffer,reg_RS’; "C40 g bus enable”
soe,moe pin 15,16 istype 'buffer,reg_RS’; "pls oe(s)”
grdyl pin 13 istype 'buffer,reg_RS’; "C40 ready 1”
"Sets”

cycle = [gprom,rwr,rrd,mwr,mrd]; "cycle request”

ack = [dsackl,dsack0]; "acknowledge”

output = [grdy1,soe,moe,gbe,lbg]; "output”

"State Description”
P4,P3,P2,P1,POnode 41,40,39,38,37 istype 'reg_RS’;
sreg = [P4,P3,P2,P1,P0];

19

Appendix B (Continued)

o
o

RPRrOOOOOOOO
R ooo
corro

roRrOoRORrORO

oo
oo

P
P

P
P

OO0 O00O00000o

POO~NOUIRAWNRERO

T(IDI“ L I I I T I B T U BT

[9)]

[y

o

"
FRFRFRPRROO00000

(£U)(DU)U)(DU)U)U’JU)U’JU)

RPOROROR OR OR O

ROOOOORRRRRFR
rroooorrkRFROD
rorkrooRrRrOORR

H,.L,X,C,Z2=1,0,X.,.C.,.Z,;

equations

output.OE = loe; "set output enable”
output.CLK = clk; "clock the output regs”
sreg.CLK = clk; "and state regs”

@page
state_diagram sreg
state SO:

if Ireset then SO WITH

Ibg.S =1; "slave disable”
ghe.R=1; "enable C40 global side”
soe.S=1; "slave disable”

moe.R =1; "enable master pls”
grdyl.S=1; "not ready”

ENDWITH,;

else if (!mrd # Imwr & Ibr) then S1; "master read/write”

else if (!rrd # Irwr & Ibr) then S4; "reg read/write”

else if (Igprom & Ibr) then S8; "EPROM read”

else if (!lbr # !dedlk) then S16 WITH "slave request”

ghe.S=1; "disable global side”
moe.S =1; "and master pls”
ENDWITH;

else SO WITH

Ibg.S =1; "slave disable”
ghe.R=1; "enable C40 global side”
soe.S=1; "slave disable”

moe.R = 1; "enable master pls”
grdyl.S =1; "not ready”

ENDWITH,;

@page _
"Master Read/Write”

20

Appendix B (Continued)

state S1:

if Ireset then SO WITH

Ibg.S =1; "slave disable”
ghe.R=1; "enable C40 global side”
soe.S=1; "disable slave pls”
moe.R = 1; "enable master pls”
grdyl.S =1; "not ready”

ENDWITH,;

else if ldedlk & ((!mwb) # (mwb)) then S16 WITH
moe.S =1,

ghe.S=1;

ENDWITH;

else if Imwb then S2;"wait for mwb”
else S1;

state S2:

if Ireset then SO WITH

Ibg.S=1; "slave disable”
ghe.R=1; "enable C40 global side”
soe.S=1; "disable slave pls”
moe.R = 1; "enable master pls”
grdy1.S =1, "not ready”
ENDWITH;

else if Idedlk & ((!mwb) # (mwb)) then S16 WITH;
moe.S=1;
ghe.S=1;
ENDWITH;

else if (ldsackl & !dsackO) # !lberr) then S3 WITH
grdyl.R =1,
ENDWITH;

else S2;

state S3:

goto SO WITH
grdyl.S =1;
ENDWITH;

@page .

"Register Read/Write”

state S4.

if Ireset then SO WITH

Ibg.S =1; "slave disable”
ghe.R=1; "enable C40 global side”
soe.S=1; "disable slave pls”
moe.R = 1; "enable master pls”
grdyl.S=1; "not ready”

ENDWITH;

else if ldsackl then S5 WITH
grdyl.R =1,
ENDWITH,;

else S4;

state S5:

goto SO WITH
grdyl1.S =1;
ENDWITH,;

@page
"EPROM Read, 150ns EPROMSs”

21

Appendix B (Continued)

state S8:

if Ireset then SO WITH

Ibg.S =1; "slave disable”
ghe.R=1; "enable C40 global side”
soe.S=1; "disable slave pls”
moe.R = 1; "enable master pls”
grdyl.S =1, "not ready”

ENDWITH;

else goto S9;

state S9:

if Ireset then SO WITH

Ibg.S =1; "slave disable”
ghe.R=1; "enable C40 global side”
soe.S=1; "disable slave pls”
moe.R = 1; "enable master pls”
grdyl.S=1; "not ready”

ENDWITH;

else goto S10;

state S10:

if Ireset then SO WITH

Ibg.S =1; "slave disable”
ghe.R=1; "enable C40 global side”
soe.S=1; "disable slave pls”
moe.R = 1; "enable master pls”
grdyl.S=1;d ’notready”

ENDWITH;

else goto S11;

state S11:
if Ireset then SO WITH
Ibg.S =1; "slave disable”
ghe.R=1; "enable C40 global side”
soe.S=1; "disable slave pls”
moe.R = 1; "enable master pls”
grdyl1.S =1; "not ready”
ENDWITH;
else goto S12 WITH
grdyl.R =1,
ENDWITH;
state S12:
if Ireset then SO WITH
Ibg.S =1; "slave disable”
ghe.R=1; "enable C40 global side”
soe.S=1; "disable slave pls”
moe.R = 1; "enable master pls”
grdyl.S=1;d "notready”
ENDWITH;
else goto SO WITH
grdyl.S =1;
ENDWITH;
@page

"Local Bus Request”

22

Appendix B (Continued)

state S16:
if Ireset then SO WITH
Ibg.S =1; "slave disable”
ghe.R=1; "enable C40 global side”
soe.S=1; "disable slave pls”
moe.R = 1; "enable master pls”
grdyl.S=1; "not ready”
ENDWITH;
else goto S17 WITH
soe.R=1; "enable slave PLS”
ENDWITH;
state S17:
if Ireset then SO WITH
Ibg.S =1; "slave disable”
ghe.R=1; "enable C40 global side”
soe.S=1; "disable slave pls”
moe.R = 1; "enable master pls”
grdyl.S=1; "not ready”
ENDWITH;
else goto S18 WITH
Ibg.R =1, "finally allow slave access”
ENDWITH;
state S18:
if Ireset then SO WITH
Ibg.S = 1; "slave disable”
ghe.R=1; "enable C40 global side”
soe.S=1; "disable slave pls”
moe.R = 1; "enable master pls”
grdy1.S =1, "not ready”
ENDWITH;
else if Ibr then goto S19 WITH
Ibg.S =1; "slave disable”
ENDWITH;
else S18;
state S19:
if Ireset then SO WITH
Ibg.S =1; "slave disable”
ghe.R=1; "enable C40 global side”
soe.S=1; "disable slave pls”
moe.R = 1; "enable master pls”
grdyl.S =1, "not ready”
ENDWITH;
else goto S20 WITH
soe.S =1; "disable slave pls”
ENDWITH;
state S20:
if Ireset then SO WITH
Ibg.S =1; "slave disable”
ghe.R=1; "enable C40 global side”
soe.S=1; "disable slave pls”
moe.R = 1; "enable master pls”
grdyl.S =1; "not ready”
ENDWITH;
else goto SO WITH
moe.R = 1;
ghe.R=1;
ENDWITH;

23

Appendix B (Continued)

@page
"Power-Up”

"3 reset state”

"1 power up”
"2 power up”
4 master read”
14 ready for nxt”
15 prom read”
16 prom read”
21 slave request’
22 en slve pls”
25 rescend grant”
26 disable sl pls”
"27 end sl access”
33 rescend grant”
34 disable sl pls”
"35 end sl access”

"17 wait”
18 wait”

11 ready for nxt”
"19 wait”
20 ready for nxt”

5 mwb asserted”
6 data acked”
7 ready for nxt”
8 master write”
9 mwb asserted”
10 data acked”
12 reg read”
13 data ackd”
23 slave grant”
24 slave aces”
29 deadlock”
30 en slve pls”
31 slave grant”
32 slave aces”

NN O A NMOYTNO0DAAdTA0AAdAAANO A d A A AN O
//_/SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS
S NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

e e ey L Y Y B I | |

"enable C40 global side”
"dummy err 6099”
"disable slave PLS”
"enable master pls”
"dummy err 6099”

"dummy err 6099”
"not ready”

"dummy err 6099”
"dummy err 6099”

"slave disable”

iocoddo o dddddddddddd AT AT AT
xx,1111011111111111111111111111111

1;
0;
1
0
1
0

state S31:
goto SO WITH

H0 0000000000000 LOLOLOLOLLOLOLOLOLOOOLOOOLOO

([clk,reset,gprom,rwr,rrd,mwr,mrd,lbr,mwb,
dsackl,dsack0,dedlk,lberr,glock,oe] —>
[sreg,grdyl,soe,moe,gbe,lbg])

test_vectors

@page

end bus_control

24

Appendix C: Master Cycle Generation Sequencer — ABEL Source

module master

title 'C40 Bus Control
Date 31 March 1992
Revision 1.0

Part TIB82S105BC
Abel Version 4.00

Designer Peter F. Siy
Company MITRE Corp.
Location Bedford, MA
Project 'C40 1/0 Card”’

U14 device 'F105’;

"Inputs”

clk, reset pin 1,9;
mrd,mwr,rrd,rwr,gprom pin 8,7,6,5,4;
mwb, lbr pin 3,2;
dedlk pin 27;
dsack0,dsackl,lberr pin 26,25,24;
glock pin 23;
oe pin 19;
"Outputs”

pas pin 18 istype 'buffer,reg_RS’;
ds pin 17 istype 'buffer,reg_RS’;
rw pin 16 istype 'buffer,reg_RS’;

rmc pin 15 istype 'buffer,reg_RS’;
siz0 pin 13 istype 'buffer,reg_RS’;
siz1 pin 12 istype 'buffer,reg_RS’;
fcl pin 11 istype 'buffer,reg_RS’;
fc2 pin 10 istype 'buffer,reg_RS’;

"Sets”
cycle = [gprom,rwr,rrd,mwr,mrd];
ack = [dsackl,dsack0];

"clock, reset”
"decoded cycle”
"master/slave requests”
"m/s deadlock”
"cycle responses”
"C40 lock”
"output enable”

"68K address strobe”
"68K data strobe”
"68K read/write bar”
"68K read—mod-write”

"68K size 0"

"68K size 1”

"68K function 1”

"68K function 0”

"cycle request”
"acknowledge”

output = [pas,ds,rw,rmc,siz0,siz1,fc1,fc2]; "68K ouputs”

"State Description”

P4,P3,P2,P1,POnode 41,40,39,38,37 istype 'reg_RS’;

sreg = [P4,P3,P2,P1,P0];

S0 =10,0,0,0,0];
S1=[0,0,0,0,1];
S2=10,0,0,1,0];
S3=[0,0,0,1,1];
S4=10,0,1,0,0];
S5=10,0,1,0,1];
S6 =10,0,1,1,0];
S7=1[0,0,1,1,1];
S8 =10,1,0,0,0];
S9=[0,1,0,0,1];
S10=[0,1,0,1,0];
S11=[0,1,0,1,1];
S12=[0,1,1,0,0];
S13=[0,1,1,0,1];
S14=00,1,1,1,0];
S15=[0,1,1,1,1];
S16 =[1,0,0,0,0];
S17=[1,0,0,0,1];
S18 =[1,0,0,1,0];
S19=[1,0,0,1,1];

25

Appendix C (Continued)

S20=11,0,1,0,0];
S21=1[1,0,1,0,1];
S22 =11,0,1,1,0];
S23=01,0,1,1,1];
S24 =11,1,0,0,0];
S25=11,1,0,0,1];
S26 =[1,1,0,1,0];
S27 =11,1,0,1,1];
S28 =01,1,1,0,0];
S29=101,1,1,0,1];
S30=11,1,1,1,0];
S31=[1,1,1,1,1];
"Misc”

rwmemnode 42 istype 'reg_RS’; "riw flag”
H,LXCZz=1,0,X.,.C.,.Z;

equations

output.OE = loe; "set output enable”
output.CLK = clk; "clock the output regs”
sreg.CLK = clk; "and state regs”
rwmem.CLK = clk; "and r/w store”
@page

state_diagram sreg

state SO:

if (Ireset # !dedlk) then SO WITH

pas.S=1; "no strobe”
ds.S=1; "no strobe”

rw.S =1; "read”

rwmem.S =1; "flag for mem”
rmc.S =1, "no rmc

siz0.R =1; "set for”

siz1.R =1; "32-hit xfers”

fcl.R =1; “setfor supervisory”
fc2.S=1; "data access”

ENDWITH;

else if (!Imrd & 'rwmem & lbr) then S1 WITH "master read”
w.S =1; "assert read/write”
rwmem.S =1;

ENDWITH,;

else if (!'mrd & rwmem & lbr) then S2 WITH "master read”
pas.R =1, "assert pas”

ds.R=1; "and ds”

ENDWITH;

else if (!mwr & rvmem & Ibr) then S8 WITH "master write”
w.R =1, "assert r/w”

rwmem.R =1;

ENDWITH;

else if (!mwr & Irwmem & Ibr) then S9 WITH "master write”
pas.R =1; "assert pas only”

ENDWITH;

else if (Irrd & 'rwmem & Ibr) then S16 WITH "reg read”

rw.S =1; "assert r/w”

rwmem.S =1;

ENDWITH;

else if (Irrd & rwmem & lbr) then S17 WITH "reg read”

pas.R =1, "assert pas”

ds.R =1, "and ds”

ENDWITH;

26

Appendix C (Continued)

else if (Irwr & rvmem & lbr) then S24 WITH "reg write”
rw.R=1;

rwmem.R =1,
ENDWITH,;
else if ('rwr & 'rwmem & lbr) then S25 WITH
pas.R =1, "assert pas only”
ENDWITH,;
else SO WITH
pas.S=1; "no strobe”
ds.S=1; "no strobe”
rw.S=1; "read”
rwmem.S =1; "flag for mem”
rmc.S=1; "no rmc”
sizO.R=1; "set for”
sizl.R=1; "32—hit xfers”
fclR=1; "set for supervisory”
fc2.S5=1; "data access”
ENDWITH;
@page
"Master Read”
state S1:
if (Ireset # !dedlk) then SO WITH
pas.S=1; "no strobe”
ds.S=1; "no strobe”
w.S =1; "read”
rwmem.S =1; "flag for mem”
rmc.S=1; "no rmc”
siz0O.R =1, "set for”
sizl.R=1; "32-bit xfers”
fclR=1; "set for super”
fc2.5=1; "data access”
ENDWITH,;
else S2 WITH
pas.R =1,
ds.R=1;
ENDWITH;
state S2:
if ('reset # !dedlk) then SO WITH
pas.S=1; "no strobe”
ds.S=1; "no strobe”
rw.S=1; "read”
rwmem.S =1; "flag for mem”
rmc.S=1; "no rmc”
sizO.R=1; "set for”
sizl.R=1; "32-bit xfers”
fcl.R=1; "set for super”
fc2.S5=1; "data access”
ENDWITH;
else if Imwb then S3; "wait for 'mwb”
else S2;
state S3:
if ('reset # !dedlk) then SO WITH
pas.S =1; "no strobe”
ds.S=1; "no strobe”
w.S=1; "read”

rwmem.S=1; "flag for mem”

Appendix C (Continued)

rmc.S=1; "no rmc”
sizO.R=1; "set for”
siz1.R=1; "32-bit xfers”
fclR=1; "set for supervisory”
fc2.S5=1; "data access”
ENDWITH;
else if ((!dsackl & !dsackO) # !lberr) then S4 WITH
grdyl.R=1
ENDWITH,;
else S3;
state S4:
goto SO WITH
pas.S =1,
ds.S=1;
ENDWITH,;
@page
"Master Write”
state S8:
if (Ireset # !dedlk) then SO WITH
pas.S=1; "no strobe”
ds.S=1; "no strobe”
w.S=1; "read”
rwmem.S = 1;
rmc.S=1; "no rmc”
sizO.R =1; "set for”
sizl.R=1; "32-bit xfers”
fclR=1; "set for supervisory”
fc2.S=1; "data access”
ENDWITH,;
else S9 WITH
pas.R =1,
ENDWITH;
state S9:
if ('reset # !dedlk) then SO WITH
pas.S=1; "no strobe”
ds.S=1; "no strobe”
w.S=1; "read”
rwmem.S = 1;
rmc.S=1; "no rmc”
sizO.R =1, "set for”
sizl.R=1; "32-bit xfers”
fclR=1; "set for supervisory”
fc2.5=1; "data access”
ENDWITH,;
else S10 WITH
ds.r=1;
ENDWITH,;

28

Appendix C (Continued)

state S10:

if (Ireset # !dedlk) then SO WITH
pas.S=1; "no strobe”
ds.S=1; "no strobe”
w.S=1; "read”
rwmem.S =1;

rmc.S=1; "no rmc”

siz0O.R=1; "setfor”
sizl.R =1; "32-bit xfers”
fcl.R=1; "setfor super”
fc2.S=1; "dataaccess”
ENDWITH,;

else if Imwb then S11;
else S10;

state S11:

if ('reset # !dedlk) then SO WITH
pas.S=1; ’no strobe”
ds.S=1; "no strobe”
w.S=1; "read”
rwmem.S=1;

rmc.S=1; "normc”

siz0.R =1; "set for”

sizl.R =1; "32-hit xfers”
fcl.R=1; "setfor supervisory”
fc2.S=1; "data access”
ENDWITH,;

else if ((!dsackl & !dsackO) # !lberr) then S12;
else S11,

state S12:
goto SO WITH
pas.S=1;
ds.S=1;
ENDWITH;

@page
"Register Read”

state S16:
if Ireset then SO WITH
pas.S=1; "no strobe”

ds.S=1; "no strobe”
w.S=1; "read”
rwmem.S = 1;

rmc.S=1; "normc”
siz0O.R=1; "setfor”
sizl.R =1; "32-bit xfers”
fcl.R=1; "setfor super”
fc2.S=1; ’data access”
ENDWITH,;

else S17 WITH
pas.R =1,
ds.R =1;
ENDWITH;

29

state S17:
if Ireset then SO WITH
pas.S=1; ’no strobe”
ds.S=1; "no strobe”
rw.S=1; "read”
rwmem.S=1;
rmc.S=1; "normc”
siz0.R =1; "set for”
sizl.R =1; "32-bit xfers”
fcl.R=1; "setfor super”
fc2.S=1; "data access”
ENDWITH,;
else if ldsackl then S18 WITH
grdyl.R=1
ENDWITH,;
else S17;
state S18:
goto SO WITH
pas.S =1,
ds.S=1;
ENDWITH,;
@page
"Register Write”
state S24:
if Ireset then SO WITH
pas.S=1; "no strobe”
ds.S=1; "no strobe”
w.S =1; "read”
rwmem.S = 1;
rmc.S=1; "normc”
siz0.R =1; "set for”
siz1.R =1; "32-bit xfers”
fcl.R=1; "setfor supervisory”
fc2.S=1; "data access”
ENDWITH,;
else S25 WITH
pas.R =1,
ENDWITH,;
state S25:
if Ireset then SO WITH
pas.S=1; "no strobe”
ds.S=1; "no strobe”
w.S=1; "read”
rwmem.S = 1;
rmc.S=1; "normc”
siz0O.R=1; "setfor”
sizl.R =1; "32-bit xfers”
fcl.R=1; "setfor supervisory”
fc2.S=1; "data access”
ENDWITH,;
else S26 WITH
ds.r=1;
ENDWITH;

30

Appendix C (Continued)

Appendix C (Continued)

state S26:
if Ireset then SO WITH
pas.S=1; "no strobe”

ds.S=1; "no strobe”
w.S=1; "read”
rwmem.S = 1;

rmc.S=1; "normc”

siz0O.R=1; "setfor”

sizl.R =1; "32-hit xfers”
fcl.R=1; "setfor supervisory”
fc2.S=1; "dataaccess”
ENDWITH,;

else if ldsackl then S27;

else S26;

state S27:
goto SO WITH
pas.S =1,
ds.S=1;
ENDWITH,;

@page

"Power-Up”

state S31:

goto SO WITH

pas.S=1; ’no strobe”
pas.R=0; “error 6099 fix”

ds.S=1; "no strobe”
ds.R=0; "error 6099 fix”
rw.s =1, "read”

rwmem.S =1;

rw.R =0; "error 6099 fix”
rmc.S=1; "normc”
rmc.R=0; "error 6099 fix”
siz0.R =1; "set for”

siz0.S = 0; "error 6099 fix”
siz1.R =1; "32-hit xfers”
siz1.S =0; "error 6099 fix"
fcl.R=1; "setfor supervisory
fc1.S=0; “error 6099 fix"
fc2.S=1; "data access”
fc2.R=0; "error 6099 fix”
ENDWITH,;

@page

test_vectors
([clk,reset,gprom,rwr,rrd,mwr,mrd,lbr,mwb,
dsackl,dsack0,dedlk,lberr,glock,oe] —>
[sreg,rwmem,fc2,fcl,siz1,siz0,rmc,rw,ds,pas])

”

[1,%, X, X, X, X, X, X, X, X, X, X, X, X,0] => [S31,X,X,X,X, X, X, X,X,X]; "1 power up”
[0,X,X, X, X, X, X, X, X, X,X,X,X,X,0] => [S31,X,X,X,X,X,X,X,X,X]: "2 power up”
[C,0,X, X, X, X, X, X, X, X, X,X,X,X,0] —> [SO0, 1,1,0,0,0,1,1,1,1]; "3 reset state”
[C,1,1,1,1,1,0,1,1,1,1,1,1,1,0] => [S2, 1,1,0,0,0,1,1,0,0]; "4 master read”
[C,1,1,1,1,1,0,1,0,1,1,1,1,1,0] —> [S3, 1,1,0,0,0,1,1,0,0]; "5 mwb

asserted”

c11111,01,0,00,1,1,1,0]—>[S4,1,1,0,0,0,1,1,0,0]; "6 data acked”
c1111211211,1,1,2,1,1,0]— [SO, 1,1,0,0,0,1,1,1,1]; "7 ready for

nxt”

[c11,11,02,1,2,1,2,1,1,1,0] —>[S8, 0,1,0,0,0,1,0,1,1]; "8 master

31

Appendix C (Continued)

write”

[c11,1102,1,2,1,2,1,1,1,0]—>[S9, 0,1,0,0,0,1,0,1,0]; "9 assert pas”
[c11110,12,2,1,1,2,1,1,0]—[S10,0,1,0,0,0,1,0,0,0]; "10 assert ds”
[c1,1110,12,0,1,1,1,1,1,0]—>[S11,0,1,0,0,0,1,0,0,0]; "11 mwb”
[c11,1,1,0,2,1,0,0,0,1,1,1,0] —>[S12,0,1,0,0,0,1,0,0,0]; "12 data ackd”
c1111112,2,1,1,1,1,1,0]— [SO0, 0,1,0,0,0,1,0,1,1]; "13 ready for
next”

[c11,10,12,1,2,1,1,1,1,1,0]—>[S16,1,1,0,0,0,1,1,1,1]; "14 reg read”
[€ci11101112,1,11,1,1,0]—>[S17,1,1,0,0,0,1,1,0,0]; "15 assert
strobes”

[c11,10,1,2,1,1,0,1,1,1,1,0] —>[S18,1,1,0,0,0,1,1,0,0]; "16 data ackd”
ci1111111,2,1,1,1,1,1,0]—[SO0, 1,1,0,0,0,1,1,1,1]; "17 ready for
nxt”

[C,1,1,0,1,1,1,1,1,1,1,1,1,1,0] —> [S24,0,1,0,0,0,1,0,1,1]; "18 reg write”
[c11,01,1,2,1,2,1,1,1,1,1,0] —> [S25,0,1,0,0,0,1,0,1,0]; "19 assert pas”
[c11021,12,1,1,1,1,1,1,1,0] - [S26,0,1,0,0,0,1,0,0,0]; "20 assert ds”
[c1,10211,11,1,01,1,1,1,0]—[S27,0,1,0,0,0,1,0,0,0]; "21 data ackd”
c1111,12,11,1,1,1,1,1,0]—>[So0,0,1,0,0,0,1,0,1,1]; "22 ready for
next”

end master

APPENDIX D

SLAVE CYCLE GENERATION SEQUENCER — ABEL SOURCE
module slave

title 'C40 Bus Control

Date 2 April 1992

Revision 1.0

Part TIB82S105BC

Abel Version 4.00

Designer Peter F. Siy

Company MITRE Corp.

Location Bedford, MA

Project 'C401/0 Card’

U15 device 'F105;

"Inputs”

clk, reset pin 1,9; "clock, reset”

pas,ds pin 8,7; "address,data strobe”

rw,rmc pin 6,5; "read/write strobes”

siz0,sizl pin 4,3; "bus sizing”

fcO,fcl,fc2 pin 2,27,26; "function codes”

Ibg pin 25; "local bus grant”

oe pin 19; "output enable”

"Outputs”

dsackO pin 18 istype 'buffer,reg_RS’; "data ack 0”

dsackl pin 17 istype 'buffer,reg_RS’; "data ack 1”

lberr pin 16 istype 'buffer,reg_RS’; "bus error”

gstrb0 pin 15 istype 'buffer,reg_RS’; "C40 mem strobe”

grw0 pin 13 istype 'buffer,reg_RS’; "C40 read/write”
"Sets”

size = [siz1,siz0]; "size”

func = [fc2,fc1,fc0]; "function”
output = [grwO0,gstrb0,Iberr,dsackl,dsack0];

"State Description”

P3,P2,P1,PO node 40,39,38,37 istype 'reg_RS’;
sreg = [P3,P2,P1,P0];

S0 =10,0,0,0];

0,1]
1,0];

S3=10,0,1,1];
S4=[0,1,0,0];
S5=10,1,0,1];
S6 =[0,1,1,0];
S7=[0,1,1,1];
S8 =1[1,0,0,0];
S9=[1,0,0,1];
S10=11,0,1,0];
S11=[1,0,1,1];
S12 =[1,1,0,0];
S13=[1,1,0,1];
S14 =01,1,1,0];
S15=[1,1,1,1];
"Misc”

rwmemnode 42 istype 'reg_RS’;
H,L,X,C,Z2=1,0,X.,.C.,.Z,;

equations
output.OE = loe;
output.CLK = clk;
sreg.CLK = clk;
rwmem.CLK = clk;

@page
state_diagram sreg
state SO:

if (freset) then SO WITH

Appendix C (Continued)

"rw flag”

"set output enable”
"clock the output regs”
"and state regs”

"and r/w store”

dsack0.S =1; "deassert”

dsackl.s=1; rall’

Iberr.S =1; "strobes”
gstrb0.S=1; "deassert C40”
grwO.R =1, "strobe, read”
rwmem.S =1; "set to read”
ENDWITH,;

else if (!lbg) then S1;

else SO WITH

dsack0.S=1; "deassert”
dsackl.s=1; rall’

Iberr.S =1; "strobes”
gstrb0.S=1; "deassert C40"
grwo.R =1, "strobe, read”
rwmem.S =1; "set to read”
ENDWITH;

@page
"Sort Slave Request”
state S1:

"Reset”

if (Ireset) then SO WITH
dsack0.S=1; “deassert”
dsackl.S=1; "all’

Iberr.S = 1; "strobes”
gstrb0.S=1; “deassert C40"
grwO.R = 1; "strobe, read”
rwmem.S =1; "set to read”
ENDWITH,;

"32-Bit Read”

else if (Ipas & !ds & rw & Irwmem & !siz0 & Isiz1) then S2 WITH

grw0.S = 1;
rwmem.S = 1;
ENDWITH;

33

Appendix C (Continued)

else if (Ipas & !ds & rw & rwmem & !siz0 & !siz1) then S3 WITH
gstrbO.R = 1;
ENDWITH;

"32-Bit Write”

else if (Ipas & !ds & 'rw & rwmem & !siz0 & Isiz1) then S2 WITH
grwO.R =1,

rwmem.R = 1;

ENDWITH;

else if (Ipas & !ds & 'rw & 'rwmem & !siz0 & !siz1) then S3 WITH
gstrbO.R = 1;
ENDWITH;

"lllegal Access (non—32 bit access)”

else if (Ipas & !ds & (rw # !rw) & (siz0 # siz1)) then S9 WITH
Iberr.R=1;

ENDWITH,;

else S1;

@page _
"32-Bit Read/Write”
state S2:

goto S3 WITH
gstrbO.R = 1;
ENDWITH,;

state S3:

goto S4 WITH
dsack0.R =1;
dsackl.R =1;
ENDWITH,;

state S4:

if pas then SO WITH
dsack0.S =1;
dsackl.S =1;
gstrb0.S = 1;
ENDWITH;

else S4;

@page
"lllegal Access”

state S9:

if pas then SO WITH
Iberr.S = 1;
ENDWITH

@page
"Power-Up”

state S15:

goto SO WITH

dsack0.S=1; "noack”
dsackO.R =0; "error 6099 fix”
dsackl.S=1; "noack”
dsackl.R=0; “error 6099 fix"

rwmem.S =1; “r/'w mem”
rwmem.R = 0; "error 6099 fix”
Iberr.S = 1; "no bus error”

Iberr.R = 0; "error 6099 fix”
gstrb0.S=1; "no strobe”
grw0.S = 1; "read”
ENDWITH;

34

Appendix C (Continued)

([clk,reset,pas,ds,rw,rmc,siz0,siz1,fc0,fcl,fc2,Ibg,0e] —>

[sreg,rwmem,dsack0,dsackl,lberr,gstrb0,grw0])

test_vectors

@page

done, release gstrb”

0 slave write,lbg”
1 pas asserted”

wait for pas release”
2 and ds”

; "2 power up”

3 reset state”

slave read,lbg”
as asserted”
nd ds, strobe”

p
a
a
9 and ds, r/w asserted”

0 and strobe”
8 done, release lberr”
8 and ds,assert strobe”

9 slave write,lbg”
0 pas asserted”

1 and ds”
0 wait for pas release”
1 done,relase gstrb”

4 wait for pas release”
5 done,relase gstrb”

6 slave write,Ibg”

7 wait for pas release”
7 pas asserted”

2 wait for pas release”
3 done,relase gstrb”

4 bad access,lbg”

5 pas asserted”

5 wait for pas release”
6 and ds, error”

]; "1 power up”

3 assert strobe”

6 done,relase gstrb”
7 slave read,lbg”

8 pas asserted”

2 assert strobe”

VA1VA1111000111100011110001111111110001110001

VA: s AT A A A A A A AAAAAAAAAAAAA OO A A A A A A A A A A A A A A

1VA;111100111110011111001111111111001111001

DN AT IO T AN NI IO AT TN O A TR DO AATNNSTSTOATN LSO
AANDLNNNNNNNNNNNDDNDDDDDDNDNDNDNDNDNDNDNDNNNDNNNNN NN
Il

_>[

ANANNNNNNANNNNNNANNNNNNANNNNNNANNNNNNANNNNNNANNNNNNNN
.m_.m_.m.______________________________________

XX 100004400650 H4+400050ddddddd00600+d—+4005S
Y100 ccoddo0000Hd00000+dHd000d+d00000HdHdc0o0
IRZAA T A A A A A AT A A A A A A A A A d A A A A AT T T A A A A A A

Hc00000000000000O0LOLOLLOLOLOLOLLOLOLOLOLOLOLOOLOOO

35

end slave

36

Appendix D: Schematics

Figure 10. TMS320C40 — VIC/VAC Protototype VMEbus P1 Connector

A9

L GND
>
D A10

SYSCLK

Al6
DIACK

Al7
GND

ALg
AS

A10

_— D0-D7

— AL-A7

B9

L~ BG20UT
>

B10
BG3IN

[>Bl1
|: BG30OUT

C9

L GND
>
> C10
>

SYSFAIL

>

: BERR

e —
SYSRESET

C16
A22

C17
A21

C18
A20

10

— D8-D15

— A8-A23

37

38

Appendix D: Schematics (Continued)

Figure 11. TMS320C40 - VIC/VAC Protototype VMEbus P2 Connector

L A10

AL

L Al7

418

A23
A24
A25
A26
A27

A28

L A27

A28

L D16

N
B16
L o

B17

D19

B18

D20

B19
D21
B20
D22

B21
no2

ya A24-A31

~— D16-D23

— D24-D31

Dﬁ

>c

Dﬁ

B

C23
C24
C25
C26
c27

C28

39

