
TMS320TCI6486
Digital Signal Processor
Silicon Revisions 2.1, 2.0, 1.2, 1.1, 1.0

Silicon Errata

Literature Number: SPRZ247I

October 2007–Revised July 2011

2 SPRZ247I–October 2007–Revised July 2011
Submit Documentation Feedback

Copyright © 2007–2011, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRZ247I

Contents

1 Introduction .. 5
1.1 Device and Development Support Tool Nomenclature ... 5

1.2 Package Symbolization and Revision Identification .. 6

1.3 Silicon Updates .. 8

2 Silicon Revision 2.1 Usage Notes and Known Design Exceptions to Functional
Specifications ... 9

2.1 Silicon Revision 2.1 Usage Notes ... 9
2.1.1 Device: Heatsink/Airflow Recommended to Lower Case Temperature 9
2.1.2 EMAC: Gigabit Mode Cannot Be Used With CPU Running at Speeds Lower Than 375 MHz 9
2.1.3 DDR2 EMIF: Delay Before CKE Goes High With Different Combinations of REFRESH_RATE and

DDR Clock .. 9
2.1.4 EMIF Read Incurs High Latency Under Certain Conditions .. 10
2.1.5 I2C Bus Hang After Master Reset ... 11
2.1.6 EMAC Boot Using the RGMII Interface ... 11

2.2 Silicon Revision 2.1 Known Design Exceptions to Functional Specifications 11

3 Silicon Revision 2.0 Usage Notes and Known Design Exceptions to Functional
Specifications ... 38

3.1 Silicon Revision 2.0 Usage Notes ... 38

3.2 Silicon Revision 2.0 Known Design Exceptions to Functional Specifications 38

4 Silicon Revision 1.2 Usage Notes and Known Design Exceptions to Functional
Specifications ... 53

4.1 Silicon Revision 1.2 Usage Notes ... 53

4.2 Silicon Revision 1.2 Known Design Exceptions to Functional Specifications 53

5 Silicon Revision 1.1 Usage Notes and Known Design Exceptions to Functional
Specifications ... 71

5.1 Silicon Revision 1.1 Usage Notes ... 71

5.2 Silicon Revision 1.1 Known Design Exceptions to Functional Specifications 71

6 Silicon Revision 1.0 Usage Notes and Known Design Exceptions to Functional
Specifications ... 73

6.1 Silicon Revision 1.0 Usage Notes ... 73

6.2 Silicon Revision 1.0 Known Design Exceptions to Functional Specifications 73

Appendix A Revision History .. 83

3SPRZ247I–October 2007–Revised July 2011 Table of Contents
Submit Documentation Feedback

Copyright © 2007–2011, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRZ247I

www.ti.com

List of Figures

1 Lot Trace Code Examples for TMS320TCI6486 (CTZ/GTZ/ZTZ Packages) 6

2 L1D Cache Address Mapping.. 21

3 Cache Line Operations Flow... 22

4 L1D Cache Address Mapping.. 31

5 Sequence of Events... 32

6 ISR Workaround Flowchart .. 36

7 L1D Cache Address Mapping.. 41

8 Sequence of Events... 42

9 Decision Tree .. 43

10 Timing Between Transactions ... 51

11 IDMA, SDMA, and MDMA Paths .. 55

12 Data Pipelined SCR ... 57

13 Daisy-Chain Example ... 74

14 Expected Customer Implementation .. 76

15 Requested Implementation Change .. 76

16 Interim Workaround for Silicon Revision 1.0... 77

17 Bitmap Memory Address Translation ... 79

18 Bitmap Memory Corruption Example ... 80

List of Tables

1 Lot Trace Codes .. 6

2 Silicon Revision Registers ... 7

3 Megamodule Revision Registers.. 7

4 Silicon Revisions 2.1, 2.0, 1.2, 1.1, and 1.0 Updates .. 8

5 200-μs Delay Calculated Values .. 9

6 7.8125-μs Interval Calculated Values... 10

7 Silicon Revision 2.1 Advisory List ... 11

8 TCI6486 UMAP1 Allocation .. 20

9 Value of X for L1D Cache .. 21

10 Value of X for L1D Cache .. 31

11 Silicon Revision 2.0 Advisory List ... 38

12 TCI6486 Default Master Priorities ... 39

13 Value of X for L1D Cache .. 41

14 Expected vs. Actual Data Values ... 42

15 Stall Conditions on Silicon Revisions ... 48

16 Stall Conditions on Silicon Revisions ... 50

17 Silicon Revision 1.2 Advisory List ... 53

18 TCI6486 Default Master Priorities ... 70

19 Silicon Revision 1.1 Advisory List ... 71

20 Silicon Revision 1.0 Advisory List ... 73

21 I2C Parameter Table for EMAC Boot ... 75

22 TCI6486 Revision History .. 83

4 List of Figures SPRZ247I–October 2007–Revised July 2011
Submit Documentation Feedback

Copyright © 2007–2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRZ247I

Silicon Errata
SPRZ247I–October 2007–Revised July 2011

TMS320TCI6486 DSP
Silicon Revisions 2.1, 2.0, 1.2, 1.1, 1.0

1 Introduction

This document describes the silicon updates to the functional specifications for the TMS320TCI6486
digital signal processor; see the device-specific data manual, TMS320TCI6486 Communications
Infrastructure Digital Signal Processor (literature number SPRS300).

1.1 Device and Development Support Tool Nomenclature

To designate the stages in the product development cycle, TI assigns prefixes to the part numbers of all
DSP devices and support tools. Each DSP commercial family member has one of three prefixes: TMX,
TMP, or TMS (e.g., TMS320TCI6486CTZ). Texas Instruments recommends one of two possible prefix
designators for its support tools: TMDX and TMDS. These prefixes represent evolutionary stages of
product development from engineering prototypes (TMX/TMDX) through fully qualified production
devices/tools (TMS/TMDS).

Device development evolutionary flow:
TMX Experimental device that is not necessarily representative of the final device's electrical

specifications
TMP Final silicon die that conforms to the device's electrical specifications but has not

completed quality and reliability verification
TMS Fully-qualified production device
Support tool development evolutionary flow:
TMDX Development-support product that has not yet completed Texas Instruments internal

qualification testing
TMDS Fully-qualified development-support product

TMX and TMP devices and TMDX development-support tools are shipped against the following
disclaimer:

"Developmental product is intended for internal evaluation purposes."

TMS devices and TMDS development-support tools have been characterized fully, and the quality and
reliability of the device have been demonstrated fully. TI's standard warranty applies.

Predictions show that prototype devices (TMX or TMP) have a greater failure rate than the standard
production devices. Texas Instruments recommends that these devices not be used in any production
system because their expected end-use failure rate still is undefined. Only qualified production devices are
to be used.

5SPRZ247I–October 2007–Revised July 2011 TMS320TCI6486 DSP—Silicon Revisions 2.1, 2.0, 1.2, 1.1, 1.0
Submit Documentation Feedback

Copyright © 2007–2011, Texas Instruments Incorporated

http://www.ti.com/lit/pdf/SPRS300
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRZ247I

Lot Trace Code Lot Trace Code

DSP

TMS320TCI6486CTZ

#xx−#######

Lot Trace Code

DSP

TMS320TCI6486GTZ

#xx−#######

DSP

TMS320TCI6486ZTZ

#xx−#######

Introduction www.ti.com

1.2 Package Symbolization and Revision Identification

The device revision can be determined by the lot trace code marked on the top of the package. The
location of the lot trace code for the CTZ, GTZ, and ZTZ packages is shown in Figure 1. Figure 1 also
shows an example of TCI6486 package symbolization.

Figure 1. Lot Trace Code Examples for TMS320TCI6486 (CTZ/GTZ/ZTZ Packages)

Silicon revision correlates to the lot trace code marked on the package. This code is of the format
#xx-#######. If xx is "10", then the silicon is revision 1.0. Table 1 lists the silicon revisions associated with
each lot trace code for the TCI6486 devices.

Table 1. Lot Trace Codes

LOT TRACE CODE (xx) SILICON REVISION COMMENTS

21 2.1 Silicon revision 2.1

20 2.0 Silicon revison 2.0

12 1.2 Silicon revision 1.2

11 1.1 Silicon revision 1.1

10 1.0 Initial silicon revision

The TCI6486 device contains multiple read-only register fields that report revision values. The Silicon
Revision ID Register and the JTAG ID Register are chip-level revision registers. The Silicon Revision ID
Register provides the silicon revision in explicit fields. The silicon revision can be read directly from the
MAJOR REVISION and MINOR REVISION fields within this register. The Silicon Revision ID Register is at
address location 02A8 070Ch. Table 2 shows the contents of the Silicon Revision ID Register for each
silicon revision. More details on the Silicon Revision ID Register can be found in the TMS320TCI6486
Communications Infrastructure Digital Signal Processor (literature number SPRS300).

The JTAD ID Register provides a VARIANT field that is associated with the silicon revision. The JTAG ID
Register is at address location 02A8 0008h. Only the VARIANT field changes in this register. Table 2
shows the contents of the JTAG ID Register and the VARIANT field for each silicon revision. More details
on the JTAG ID Register can be found in the TMS320TCI6486 Communications Infrastructure Digital
Signal Processor (literature number SPRS300).

6 TMS320TCI6486 DSP—Silicon Revisions 2.1, 2.0, 1.2, 1.1, 1.0 SPRZ247I–October 2007–Revised July 2011
Submit Documentation Feedback

Copyright © 2007–2011, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/lit/pdf/SPRS300
http://www.ti.com/lit/pdf/SPRS300
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRZ247I

www.ti.com Introduction

Table 2. Silicon Revision Registers

SILICON SILICON REVISION ID REGISTER JTAG ID REGISTER VALUE
REVISION (02A8 070Ch) (02A8 0008h)

2.1 0021 0091h 3009 102Fh

MAJOR REVISION (bits 23:20): 2h VARIANT (bits 31:28): 3h

MINOR REVISION (bits 19:16): 1h

2.0 0020 0091h 2009 102Fh

MAJOR REVISION (bits 23:20): 2h VARIANT (bits 31:28): 2h

MINOR REVISION (bits 19:16): 0h

1.2 0012 0091h 1009 102Fh

MAJOR REVISION (bits 23:20): 1h VARIANT (bits 31:28): 1h

MINOR REVISION (bits 19:16): 2h

1.1 0011 0091h 0009 102Fh

MAJOR REVISION (bits 23:20): 1h VARIANT (bits 31:28): 0h

MINOR REVISION (bits 19:16): 1h

1.0 0010 0091h 0009 102Fh

MAJOR REVISION (bits 23:20): 1h VARIANT (bits 31:28): 0h

MINOR REVISION (bits 19:16): 0h

The 64x+ Megamodule contains a revision register and the 64x+ CPU core within the Megamodule also
has a revision field in a status register. The Megamodule Revision ID Register provides the Megamodule
revision in explicit fields. The Megamodule revision information can be read directly from the VERSION
and REVISION fields within this register. The Megamodule Revision ID Register is at local address
location 0181 2000h. Table 3 shows the contents of the Megamodule Revision ID Register for each silicon
revision. More details on the Megamodule Revision ID Register can be found in the TMS320TCI6486
Communications Infrastructure Digital Signal Processor (literature number SPRS300).

The Control Status Register within the 64x+ CPU core provides CPU Revision fields that are associated
with the silicon revision. The Control Status Resister (CSR) is part of the CPU's control register file. Only
the CPU ID and REVISION ID fields in the CSR reflect CPU revision information. Table 3 shows the
contents of the CPU ID and the REVISION ID fields in the CSR register for each silicon revision. More
details on the CSR register can be found in the TMS320C64x/C64x+ DSP CPU and Instruction Set
Reference Guide (literature number SPRU732).

Table 3. Megamodule Revision Registers

SILICON MEGAMODULE REVISION ID CPU REVISION
REVISION REGISTER (0181 2000h) (CPU CSR Register)

2.1 0001 0005h CPU ID (bits 31:24): 10h

VERSION (bits 31:16): 0001h REVISION ID (bits 23:16): 00h

REVISION (bits 15:0): 0005h

2.0 0001 0004h CPU ID (bits 31:24): 10h

VERSION (bits 31:16): 0001h REVISION ID (bits 23:16): 00h

REVISION (bits 15:0): 0004h

1.2 0001 0003h CPU ID (bits 31:24): 10h

VERSION (bits 31:16): 0001h REVISION ID (bits 23:16): 00h

REVISION (bits 15:0): 0003h

1.1 0001 0003h CPU ID (bits 31:24): 10h

VERSION (bits 31:16): 0001h REVISION ID (bits 23:16): 00h

REVISION (bits 15:0): 0003h

1.0 0001 0003h CPU ID (bits 31:24): 10h

VERSION (bits 31:16): 0001h REVISION ID (bits 23:16): 00h

REVISION (bits 15:0): 0003h

7SPRZ247I–October 2007–Revised July 2011 TMS320TCI6486 DSP—Silicon Revisions 2.1, 2.0, 1.2, 1.1, 1.0
Submit Documentation Feedback

Copyright © 2007–2011, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/lit/pdf/SPRS300
http://www.ti.com/lit/pdf/SPRU732
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRZ247I

Introduction www.ti.com

1.3 Silicon Updates

Table 4 lists the silicon updates applicable to each silicon revision. For details on each advisory, see
Section 2.2, Section 3.2, Section 4.2, Section 5.2, and Section 6.2 or click on the link below.

Advisories are numbered in the order in which they were added to this document. If the design exceptions
are still applicable, the advisories move up to the latest silicon revision section. If the design exceptions
are no longer applicable or if the information has been documented elsewhere, those advisories are
removed. Therefore, advisory numbering may not be sequential.

Table 4. Silicon Revisions 2.1, 2.0, 1.2, 1.1, and 1.0 Updates

APPLIES TO SILICON REVISON
SILICON UPDATE ADVISORY SEE

2.1 2.0 1.2 1.1 1.0

SRIO: Packet-Forwarding NREAD Operations Larger X Advisory 1Than 16 Bytes Fail

RGMII EMAC: Boot Start-Up Issue X Advisory 2

DDR2 EMIF: Clock Synchronization Issue X Advisory 3

TSIP: Receive Channel 4 Bitmap Corruption Issue X Advisory 4

Device Configuration: HOUT is Not Generated When HPI X Advisory 5is Disabled

DSP SDMA/IDMA: Unexpected Stalling of SDMA/IDMA X X X Advisory 6Access to L2 SRAM

Potential SerDes Clocking Issue X X X Advisory 7

Potential Insertion or Deletion of 2 Bits in SerDes Data X X X Advisory 8Stream

I2C Slave Boot Does Not Work X X Advisory 9

Atomic Operations Fail to Complete X X X Advisory 10

EMU: Emulation Access Can Corrupt CPU Operation X X X X X Advisory 11

PMC: Local Reset (lreset) Followed By Block Invalidate X X X Advisory 12Hangs

PMC: L1P Cache Not Invalidated During lreset X X X Advisory 13

UMC: L2MPFAR Fails to Log CPU Protection Faults X X X Advisory 14Under Certain Conditions

L1D Cache: C64x+ L1D Cache May Lose Data or Hang X X X X X Advisory 15DMA Operations Under Certain Conditions

CPU: Back-to-Back SPLOOPs With Interrupts Can Cause X X X X X Advisory 16Incorrect Operation on C64x+ CPU

CPU: C64x+ CPU Incorrectly Generates False Exceptions X X X X X Advisory 17for Multiple Writes

PrivID For Non-CPU Masters Is Same as GEM0 CPU X X X Advisory 18

UTOPIA Lock-Up Issue X X X Advisory 19

DDR2 EMIF Buffers Not Totally Compensated by Default X X X X X Advisory 20

SRIO Port 0 Reset Affects Other Ports X X X X X Advisory 21

SRIO OUTBOUND_ACKID Field Not Read Correctly X X X X X Advisory 22

DMA Access to L2 SRAM May Stall When the DMA Has X X X Advisory 23Lower Priority Than the CPU

DMA Access to L2 SRAM May Stall When the DMA and X X X X Advisory 24the CPU Command Priority is Equal

DMA Corruption of External Data Buffer X X X X X Advisory 25

DMA Corruption of L2 RAM Data X Advisory 26

SDMA/IDMA Blocking Issue Update: L2 Victim Traffic Due X X X X Advisory 27To L2 Block Writeback During Any Pending CPU Request

L1P$ Miss May Block SDMA Accesses X X X X Advisory 28

SPLOOP CPU Cross-Path Stall X X X X X Advisory 29

DMA Corruption of L1D$ Allocation X Advisory 30

Error Detection and Correction Incorrectly Reporting Error X X X X X Advisory 31

8 TMS320TCI6486 DSP—Silicon Revisions 2.1, 2.0, 1.2, 1.1, 1.0 SPRZ247I–October 2007–Revised July 2011
Submit Documentation Feedback

Copyright © 2007–2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRZ247I

www.ti.com Silicon Revision 2.1 Usage Notes and Known Design Exceptions to Functional Specifications

Table 4. Silicon Revisions 2.1, 2.0, 1.2, 1.1, and 1.0 Updates (continued)

APPLIES TO SILICON REVISON
SILICON UPDATE ADVISORY SEE

2.1 2.0 1.2 1.1 1.0

SRIO May Fail to Send Interrupt for Completed TX or RX X X X X X Advisory 32Message

Serial RapidIO Internal Digital Loopback is Not Always X X X X X Advisory 33Stable

2 Silicon Revision 2.1 Usage Notes and Known Design Exceptions to Functional
Specifications

2.1 Silicon Revision 2.1 Usage Notes

Usage Notes highlight and describe particular situations where the device's behavior may not match
presumed or documented behavior. This may include behaviors that affect device performance or
functional correctness. These notes will be incorporated into future documentation updates for the device
(such as the device-specific data sheet), and the behaviors they describe will not be altered in future
silicon revisions.

2.1.1 Device: Heatsink/Airflow Recommended to Lower Case Temperature

It is strongly recommended that users complete system-level thermal analysis to account for details of
heatsink requirements, airflow, and other factors in order to achieve the case temperature specification of
85°C. The latest power data for the TMS320TCI6486 device indicates that static power is a significant
contributor to overall power. Since static power varies with case temperature and voltage, a lower case
temperature can greatly impact the overall power consumption. Therefore, the use of a heatsink to lower
the case temperature is an effective way to lower power consumption and help maintain the device at an
operating temperature within datasheet specifications.

2.1.2 EMAC: Gigabit Mode Cannot Be Used With CPU Running at Speeds Lower Than 375 MHz

The EMAC internal bus frequency must be greater than or equal to the I/O bus frequency. The EMAC
internal bus is clocked by SYSCLK7 of the PLL1 controller, which has a frequency equal to the CPU
frequency divided by 3. The I/O bus frequency of the EMAC is determined by the bit rate being used: 1.25
MHz for 10 Mbps, 12.5 MHz for 100 Mbps, and 125 MHz for 1000 Mbps. This restriction applies whether
RGMII or GMII mode is being used.

Note that if the CPU speed is less than 375 MHz, the gigabit mode of the EMAC (1000 Mbps) cannot be
used since the SYSCLK7 frequency will be less than 125 MHz.

2.1.3 DDR2 EMIF: Delay Before CKE Goes High With Different Combinations of REFRESH_RATE and
DDR Clock

The SDRAM refresh control register (SDRFC) contains a count value that is used for two purposes. At
power up, it is used to control the delay before CKE goes high. Later, it is used to control the time
between refreshes. The DDR2 JEDEC specification requires a 200 μs delay before CKE goes high during
initialization. The calculation of the delay before CKE goes high involves the following:

CKE_DELAY = 16 * (0xD06) / 266.666 = 200.04 μs.

Note that the default value for REFRESH_RATE is 0xD06 after reset. Users must make sure that
whenever the DDR2 is enabled the delay before CKE goes high is always longer than 200 μs. Table 5
lists a few typical calculated values for REFRESH_RATE to obtain the required 200-μs delay.

Table 5. 200-μs Delay Calculated Values

CLOCK PERIOD REFRESH_RATE

3.75 ns 0xD04

5 ns 0x9C4

9SPRZ247I–October 2007–Revised July 2011 TMS320TCI6486 DSP—Silicon Revisions 2.1, 2.0, 1.2, 1.1, 1.0
Submit Documentation Feedback

Copyright © 2007–2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRZ247I

Silicon Revision 2.1 Usage Notes and Known Design Exceptions to Functional Specifications www.ti.com

Table 5. 200-μs Delay Calculated Values (continued)

CLOCK PERIOD REFRESH_RATE

8 ns 0x61A

During normal operation, the DDR memories require a refresh cycle at an average interval of 7.8125 μs
(MAX). The calculation of RERESH_RATE involves the following:

REFRESH_RATE = DDR2CLKOUT frequency × memory refresh period

If the DDR clock period is set at 3.75 ns, the RERESH_RATE would be:

REFRESH_RATE = 266.666 MHz × 7.8125 μs = 2082 = 0x822.

Table 6 lists a few typical calculated values (an average interval of 7.8125 μs).

Table 6. 7.8125-μs Interval Calculated Values

CLOCK PERIOD REFRESH_RATE

3.75 ns 0x822

5 ns 0x61A

8 ns 0x3D0

If the DDR2 needs to be put into self-refresh mode or power-down mode, users need to write a new value
to the REFRESH_RATE field of the SDRFC register to guarantee the 200-μs delay of CKE during
power-up or self-refresh mode exit.

2.1.4 EMIF Read Incurs High Latency Under Certain Conditions

Reads can incur higher than expected latency under certain conditions even though they are higher
priority than writes if there are continuous sequences of back-to-back single writes.

A DDR2 EMIF read with high priority could incur high latency under the following conditions:

• Continuous back-to-back single writes are issued to the DDR2 EMIF at an interval of tRP + tRCD + tWR.
• While the high-priority read is waiting for tWTR to expire, the tRAS expires first, this causes the low-priority

request to precharge the bank. The proper operation is that the low-priority request should not have
issued a precharge if a high-priority request is still pending for that bank.

• A few other read requests from different masters arrive for the same bank at a particular timing offset.
• tRAS is smaller than tWTR + 4 + CasLatency - 1.

The above conditions result in the following behaviors:

• Since tRAS expires before tWTR, the low-priority request to precharge the bank is performed before a
read can be fired.

• After tRP expires, the bank is re-activated due to the high-priority read.
• If a write comes in on the cycle just after the tRCD expires, it will go through this loop again. If more

single-word writes arrive just after the tRCD expires, this keeps the high-priority read from happening
until the pr_old_count expires.

• Since only single word writes are executed, the expiration of the pr_old_count for the high-priority read
could be delayed by a factor of (tRP + tRCD + tWR) / 2, in clock cycles. Normally, the pr_old_count of 255
impacts latency by (pr_old_count * clk_period * 2), worst case.

This issue has only been observed through an internal test, it appears to have a very low probability of
affecting existing designs.

Increasing the programmed tRAS value by a couple of clock cycles and programming a lower value of
pr_old_count could eliminate or reduce the latency. The pr_old_count should not be reduced to an
extreme value since it could dramatically impact system performance. For example, pr_old_count = 0 can
reduce throughput by about 20%.

10 TMS320TCI6486 DSP—Silicon Revisions 2.1, 2.0, 1.2, 1.1, 1.0 SPRZ247I–October 2007–Revised July 2011
Submit Documentation Feedback

Copyright © 2007–2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRZ247I

www.ti.com Silicon Revision 2.1 Usage Notes and Known Design Exceptions to Functional Specifications

2.1.5 I2C Bus Hang After Master Reset

It is generally known that the I2C bus can hang if an I2C master is removed from the bus in the middle of
a data read. This can occur because the I2C protocol does not mandate a minimum clock rate. Therefore,
if a master is reset in the middle of a read while a slave is driving the data line low, the slave will continue
driving the data line low while it waits for the next clock edge. This prevents bus masters from initiating
transfers. If this condition is detected, the following three steps will clear the bus hang condition:

1. An I2C master must generate up to 9 clock cycles.
2. After each clock cycle, the data pin must be observed to determine whether it has gone high while the

clock is high.
3. As soon as the data pin is observed high, the master can initiate a start condition.

2.1.6 EMAC Boot Using the RGMII Interface

For EMAC boot, whenever the RGMII interface is selected using the boot mode pins requires that the
MAC-switch/PHY interface must operate at 1000Mbps. To boot using RGMII at a 10/100Mbps rate, the
RGMII link must first be configured using the I2C boot mode pin selection. If an EMAC boot is attempted
at a lower rate whenever the RGMII interface is selected using the boot mode pins, the EMAC boot will
fail.

2.2 Silicon Revision 2.1 Known Design Exceptions to Functional Specifications

Table 7 lists the silicon revision 2.1 known design exceptions to functional specifications. Advisories are
numbered in the order in which they were added to this document. If the design exceptions are still
applicable, the advisories move up to the latest silicon revision section. If the design exceptions are no
longer applicable or if the information has been documented elsewhere, those advisories are removed.
Therefore, advisory numbering may not be sequential.

Table 7. Silicon Revision 2.1 Advisory List

Title .. Page

Advisory 11 —EMU: Emulation Access Can Corrupt CPU Operation .. 12
Advisory 15 —L1D Cache: C64x+ L1D Cache May Lose Data or Hang DMA Operations Under Certain Conditions ... 13
Advisory 16 —CPU: Back-to-Back SPLOOPs With Interrupts Can Cause Incorrect Operation on C64x+ CPU 14
Advisory 17 —CPU: C64x+ CPU Incorrectly Generates False Exceptions for Multiple Writes 15
Advisory 20 —DDR2 EMIF Buffers Not Totally Compensated by Default .. 17
Advisory 21 —SRIO Port 0 Reset Affects Other Ports .. 19
Advisory 22 —SRIO OUTBOUND_ACKID Field Not Read Correctly ... 19
Advisory 25 —DMA Corruption of External Data Buffer... 20
Advisory 29 —SPLOOP CPU Cross-Path Stall .. 28
Advisory 30 —DMA Corruption of L1D$ Allocation .. 30
Advisory 31 —Error Detection and Correction Incorrectly Reporting Error .. 33
Advisory 32 —SRIO May Fail to Send Interrupt for Completed TX or RX Message .. 35
Advisory 33 —Serial RapidIO Internal Digital Loopback is Not Always Stable .. 37

11SPRZ247I–October 2007–Revised July 2011 TMS320TCI6486 DSP—Silicon Revisions 2.1, 2.0, 1.2, 1.1, 1.0
Submit Documentation Feedback

Copyright © 2007–2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRZ247I

Silicon Revision 2.1 Usage Notes and Known Design Exceptions to Functional Specifications www.ti.com

Advisory 11 EMU: Emulation Access Can Corrupt CPU Operation

Revision(s) Affected: 2.1, 2.0, 1.2, 1.1, 1.0

Details: When debug software issues a low-priority emulation data interface (EDI) access to
control register file registers concurrently with the CPU executing the compact instruction
MVC R, ILC, there is a 1-cycle window that can cause the EMU access to take place
and the assembly code MVC R, ILC to get dropped. The non-compact form of the MVC
R, ILC instruction does not have the problem.

Workaround: There is no workaround for this advisory.

Debug software generally performs low-priority accesses only when you first start up
CCStudio or run in real-time mode.

Since the MVC R, ILC instruction is not a common instruction and there is only a 1-clock
cycle window, the likelihood of encountering this issue is small.

12 TMS320TCI6486 DSP—Silicon Revisions 2.1, 2.0, 1.2, 1.1, 1.0 SPRZ247I–October 2007–Revised July 2011
Submit Documentation Feedback

Copyright © 2007–2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRZ247I

www.ti.com Silicon Revision 2.1 Usage Notes and Known Design Exceptions to Functional Specifications

Advisory 15 L1D Cache: C64x+ L1D Cache May Lose Data or Hang DMA Operations Under
Certain Conditions

Revision(s) Affected: 2.1, 2.0, 1.2, 1.1, 1.0

Details: Under certain conditions, parallel loads with predication to the same cache line may
cause victims to be dropped and/or the DMA to hang. All of the following conditions must
be true in order for this problem to occur:

1. Two LD instructions are loaded in parallel.
2. Both LDs are to the same cache line (upper 26 address bits are the same).
3. The LD using T1 is predicated and the predicate is false.
4. The LD using T2 is either not predicated or is predicated and the predicate is true.
5. The cache line is absent from the cache.
6. The two other lines in the same L1D set are valid.
7. The LRU cache line in the set is dirty.

Results:
• L1D informs L2 to expect a victim for the affected set.
• L2 stalls DMAs with addresses that correspond to that set. Note: DMA includes

accesses from IDMA, EDMA, and any external masters, such as other CPUs.
• L1D processes the true-predicated request correctly.
• L1D does not send the indicated victim.

Impacts:

If the load instruction reads a cacheable location:

• The updated data in the LRU line gets dropped.
• DMA accesses, whose addresses match the affected set, hang.

If the load instruction reads a non-cacheable location:

• L1D retains the updated data from the LRU line.
• DMA reads may see stale data if the LRU line's address is in L2 memory.

Workaround: Use Code Gen patch 6.0.3, Code Gen 6.0.4, or later version (available on update
advisor) to recompile your source code and avoid this issue. Libraries supplied by TI
have been re-released using the 6.0.3 compiler patch. Customer-generated libraries
from TI's third-party supplier may also need to be recompiled. For existing object code
and libraries, an available Perl script can determine locations of parallel predicated loads
that may fail. The script is available at the same update advisor location as the Code
Gen patch.

13SPRZ247I–October 2007–Revised July 2011 TMS320TCI6486 DSP—Silicon Revisions 2.1, 2.0, 1.2, 1.1, 1.0
Submit Documentation Feedback

Copyright © 2007–2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRZ247I

Silicon Revision 2.1 Usage Notes and Known Design Exceptions to Functional Specifications www.ti.com

Advisory 16 CPU: Back-to-Back SPLOOPs With Interrupts Can Cause Incorrect Operation on
C64x+ CPU

Revision(s) Affected: 2.1,2.0, 1.2, 1.1, 1.0

Details: Back-to-back software pipeline loops (SPLOOPs) with interrupts can cause incorrect
operation on the C64x+ CPU. This issue occurs when the first SPLOOP is interrupted
and there are less than two execute packets between the SPKERNEL of the first
SPLOOP block (SPKERNEL instruction marks the end of the first SPLOOP block) and
the SPLOOP instruction of the second SPLOOP block (SPLOOP instruction marks the
beginning of the second SPLOOP block). The first SPLOOP block terminates abruptly
(i.e., without completing the loop, even though the termination condition is false). The
failure mechanism can be seen as a hang or by the first SPLOOP block draining for the
interrupt and starting the second SPLOOP block without taking the interrupt or returning
to complete the first SPLOOP block.

Workaround: The C6000 compiler release v6.0.6, and above, detects this problem. If there are fewer
than two execute packets between the SPKERNEL and SPLOOP instructions, the
compiler adds the appropriate number of NOP instructions following the SPKERNEL
instruction. For example:

SPKERNEL 0, 0
NOP 1 ; SDSCM00012367 HW bug workaround
MVK .L1 0x1,A0

[A0] SPLOOPW 3 ;12
NOP 1

The assembler detects sequences that could potentially trigger this issue and produces
a remark. For example:
"neg_test.asm", REMARK at line 21 [R5001] SDSCM00012367 potentially triggered by
this execute packet sequence. SLOOP must be at least 2 EPs away from previous
SPKERNEL for safe interrupt behavior.

Note: The assembler tool, asm6x.exe, can be used to determine if a previous version of
the compiler generated code that could potentially be affected by this silicon issue. The
assembler can also be used on assembly source code to see if the source could be
affected by this issue. Replace the old version of asm6x.exe with the v6.0.6 asm6x.exe
in your current build setup and recompile or reassemble.

14 TMS320TCI6486 DSP—Silicon Revisions 2.1, 2.0, 1.2, 1.1, 1.0 SPRZ247I–October 2007–Revised July 2011
Submit Documentation Feedback

Copyright © 2007–2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRZ247I

www.ti.com Silicon Revision 2.1 Usage Notes and Known Design Exceptions to Functional Specifications

Advisory 17 CPU: C64x+ CPU Incorrectly Generates False Exceptions for Multiple Writes

Revision(s) Affected: 2.1, 2.0, 1.2, 1.1, 1.0

Details: The C64x+ CPU may generate an incorrect resource conflict exception when taking an
interrupt. This only affects applications that run with exceptions enabled. Applications
enable exceptions by writing 1 to the GEE bit in the task state register (TSR).
Applications that do not enable exceptions are not affected by this errata. The CPU
generates this incorrect exception in the following scenario:

1. The CPU begins draining the pipeline as part of an interrupt context switch. During
this time, the CPU annuls instructions in the pipeline that have not yet reached the
E1 pipeline phase while it drains the pipeline.

2. The first annulled execute packet (resident in the DC pipeline stage at the time
draining begins) writes to one or more predicate registers. Because it is annulled, the
writes do not occur.

3. The second annulled execute packet (resident in the DP pipeline stage at the time
draining begins) has a predicated single cycle instruction that uses a predicate
written by the execute packet described in item 2. Because it is annulled, the write
does not occur.

4. The value held in the predicate register would cause the instruction in the second
annulled execute packet to write to some register in the same cycle as another
instruction if it were not annulled. The conflicting writes would not happen if the first
execute packet had not been annulled. The exception is not a valid exception. If the
CPU executed instructions, described in items 2 and 3 above, rather than annulling
them while draining the pipeline for an interrupt, the execute packet in item 2 would
set the predicate(s) such that the writes in the subsequent execute packet do not
conflict.

Examples of sequences that generate the incorrect exception are:
ZERO A0
ZERO B0

---------------------> interrupt occurs
MVK 1, A0 ;(1st annulled EPKT)
[!A0] MVK 2, A1 ;(2nd annulled EPKT) _ Appears both MVKs write A1,
||[!B0] MVK 3, A1 ;(2nd annulled EPKT) / triggers invalid exception.
...
ZERO A0
[!A0] LDW *A4, A5
NOP
NOP

--------------------> interrupt occurs
MVK 1, A0 ;(1st annulled EPKT)
[!A0] MVK 2, A5 ;(2nd annulled EPKT) LDW writes A5 this cycle
...
ZERO A0
[!A0] DOTP2 A3, A4, A5
NOP

-------------------> interrupt occurs
MVK 1, A0 ;(1st annulled EPKT)
[!A0] MVK 2, A5 ;(2nd annulled EPKT) DOTP2 writes A5 this cycle

Workaround: The CPU only recognizes the incorrect exception while it drains the pipeline for an
interrupt. As a result, the CPU begins exception processing upon reaching the interrupt
handler. The NMI return pointer register (NRP) and the NMI task state register (NTSR)
reflect the state of the machine upon arriving at the interrupt handler. Therefore, to
identify the incorrect resource conflict exception in the software, verify the following
conditions at the beginning of the exception handler prior to normal exception
processing:

1. The exception occurred during an interrupt context switch.

(a) In the NTSR register, verify that INT=1, SPLX=0, IB=0, CXM=00.
(b) Verify that the NRP register points to an interrupt service fetch packet. That is,

(NRP & 0xFFFF FE1F) == (ISTP & 0xFFFF FE1F).

15SPRZ247I–October 2007–Revised July 2011 TMS320TCI6486 DSP—Silicon Revisions 2.1, 2.0, 1.2, 1.1, 1.0
Submit Documentation Feedback

Copyright © 2007–2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRZ247I

Silicon Revision 2.1 Usage Notes and Known Design Exceptions to Functional Specifications www.ti.com

2. The exception is a resource conflict exception. In IERR, verify that RCX == 1 and all
other IERR bits == 0.

3. The exception is an internal exception. In EFR, verify that IXF == 1 and all other EFR
bits == 0.

Upon matching the above conditions, suppress the exception as follows:

1. Clear the EFR.IXF bit by writing 2 to the ECR bit.
2. Resume the interrupt handler by branching to the NRP register. The above

workaround identifies and suppresses all cases of the incorrect resource conflict
exception. It resumes normal program execution when the incorrect exception
occurs, and has minimal impact on the execution time of program code. The
interrupted code sequence runs as expected when the interrupt handler returns. The
workaround also suppresses a particular valid exception case that is indistinguishable
from the incorrect case. Specifically, the code suppresses the exception generated by
two instructions with different delay slots (e.g., LDW and DOTP2) writing to the same
register in the same cycle, where the conflicting writes occur during the interrupt
context switch.
An example of a sequence with incorrectly suppressed exception is:

LDW *A0, A1
DOTP2 A3, A2, A1
NOP
-----------------> interrupt occurs
NOP
NOP ; Both LDW and DOTP2 write to A1 this cycle

The workaround will not suppress these valid resource conflict exceptions if the
multiple writes occur outside an interrupt context switch. That is, the workaround will
not suppress the exception generated by the code above when it executes without an
interfering interrupt.

For more details, see the following sections in the TMS320C64x/C64x+ DSP CPU and
Instruction Set Reference Guide (literature number SPRU732):

• Interrupt Service Table Pointer Register (ISTP) describes the ISTP control register.
• Nonmaskable Interrupt (NMI) Return Pointer Register (NRP) describes the NRP

control register.
• TMS320C64x+ DSP Control Register File Extensions describes the ECR, EFR,

IERR, TSR, and NTSR control registers.
• Pipeline describes the overall operation of the C64x+ pipeline, including the behavior

of the E1, DC and DP pipeline phases.
• Actions Taken During Nonreset Interrupt Processing describes the operation of the

C64x+ pipeline during interrupt processing, including how it annuls instructions.
• C64x+ CPU Exceptions describes exception processing.

16 TMS320TCI6486 DSP—Silicon Revisions 2.1, 2.0, 1.2, 1.1, 1.0 SPRZ247I–October 2007–Revised July 2011
Submit Documentation Feedback

Copyright © 2007–2011, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/lit/pdf/SPRU732
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRZ247I

www.ti.com Silicon Revision 2.1 Usage Notes and Known Design Exceptions to Functional Specifications

Advisory 20 DDR2 EMIF Buffers Not Totally Compensated by Default

Revision(s) Affected: 2.1, 2.0, 1.2, 1.1, 1.0

Details: The output buffers on the DDR2 EMIF contain dynamic impedance compensation
circuitry to maintain a constant output impedance across temperature, voltage, and
silicon process variation. This impedance compensation circuitry must configure each
individual output buffer. The output buffer compensation for each DDR2 output buffer is
not complete until both a 1-to-0 and 0-to-1 transition has occurred on that output.

Until this compensation occurs, the output drive strength is probably less than ideal. The
DDR2 EMIF cycles that occur before dynamic compensation is complete may fail. Since
the mode register (MR) write cycles are the first cycles initiated by the DDR2 EMIF after
a reset, these cycles are at risk. Similarly, after EMIF configuration, the first writes to
DDR2 memory are also at risk.

This issue has not been seen in the field. It has only been observed on test fixtures at TI.
Therefore, it appears to have a very low probability of affecting existing designs. The
recommended topologies that only have one or two loads per DDR2 EMIF without VTT
termination appear to be resilient to this condition. The possibility of failure can only be
eliminated if the software workaround described below is implemented.

Some system start-up sequences improve the probability of robust operation, such as:

• Incomplete compensation may cause mode register (MR) writes to fail. This could
result in DDR2 performance lower than expected or complete failure. The risk of this
occurring is reduced through multiple MR write operations since compensation of
most address and control output buffers and both clock output buffers are completed
before the final MR write. Most DDR2 EMIF configuration sequences, including the
one implemented in the CSL, result in multiple MR write operations. MR write cycles
are also designed to complete on the slowest possible DDR2 memory devices. This
is another reason these cycles have a high probability of success.

• Incomplete compensation may cause initial DDR2 memory writes to fail. This could
cause the DSP to execute incorrectly if these initial writes are code or critical data.
Many system implementations use a secondary bootloader to load the full binary
image. The secondary bootloader is then discarded after boot completion. Therefore,
any invalid writes would occur in the bootloader and the full application code is
loaded after the DDR2 EMIF output buffers have been activated many times. (This is
not a full guarantee of complete compensation but the probability is high that all of
the output buffers are fully compensated by the time the secondary bootloader is
written.)

• A better guarantee that this compensation has no latent impact is validation of the full
binary image through some type of code checksum at the end of the boot process. If
the code is verified in this way, the system is guaranteed to be robust.

Workaround: This workaround has to be executed every time the DDR2 EMIF is initialized. Since it
should occur before valid mode register writes can be completed, the EMIF configuration
has to be repeated after the output buffers are fully compensated. The sequence of
steps listed below completes the dynamic compensation for all of the DDR2 EMIF output
buffers. The CSL API function CSL_ddr2HwSetup is called during the normal bring-up
process to trigger MR writes. Therefore, the workaround code can be put before the API
function call.

17SPRZ247I–October 2007–Revised July 2011 TMS320TCI6486 DSP—Silicon Revisions 2.1, 2.0, 1.2, 1.1, 1.0
Submit Documentation Feedback

Copyright © 2007–2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRZ247I

Silicon Revision 2.1 Usage Notes and Known Design Exceptions to Functional Specifications www.ti.com

Sample code:
/* Define the following variables. */
Uint32 tempData0, tempData1;
/* Define the following pointers to compensate the address buffers. */
Uint32 *pDdr2Data_temp0 = (Uint32 *) 0xEAAAAAA8;
Uint32 *pDdr2Data_temp1 = (Uint32 *) 0xE5555554;
/* Use 0xF5555554 on systems using 512MB of memory. */

/***
The following code needs to be executed at the beginning of every DDR2 EMIF
initialization.
***/

/* Enable self-refresh mode and set an appropriate REFRESH_RATE to guarantee
200us delay before CKE goes high. REFRESH_RATE value has to be calculated based
on DDR2 clock being used. */
hDdr2->regs->SDRFC = 0x80001388;

/* Disable self-refresh mode and set an appropriate REFRESH_RATE to have a
correct refresh cycle. REFRESH_RATE value has to be calculated based on DDR2
clock being used. */
hDdr2->regs->SDRFC = 0x00000753;

/*Write and read the first location with a 0xAAAAAAAA pattern.*/
tempData0 = 0xAAAAAAAA;
pDdr2Data_temp0 = tempData0; / DDR2 memory write */
tempData1 = *pDdr2Data_temp0; /* DDR2 memory read */

/* Perform two more writes with a 0x55555555 and 0xAAAAAAAA pattern to complete
the compensation cycle. */
tempData0 = 0x55555555;
pDdr2Data_temp1 = tempData0; / DDR2 memory write */
tempData0 = 0xAAAAAAAA;
pDdr2Data_temp0=tempData0; / DDR2 memory write */

18 TMS320TCI6486 DSP—Silicon Revisions 2.1, 2.0, 1.2, 1.1, 1.0 SPRZ247I–October 2007–Revised July 2011
Submit Documentation Feedback

Copyright © 2007–2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRZ247I

www.ti.com Silicon Revision 2.1 Usage Notes and Known Design Exceptions to Functional Specifications

Advisory 21 SRIO Port 0 Reset Affects Other Ports

Revision(s) Affected: 2.1, 2.0, 1.2, 1.1, 1.0

Details: The SerDes for SRIO should allow the reset of individual 1X ports without affecting the
state of the other operational ports. There are dedicated MMR bits to reset 1X ports,
which are the BLKn_EN (n=5..8) at offsets 0x60 and 0x68. However, the BLK5_EN that
controls reset for port 0 also resets all other ports. Therefore, it is impossible to reset
port 0 without affecting all other ports.

Workaround: There is no workaround for this advisory.

Advisory 22 SRIO OUTBOUND_ACKID Field Not Read Correctly

Revision(s) Affected: 2.1, 2.0, 1.2, 1.1, 1.0

Details: The OUTBOUND_ACKID field of the RIO_SP(n)_ACKID_STAT register should be
updated by hardware each time a packet is sent out. The value should reflect the ACKID
value to be used on the next transmit packet. This field is being updated by the hardware
as expected. The field can also be written by the software and these writes also
succeed. However, a hardware error prevents this field from being read. The
OUTBOUND_ACKID always reads as zero. This problem does not cause any impact to
link operation.

Workaround: There is no workaround for this advisory.

19SPRZ247I–October 2007–Revised July 2011 TMS320TCI6486 DSP—Silicon Revisions 2.1, 2.0, 1.2, 1.1, 1.0
Submit Documentation Feedback

Copyright © 2007–2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRZ247I

Silicon Revision 2.1 Usage Notes and Known Design Exceptions to Functional Specifications www.ti.com

Advisory 25 DMA Corruption of External Data Buffer

Revision(s) Affected: 2.1, 2.0, 1.2, 1.1, 1.0

Details: Under a specific set of circumstances, an L1D snoop-write updates an unintended L1D
cache line. This leads to a corrupted line in L1D and can lead directly to program
misbehavior. If the corrupted line is then modified by a CPU write access, a subsequent
victim writeback from L1D could commit the corrupted line to lower levels of memory.
Two key requirements for this issue are:

• The DMA writes to buffers in UMAP1 only (see below).

– This must be cached and unmodified in L1D (read by the CPU but not yet written
to it).

The L2 memory is typically shared across the two unified memory access ports,
UMAP0 and UMAP1. This issue occurs only if the buffer is located in UMAP1. For
the UMAP1 allocation on the TCI6486 device, see Table 8.

Table 8. TCI6486 UMAP1 Allocation

UMAP1 ADDRESS RANGE AFFECTED

N/SMC 0x00200000 - 0x002BFFFF Yes

• The CPU reads from an external, cacheable address.

– UMAP0 and UMAP1 are the two ports on the C64x+ Megamodule used to
connect the L2 Memory controller and the physical RAMs. For the UMAP1
allocation on the TCI6486 device, see Table 8.

– For information on L1D cache coherence protocol, see section 3.3.6, Cache
Coherence Protocol, in the C64x+ DSP Megamodule Reference Guide
(SPRU871).

– DMA in the following description refers to all non-CPU requestors. This includes
IDMA, EDMA, and any other master in the system.

Under the specific set of circumstances listed below, a snoop-write updates an L1D
cache line other than the one intended. This leads to a corrupted line in L1D. Corruption
only happens when the buffer in UMAP1 is cached in L1D while the CPU is consuming
external, cacheable data.

The prerequisite before the window where the issue occurs is:

• The CPU reads an L2 location in UMAP1 and has not modified (written) to the same
location before the window where the issue occurs.

– Because of this, a 64B cache line is allocated clean in L1D (referred to here as
Cache Line A).

The following steps must all occur concurrently to see the issue (note that the
concurrency is within the cache subsystem, so events visible at the CPU or the DMA are
not occurring during the same exact cycle):

1. The L1D is currently processing a snoop request or some other request that prevents
it from accepting new snoops. This could have been caused by any of the following
that is still being processed from previous actions:

• DMA read/write
• L1D read/invalidate
• L1D read + victim

2. The DMA writes to Cache Line A, mentioned in the prerequisite above. This means
that it is not necessarily the same exact address, but must be within the same 64B
cache line.

• As a result, a snoop-write request is generated but it is blocked because the L1D
is still busy with Step 1.

3. The CPU reads from a cacheable, external memory (e.g., DDR) that is a set match to

20 TMS320TCI6486 DSP—Silicon Revisions 2.1, 2.0, 1.2, 1.1, 1.0 SPRZ247I–October 2007–Revised July 2011
Submit Documentation Feedback

Copyright © 2007–2011, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/lit/pdf/SPRU871
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRZ247I

31 X+1 X 6 5 4 2 1 0

Tag Set
Offset

Sub-line Bank Byte

www.ti.com Silicon Revision 2.1 Usage Notes and Known Design Exceptions to Functional Specifications

Cache Line A (referred to here as Cache Line B).
Determining if two addresses are a set match can be done by comparing certain bits
of two addresses. The mapping of an address to a location in L1D cache is shown in
Figure 2.

The value X is determined by how large the L1D cache is in the particular application (see Table 9).

Figure 2. L1D Cache Address Mapping

Table 9. Value of X for L1D Cache

AMOUNT OF L1D CACHE X BIT POSITION

0KB N/A

4KB 10

8KB 11

16KB 12

32KB 13

If you use the default configuration, 32KB, as an example, bits [13:6] are a set match
if they are identical in two different addresses. Some examples of set matches are
shown below:

• 0x0080 2A80 00000000100000000010101010000000
• 0x8000 2A80 10000000100000000010101010000000
• 0x0080 2A8A 00000000100000000010101010001010

• This results in a cache miss from the CPU for an external address and sends a
read request to L2 cache for the line (and possibly to the external source on an L2
cache miss or if no L2 cache is present).

The results of the above cause the following:

L2 sends both the return data for the L1D read miss request (response of Step 3 above)
and the data for the snoop-write (response of Step 2 above). The L1D commits the
snoop-write data after the L2 return data.

As a result, L1D now holds the wrong data for the external address (Cache Line B) and
commits the data to cache. Cache Line B remains marked "clean." If the program does
not write to the uncorrupted portion of the line and does not read the corrupted portion of
the line, the corruption goes unnoticed. If the program writes to the uncorrupted portion
of the line, the corrupted data gets written back to L2 cache and/or external memory.
Otherwise, the corruption disappears when L1D discards the line.

Cache lines holding external addresses are the only cache lines that exhibit corruption.
Corruption only happens when DMA buffers in UMAP1 get cached in L1D. Additionally,
corruption only happens when the DMA buffer is clean, meaning that it gets discarded
without generating a victim. Thus, this affects buffers where the DMA writes and the
CPU reads. It does not affect buffers that the CPU only writes and/or DMA only reads.

One can identify this issue unambiguously by examining the corrupted memory range in
CCStudio using the cache tag viewer. The corrupted data shows up in the include L1D
view in a memory window, but not in the exclude L1D view. The cache tag viewer should
indicate that the line is also "clean" and the corrupt data should also be visible in its
intended destination, which must be in UMAP1 and map to the same L1D set as the
corrupted line.

Figure 3 shows the flow of these operations, the incorrect order that causes the issue,
and the correct order. The blue line is Cache Line A and the yellow line is Cache line B.

21SPRZ247I–October 2007–Revised July 2011 TMS320TCI6486 DSP—Silicon Revisions 2.1, 2.0, 1.2, 1.1, 1.0
Submit Documentation Feedback

Copyright © 2007–2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRZ247I

L1D

UMAP0 UMAP1

t0: DMA Write

t1: CPU Allocate

t2: Allocation Data

t3: Snoop Write

t0: DMA Write

t1: CPU Allocate

t3: Allocation Data

t2: Snoop Write

Incorrect Order Correct Order

t1

t2

t3

t0

Corruption

Clean

CPU Read
(L2 Cache)

DMA Write
(Snoop Write)

External
Buffer

Silicon Revision 2.1 Usage Notes and Known Design Exceptions to Functional Specifications www.ti.com

Figure 3. Cache Line Operations Flow

Workarounds: In the description above, all of the conditions must be true for the issue to occur. Our
workarounds essentially focus on picking one of the conditions and removing it so that
you do not need to worry about the other conditions.

We propose starting with workaround 1 as an immediate fix. The other workarounds that
follow may provide a solution with reduced overhead and/or simplified implementation,
depending on the customer's system.

22 TMS320TCI6486 DSP—Silicon Revisions 2.1, 2.0, 1.2, 1.1, 1.0 SPRZ247I–October 2007–Revised July 2011
Submit Documentation Feedback

Copyright © 2007–2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRZ247I

www.ti.com Silicon Revision 2.1 Usage Notes and Known Design Exceptions to Functional Specifications

Workaround 1: Write Back and Invalidate DMA Buffers

L1D corruption occurs when the DMA writes to a buffer in UMAP1 that is also cached in
L1D at the same time the L1D is discarding the buffer. Thus, this affects buffers where
the DMA writes and the CPU reads. It does not affect buffers that the CPU only writes
and/or the DMA only reads.

To prevent this sort of race condition, programs should discard inbound DMA buffers in
UMAP1 immediately after use and keep a strict policy of "buffer ownership" such that a
given buffer is owned only by the CPU or the DMA at any given time.

This model assumes the following:

1. The DMA fills the buffer during a period when the CPU does not access it.
2. The DMA engine or other mechanism signals to the CPU that it has finished filling the

buffer.
3. The CPU operates on the buffer, reading and writing to it, as necessary. The DMA

does not access the buffer at this time.
4. The CPU relinquishes control of the buffer so that DMA may refill it. (This may be an

implicit step in many implementations if the period between refills is much longer than
the time it takes the CPU to process the refilled buffer.)

To implement this workaround, programmers must write back and invalidate the buffer
from L1D cache after Step 3 and before Step 4. This eliminates the prerequisite for the
issue to occur should another DMA, in the future, be a set match to the reads that the
CPU just performed.

There are multiple mechanisms for doing this, but the most straightforward is to use the
L1D block cache writeback-invalidate mechanism via L1DWIBAR/L1DWIWC.

The recommended implementation of this workaround requires calling the
l1d_block_wbinv.asm function (see the L1D Block Writeback-Invalidate Routine below).
It can be invoked as follows:
void l1d_block_wbinv(void *base, size_t byte_count);

To writeback-invalidate a C array, one could then do:
/* ... */

l1d_block_wbinv(&array[0], sizeof(array));

Programmers should insert such a call whenever the code is done with a particular DMA
buffer in UMAP1, before the DMA controller can refill it. The l1d_block_wbinv() function
is non-interruptible. Its overhead is proportional to the size of the buffer.

NOTE:
1. To ensure complete effectiveness, DMA buffers must always start on

an L1D cache-line boundary (64-byte boundary) and occupy a
multiple of 64 bytes. This may require increasing the size of some
DMA buffers slightly. This is necessary to prevent accesses to an
unrelated buffer or variable from bringing a portion of the DMA buffer
back into the L1D cache.

2. If the buffer under consideration is a small number of read-only flags
to the CPU, then Workaround 4 may be more applicable.

L1D Block Writeback-Invalidate Routine
;; == ;;

.asg 0x01844030, L1DWI ; L1D Block Wb-Inv; BAR at 0, WC at 1

.global _l1d_block_wbinv

.text

.asmfunc
_l1d_block_wbinv:

MVC DNUM, B0 ; _ Get global alias prefix
ADDK 0x10, B0 ; /

23SPRZ247I–October 2007–Revised July 2011 TMS320TCI6486 DSP—Silicon Revisions 2.1, 2.0, 1.2, 1.1, 1.0
Submit Documentation Feedback

Copyright © 2007–2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRZ247I

Silicon Revision 2.1 Usage Notes and Known Design Exceptions to Functional Specifications www.ti.com

SHRU A4, 24, B2 ; Get prefix from address
CMPEQ B0, B2, B0 ; Check if address prefix is global

[B0] EXTU A4, 8, 8, A4 ; Remove global prefix from address
MVKL L1DWI, B6 ;

CLR A4, 0, 5, A1 ; Align to L1D cache line boundary
|| ADD A4, B4, B1 ; Compute end of buffer

ADDK 63, B1 ; _ Round to next L1D cache line
CLR B1, 0, 5, B1 ; /

SUB B1, A1, B1 ; Count cache-line span in bytes
|| MVKH L1DWI, B6 ;

SHR B1, 2, B1 ; Convert to "word count"
|| DINT ; Disable interrupts

STW A1, *B6[0] ; Store base address
STW B1, *B6[1] ; Store word count

; Note: The following loop is intentionally low-rate to avoid
; interfering with the block writeback operation.

loop: LDW *B6[1], B1 ; Read remaining word-count
NOP 4

[B1] BNOP loop, 5 ; Loop until done

RINT ; Reenable interrupts
RETNOP B3, 5 ; Return to caller

.endasmfunc

;; == ;;
;; End of file: l1d_block_wbinv.asm ;;
;; == ;;

Workaround 2: Make DMA Buffers Dirty After Use

The errant snoop-write occurs only when the DMA buffer in L1D has not been modified.
This is due to the additional snoop-checking mechanisms associated with tracking
victims as they leave L1D.

Therefore, another workaround is to mark DMA buffers as "dirty" before releasing them.
This generates additional victims whenever the buffer gets pushed out of L1D. It also
blocks the errant snoop-write.

This workaround assumes a similar model to Workaround 1, but uses the make_dirty()
function (see the Mark Buffer Dirty Routine below). The make_dirty() function reads one
byte from each cache line of the buffer and writes the same value back to it immediately.

The function is called as follows:
void make_dirty(void *base, size_t byte_count);

Mark Buffer Dirty Routine
;; == ;;
;; Make a block of data "dirty" in L1D ;;
;; ;;
;; make_dirty(void *base, size_t byte_count); ;;
;; ;;
;; == ;;

.global _make_dirty

.text

.asmfunc
_make_dirty:

ADDK 63, B4
SHR B4, 6, B4
MVC B4, ILC
MVK 64, A5
MVK 64, B5
MV A4, B4
NOP SPLOOP 1
LDBU *A4++[A5], A1

24 TMS320TCI6486 DSP—Silicon Revisions 2.1, 2.0, 1.2, 1.1, 1.0 SPRZ247I–October 2007–Revised July 2011
Submit Documentation Feedback

Copyright © 2007–2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRZ247I

www.ti.com Silicon Revision 2.1 Usage Notes and Known Design Exceptions to Functional Specifications

NOP 4 MV.L A1, B1
STB B1, *B4++[B5]
SPKERNEL

RETNOP B3, 5

.endasmfunc

;; == ;;
;; End of file: make_dirty.asm ;;
;; == ;;

NOTE:
1. This workaround is not acceptable if the DMA could be writing to the

buffer at the same time make_dirty() function gets called. The
process of making the cache line dirty requires reading and writing
within the buffer and, so, the CPU's writes could overwrite the
inbound data from the DMA.

2. This workaround may cause the application to be affected by the
issue described in Advisory 26, DMA Corruption of L2 RAM Data.

Workaround 3: Do Not Cache Data From External Memory in L1D

If your program only makes a small number of data accesses to external memory,
consider marking the data portions of external memory as non-cacheable. This prevents
caching copies of external memory in L1D cache.

Alternately, to prevent the line from allocating in L1D, freeze the L1D cache around each
access to an external address. The long_dist_load_word function (see the Long Distance
Load Word Routine below) is suitable for isolated accesses. For larger accesses, such
as reading a block, other techniques may be more appropriate.

The incorrect snoop-write only occurs when the L1D read miss involved is to an external
address. The snoop-write corrupts the newly cached copy in L1D. If all accesses to
external data memory are non-cacheable or occur while L1D is frozen, this prevents
copies from being stored in L1D.

Long Distance Load Word Routine
;; == ;;
;; Long Distance Load Word ;;
;; ;;
;; int long_dist_load_word(volatile int *addr) ;;
;; ;;
;; This function reads a single word from a remote location with the L1D ;;
;; cache frozen. This prevents L1D from sending victims in response to ;;
;; these reads, thus preventing the L1D victim lock from engaging for the ;;
;; corresponding L1D set. ;;
;; ;;
;; The code below does the following: ;;
;; ;;
;; 1. Disable interrupts ;;
;; 2. Freeze L1D ;;
;; 3. Load the requested word ;;
;; 4. Unfreeze L1D ;;
;; 5. Restore interrupts ;;
;; ;;
;; Interrupts are disabled while the cache is frozen to prevent affecting ;;
;; the performance of interrupt handlers. Disabling interrupts during ;;
;; the long distance load does not greatly impact interrupt latency, ;;
;; because the CPU already cannot service interrupts when it's stalled by ;;
;; the cache. This function adds a small amount of overhead (~20 cycles) ;;
;; to that operation. ;;
;; ;;
;; == ;;

.asg 0x01840044, L1DCC ; L1D Cache Control

.global _long_dist_load_word

.text

.asmfunc

25SPRZ247I–October 2007–Revised July 2011 TMS320TCI6486 DSP—Silicon Revisions 2.1, 2.0, 1.2, 1.1, 1.0
Submit Documentation Feedback

Copyright © 2007–2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRZ247I

Silicon Revision 2.1 Usage Notes and Known Design Exceptions to Functional Specifications www.ti.com

; int long_dist_load_word(volatile int *addr)
_long_dist_load_word:

MVKL L1DCC, B4
MVKH L1DCC, B4

|| DINT ; Disable interrupts
|| MVK 1, B5

STW B5, *B4 ; _ Freeze cache
LDW *B4, B5 ; /
NOP 4
SHR B5, 16, B5 ; POPER -> OPER

|| LDW *A4, A4 ; read value remotely
NOP 4
STW B5, *B4 ; _ Restore cache
RET B3

|| LDW *B4, B5 ; /
NOP 4
RINT ; Restore interrupts

.endasmfunc

;; == ;;
;; End of file: ldld.asm ;;
;; == ;;

Workaround 4: Allocate DMA buffers in L1D RAM or UMAP0

If possible, move DMA buffers that the CPU reads directly out of UMAP1 to either
UMAP0 or L1D RAM. DMA buffers that the CPU does not access directly can remain in
UMAP1 safely, as these do not generate snoops.

If your set of in-bound DMA buffers does not fit in L1D RAM and UMAP0 statically,
consider paging buffers from UMAP1 to either UMAP0 or L1D RAM. That is, allow the
DMA to write to buffers in UMAP1 freely, but never read them directly from the CPU.
Instead, use the IDMA to copy a buffer from UMAP 1 to either UMAP0 or L1D RAM
before using it.

The IDMA1 utility functions (see the IDMA Channel 1 Block Copy Routine below) can be
used for copying data with the IDMA controller.

IDMA Channel 1 Block Copy Routine
;; == ;;
;; TEXAS INSTRUMENTS INC. ;;
;; ;;
;; Block Copy with IDMA Channel 1 ;;
;; ;;
;; REVISION HISTORY ;;
;; 13-Feb-2009 Initial version J. Zbiciak ;;
;; ;;
;; DESCRIPTION ;;
;; The following macro functions are defined in this file: ;;
;; ;;
;; idma1_copy(void *dst, void *src, int word_count) ;;
;; idma1_wait(IDMA_PEND or IDMA_ACTV) ;;
;; ;;
;; NOTE: The last arg is WORD count, not byte count. 1 word = 4 bytes. ;;
;; ;;
;; -- ;;
;; Copyright (c) 2009 Texas Instruments, Incorporated. ;;
;; All Rights Reserved. ;;
;; == ;;

.asg 0x01820100, IDMA1_STATUS

.asg 0x01820108, IDMA1_SOURCE

.asg 0x0182010C, IDMA1_DEST

.asg 0x01820110, IDMA1_COUNT

.asg 0x01820100, IDMA1_BASE

.asg (IDMA1_STATUS - IDMA1_BASE), OFS_IDMA1_STATUS

.asg (IDMA1_SOURCE - IDMA1_BASE), OFS_IDMA1_SOURCE

.asg (IDMA1_DEST - IDMA1_BASE), OFS_IDMA1_DEST

.asg (IDMA1_COUNT - IDMA1_BASE), OFS_IDMA1_COUNT

;; -- ;;
;; IDMA1_COPY: Copy a block of words to dst from src with IDMA channel 1 ;;

26 TMS320TCI6486 DSP—Silicon Revisions 2.1, 2.0, 1.2, 1.1, 1.0 SPRZ247I–October 2007–Revised July 2011
Submit Documentation Feedback

Copyright © 2007–2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRZ247I

www.ti.com Silicon Revision 2.1 Usage Notes and Known Design Exceptions to Functional Specifications

;; ;;
;; USAGE ;;
;; idma1_copy(<dest address>, <source address>, <word count>) ;;
;; ;;
;; Both source and destination addresses must be word aligned. ;;
;; ;;
;; The IDMA gets issued at top priority. Only bits 13:0 of the word ;;
;; count are significant. ;;
;; -- ;;

.global _idma1_copy

.asmfunc
_idma1_copy:
; Point to IDMA channel 1's base

RET B3 ; return; also protect from interrupts
|| MVKL IDMA1_SOURCE, A7

MVKH IDMA1_SOURCE, A7

; Write second argument to "source" register
STW B4, *A7++(IDMA1_DEST - IDMA1_SOURCE)

; Write first argument to "destination" register
STW A4, *A7++(IDMA1_COUNT - IDMA1_DEST)

; Write last argument to "count" register.
EXTU A6, 18, 16, A6 ; truncate word count to 14 bits
STW A6, *A7
.endasmfunc

;; -- ;;
;; IDMA1_WAIT: Wait for IDMA "pend" or "actv" slot to free up. ;;
;; ;;
;; USAGE ;;
;; idma1_wait(IDMA_PEND) Waits for just PEND to be 0 ;;
;; idma1_wait(IDMA_ACTV) Waits for ACTV (and PEND) to be 0 ;;
;; ;;
;; NOTE ;;
;; IDMA_PEND = 2 ;;
;; IDMA_ACTV = 3 ;;
;; ;;
;; -- ;;

.global _idma1_wait

.asmfunc
_idma1_wait:

MVKL IDMA1_STATUS, A6
MVKH IDMA1_STATUS, A6

|| MVK 1, A0
loop?:

[A0] LDW *A6, A0
||[A0] BNOP.1 loop?, 4
; The 'AND' below is safe because IDMA never returns 10b in 2 LSBs

AND.L A4, A0, A0

RETNOP B3, 5
.endasmfunc

;; == ;;
;; End of file: idma1_util.asm ;;
;; == ;;

27SPRZ247I–October 2007–Revised July 2011 TMS320TCI6486 DSP—Silicon Revisions 2.1, 2.0, 1.2, 1.1, 1.0
Submit Documentation Feedback

Copyright © 2007–2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRZ247I

Silicon Revision 2.1 Usage Notes and Known Design Exceptions to Functional Specifications www.ti.com

Advisory 29 SPLOOP CPU Cross-Path Stall

Revision(s) Affected: 2.1 and earlier

Details: If the following three rules are met, a stall is seen when an SPKERNEL instruction is
executed.

1. Cross-path instruction rule: An instruction reading a register via the cross path in
the first cycle after SPKERNEL instruction.

2. Data dependence rule: An instruction in the SPLOOP body that writes to the above
cross-path read register. This instruction can be anywhere in the SPLOOP body.

3. Functional unit rule: No instruction in parallel with the SPKERNEL instruction that
uses the same functional unit as the cross-path read instruction mentioned in rule 1
above.

This results in a one CPU cycle stall for each iteration of the loop. The following are
three examples of code that are affected by this issue:

Example 1
SPLOOP 1
MV .S1 A0, A1 ;stalls every iteration due to MV after loop
SPKERNEL
MV .S2X A1, B2

Example 2
PLOOP 14
MV .S1 A0, A1 ;stalls every iteration due to MV after loop
NOP 9
NOP 9
NOP 9
NOP 9
SPKERNEL
MV .S2X A1, B2

Example 3
SMV .S1 A0, A1 ;stalls every iteration due to MV after loop
SPKERNEL
||NEG .L2 B3, B4 ;Qualifies for rule 3, functional unit rule
MV .S2X A1, B2

The following three examples are not affected by this issue:

Example 1
;No stalls: No cross path in instruction after SPKERNEL
SPLOOP 1
MV .S1 A0, A1
SPKERNEL
MV .S1 A1, A2

Example 2
;No stalls: A1 not written to in loop body
SPLOOP 1
MV .S1 A0, A2
SPKERNEL
MV .S2X A1, B2

Example 3
;No stalls: Instruction in parallel with SPKERNEL prevents bug since
;it's in the same unit as the instruction that uses the cross-path.
SPLOOP 1
MV .S1 A0, A1
SPKERNEL
||NEG .S2 B3, B4 ;masks the bug
MV .S2X A1, B2

28 TMS320TCI6486 DSP—Silicon Revisions 2.1, 2.0, 1.2, 1.1, 1.0 SPRZ247I–October 2007–Revised July 2011
Submit Documentation Feedback

Copyright © 2007–2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRZ247I

www.ti.com Silicon Revision 2.1 Usage Notes and Known Design Exceptions to Functional Specifications

Workaround(s): The way SPLOOP code is scheduled is controlled by the compiler. Therefore, there are
no direct workarounds for non-assembly source code. There are new revisions of the
latest compilers that ensure that these three conditions are never met. The following
compiler releases include the fix:

• 6.0.25 or later
• 6.1.15 or later
• 7.0.2 or later
• 7.1.0B2 or later
• 7.2.0A or later.

29SPRZ247I–October 2007–Revised July 2011 TMS320TCI6486 DSP—Silicon Revisions 2.1, 2.0, 1.2, 1.1, 1.0
Submit Documentation Feedback

Copyright © 2007–2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRZ247I

Silicon Revision 2.1 Usage Notes and Known Design Exceptions to Functional Specifications www.ti.com

Advisory 30 DMA Corruption of L1D$ Allocation

Revision(s) Affected: 2.1

Details: Under a specific set of circumstances, a snoop-write updates unintended data being
allocated into L1D$ from external, cacheable memory. This can lead directly to program
misbehavior. If that line is then modified by CPU accesses, a subsequent victim
writeback from L1D could commit this corrupted line to lower levels of memory. The key
requirements for this issue are:

• Two clean lines in L1D$.

– This means that a CPU has read two L2 or external, cacheable addresses and
has not modified them.

• One more allocated line in L1D$ that can be clean or dirty.

– Dirty means that a CPU has read and written to any L2 or external, cacheable
address.

• Two more parallel CPU reads (occurring in the same CPU cycle).

– One of the reads must create an L2$ hit (implying an external, cacheable
address) and must be a set match to one of the clean lines already in L1D$.

– The other can be from an L2 SRAM address or an external, cacheable address
and must be a set match to the L1D$ cache line mentioned above as clean or
dirty.

• Two DMA writes to buffers in L2 SRAM that are a set match to the two clean lines in
L1D$.

NOTE:
1. For information on L1D cache coherence protocol, see section 3.3.6,

Cache Coherence Protocol, in the C64x+ DSP Megamodule
Reference Guide (SPRU871).

2. The DMA in the following description refers to all non-CPU
requestors. This includes IDMA, EDMA, and any other master in the
system.

Under a specific set of circumstances listed below, a snoop-write results in data
corruption of L1D$. The issue occurs when there is a DMA to L2 for one of the allocated
(clean) lines that is also in the process of being replaced by an allocation from external,
cacheable memory (implying there was a set match between the two); this is along with
another allocation and a DMA to the other allocated (clean) line. L2 sends the DMA
requests as snoop-writes to the L1D cache. When the error occurs, the line the second
snoop-write was destined for has already been replaced by the allocation from external,
cacheable memory. The logic to kill the snoop-write did not get sensitized and the
snoop-write ends up corrupting the line that was allocated. Subsequent writes to the
corrupted line cause this to get committed to lower levels of memory.

The prerequisite before the window where the issue occurs is:

• The CPU reads two L2 locations that are not a set match to each other and have not
been modified since then (CPU/DMA has not written to it). For a description on how
to determine if you have a set match or not, see below.

– These are now two separate 64B cache lines allocated and clean in L1D (referred
to here as Cache Lines B and E).

• The CPU reads another L2 location that is not a set match to Cache Lines B and E. It
does not matter whether this particular cache line is modified or not before the issue
window arrives.

– Because of this, another 64B cache line is allocated in L1D as clean or dirty
(referred to here as Cache Line A).

– Note that both ways for this particular set must be occupied. It may require more
than one read to this particular cache set.

30 TMS320TCI6486 DSP—Silicon Revisions 2.1, 2.0, 1.2, 1.1, 1.0 SPRZ247I–October 2007–Revised July 2011
Submit Documentation Feedback

Copyright © 2007–2011, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/lit/pdf/SPRU871
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRZ247I

31 X+1 X 6 5 4 2 1 0

Tag Set
Offset

Sub-line Bank Byte

www.ti.com Silicon Revision 2.1 Usage Notes and Known Design Exceptions to Functional Specifications

How to determine if two addresses are a set match:

Determining if two addresses are a set match can be done by comparing certain bits of
two addresses. The mapping of an address to a location in L1D cache is shown in
Figure 4.

The value X is determined by how large the L1D cache is in the particular application (see Table 10).

Figure 4. L1D Cache Address Mapping

Table 10. Value of X for L1D Cache

AMOUNT OF L1D CACHE X BIT POSITION

0KB N/A

4KB 10

8KB 11

16KB 12

32KB 13

If you use the default configuration, 32KB, as an example, bits [13:6] are a set match if
they are identical in two different addresses. Some examples of set matches are shown
below:

• 0x0080 2A80 00000000100000000010101010000000
• 0x8000 2A80 10000000100000000010101010000000
• 0x0080 2A8A 00000000100000000010101010001010

The following steps must all occur in a very tight window to see the issue:

1. The DMA writes to Cache Line E. This means that it is not necessarily the same
exact address, but within the same 64B cache line.

• As a result, a snoop- write request is generated.
2. The DMA writes to Cache Line B. This means that it is not necessarily the same

exact address, but within the same 64B cache line.

• As a result, a snoop-write request is generated but not immediately issued as it is
blocked by the snoop-write issued in the previous Step 1.

• Once the snoop-write from Step 1 is complete, this snoop-write is processed.
3. The CPU reads from any address in external, cacheable memory that is a set match

to Cache Line B. This must also create an L2$ hit (referred to here as Cache Line D).

• This results in a cache miss from the CPU and sends a read request to L2 cache
for the line.

• Assuming this was also mapped to the same way as Cache Line B, this results in
a replacement of Cache Line B since it was clean in L1D$.

• Note that there is no method to determine what particular way is used, so it is not
possible to tell whether this replacement would actually happen for a particular
operation. This is why only a set match is mentioned here.

4. In parallel (the same CPU cycle) with Step 3, the CPU reads from any address in L2
SRAM that is a set match to Cache Line A, mentioned in prerequisite Step 2 (referred
to here as Cache Line C).

• This results in a cache miss from the CPU and sends a read request to L2 SRAM
for the line.

• Assuming this was also mapped to the same way as Cache Line A, this results in
a replacement of Cache Line A if it was clean in L1D$. If Cache Line A was dirty,
an eviction would occur before the allocation completed.

• Note that there is no method to determine what particular way is used, so it is not

31SPRZ247I–October 2007–Revised July 2011 TMS320TCI6486 DSP—Silicon Revisions 2.1, 2.0, 1.2, 1.1, 1.0
Submit Documentation Feedback

Copyright © 2007–2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRZ247I

L1D Cache

UMAP0/1

t0

Corruption

t2

Clean line [E]

Int buff [C]

Int buff [A]

Int buff [B]

Ext buff [D]

CacheClean line [E]

Dirty line [A]

Clean line [B]

Snoop to [E] Snoop to [B]

t1

t4

t3

Silicon Revision 2.1 Usage Notes and Known Design Exceptions to Functional Specifications www.ti.com

possible to tell whether this replacement would actually happen for a particular
operation. This is why only a set match is mentioned here.

The results of the above cause the following:

(A) The snoop-write to Cache Line E, from Step 1 above, is now in process and blocking
the snoop-write to Cache Line B from Step 2.

(B) While Step A is going on, Cache Line A has either now been evicted and/or replaced
by Cache Line C from Step 4 above and Cache Line B (the intended target of the
delayed snoop-write) is now replaced with Cache Line D from Step 3 above.

(C) Once the first snoop-write from operation C1 completes, the second (delayed)
snoop-write mentioned in Step A to Cache Line B should be killed since Cache Line
B was replaced in the operation in Step B. Instead, it is not killed and the line cached
(which is now actually Cache Line D) is now updated incorrectly.

As a result, the following is true:

1. Cache Line D now holds data that was corrupted by the operation in Step C above
(as a result of Step 2 above).

• A subsequent read of this data returns a corrupted value.
• Subsequent writes to this cache line also cause the corrupted values to be

committed to lower levels of memory.

Figure 5 shows the sequence of events.

Figure 5. Sequence of Events

Workaround(s): A compiler flag (--c64p_dma_l1d_workaround) has been added to the latest Code
Generation Tools to resolve this potential issue. This flag can be utilized for all code in
the system or used on particular files/functions that may be susceptible to the conditions
listed in this advisory.

32 TMS320TCI6486 DSP—Silicon Revisions 2.1, 2.0, 1.2, 1.1, 1.0 SPRZ247I–October 2007–Revised July 2011
Submit Documentation Feedback

Copyright © 2007–2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRZ247I

www.ti.com Silicon Revision 2.1 Usage Notes and Known Design Exceptions to Functional Specifications

Advisory 31 Error Detection and Correction Incorrectly Reporting Error

Revision(s) Affected: 2.1 and earlier

Details: The C64x+ Megamodule L2 Memory Controller provides support for error detection and
correction (EDC). The primary purpose of this is to protect code and largely static data
held in L2 memory. Because the likelihood of a bit error on a given bit is proportional to
the time since it was last written, and program images are rarely written, the focus of
EDC is on those portions of L2 that are written rarely but must be correct when read.

The EDC implements a distance-3 "detect 2, correct 1" Hamming code. The L2 controller
always performs a full Hamming code check on 256-bit reads, regardless of whether the
fetch is from L1D controller, L1P controller, IDMA, or DMA. There is a parity value
associated with every 256 bits (32B) of L2 memory and a valid bit to qualify each parity
value. EDC uses parity RAM to store this parity information. Parity is calculated and
made valid in the parity RAM for following operations:

• 256 bits IDMA write
• 256 bits DMA writes through SDMA
• L2 cache allocate (both read and write allocate, except for the line to which the write

allocate writes).

Parity is made invalid in the parity RAM for the following operations:

• DMA writes through SDMA or IDMA writes for less than 256 bits.
• All L1D writes to L2, either cache or SRAM.
• L1D writes that cause an L2 write allocate on the line that gets written (part of the L2

cache line).
• All L1D victims.

EDC configuration registers are available to enable EDC individually for each of the L2
memory pages. Status registers are also available to report the address that shows the
EDC error as well as the type of the error, whether it is 1-bit error or multiple-bit error. It
also indicates whether it is corrected or not.

Problem Symptoms:

EDC is reporting EDC error (parity error) even when there is no error present in L2
memory. The error is random and the status register reports either 1-bit or multiple-bit
error. It is also not consistent that after some defined iterations EDC reports an error.
The EDC error can occur at any time and at any location in the memory. The error is a
false positive; i.e., there is actually no error present in the memory, but EDC reports an
error. There are two dedicated events (event 116, corrected bit error, and event 117,
uncorrected bit error) going from EDC to the megamodule INTC. If interrupt is enabled
and configured for those events, then the CPU reports an EDC interrupt.

Problem Prerequisites:

The following two operations must happen in parallel for this error to occur:

• L2 block coherence operation (WB and WBInv Only)
• L1D victim generation.

When there is an L2 block coherence operation going on (it could be either L2_WB or
L2_WBInv) and before that operation is complete, if the CPU does the operations that
generates the L1D victims, then it is possible that the L1D victim operation will mark the
parity valid bit to be 1, which is incorrect behavior. This can easily occur when there are
interrupts happening during the L2 Block WriteBack (L2_WB) or L2 WriteBackInvalidate
(L2_WBInv) operation. The error does not occur during block invalidate operation. As
mentioned above, it is a random occurrence that the L1D victim could validate the parity
and generate the EDC interrupt.

33SPRZ247I–October 2007–Revised July 2011 TMS320TCI6486 DSP—Silicon Revisions 2.1, 2.0, 1.2, 1.1, 1.0
Submit Documentation Feedback

Copyright © 2007–2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRZ247I

Silicon Revision 2.1 Usage Notes and Known Design Exceptions to Functional Specifications www.ti.com

Correct Behavior:
• L2 coherence operation in progress

and
• L1D victim generated
• L1D victims are not EDC protected and, so, the parity valid bit should get reset to 0

and junk should be written to parity RAM.

Incorrect Behavior:
• L2 coherence operation in progress

and
• L1D victim generated
• L1D victims are not EDC protected but the parity valid bit is marked valid with no

parity calculated and junk written to parity RAM.
• Any subsequent reads to this cache line cause the L2 EDC error. EDC protection is

performed as per junk parity data on that cache sub-line (256 bits) and it can corrupt
the data in that cache sub-line.

Workaround(s): Workaround 1:

Disable interrupts during L2 block coherence operations. If there are large block
coherence operations and disabling the interrupt during those coherence operations is
not feasible, then divide the big coherence operation into multiple, small coherence
operations and protect each of them against allowing interrupts during two coherence
operations.

Workaround 2:

Allow interrupts, but put the L1D cache in freeze mode before starting L2 block
coherence operation so that L1D victims are not generated during the L2 block
coherence operation. Un-freeze the L1D cache as soon as the L2 block coherence
operation is complete.

34 TMS320TCI6486 DSP—Silicon Revisions 2.1, 2.0, 1.2, 1.1, 1.0 SPRZ247I–October 2007–Revised July 2011
Submit Documentation Feedback

Copyright © 2007–2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRZ247I

www.ti.com Silicon Revision 2.1 Usage Notes and Known Design Exceptions to Functional Specifications

Advisory 32 SRIO May Fail to Send Interrupt for Completed TX or RX Message

Revision(s) Affected: 2.1 and earlier

Details: The interrupt clearing/setting mechanism for the RXU/TXU gives priority to clearing the
interrupt rather than setting it. The sequence of the peripheral for handling buffer
descriptors of a completed message is to: write the buffer descriptor info, set the ICSR
interrupt bit, and, finally, write the completion pointer (CP). As software processes the
buffer descriptors during an ISR, it ends the process by writing the CP register to
indicate to the peripheral what was the last buffer descriptor processed. This clears the
interrupt, if both peripheral and software are at the same point; i.e., the interrupt is not
cleared and will fire again once the pacing register has completed its countdown.

Due to the implementation of the interrupt clearing/setting, where priority is given to
clearing the interrupt, if software writes the CP (which the peripheral compares to it's CP
and matches) causing the interrupt to be cleared on the same internal clock cycle as the
peripheral trying to set the interrupt bit for the next buffer descriptor, the interrupt bit is
cleared and the interrupt for that next packet is lost. Note that no data is actually lost, the
interrupt simply does not occur. Once an additional message is processed and the
descriptor is completed, the interrupt is fired as normal and all descriptors can be
processed at that point. Although not guaranteed, it is possible for this missed interrupt
condition to occur with every ISR that attempts to write the TX or RX CP. However, since
the missed interrupt descriptor can be processed during the next interrupt ISR, the only
concern is added latency. For systems with a steady flow of messages, this added
latency is usually insignificant, but it is evident on scenarios where it occurs on the last
buffer descriptor in a group of messages since nothing is behind it to cause another
interrupt. For example, if the RX queue received 10 messages and the tenth interrupt is
lost, and no other messages were ever routed to that same RX queue, it will never fire
another interrupt.

Workaround: Change the ISR as shown in the following steps and in Figure 6. Every time an interrupt
is received:

1. Determine that the interrupt is related to CPPI. If not, call another handler.
2. Fetch the next descriptor (software maintains a current pointer, SW_Pointer).
3. Check the ownership bit for this next descriptor:

(a) If it is not owned by software, go to Step 6.
(b) If it is owned by software, then check the “CC” code and perform the remaining

packet processing.
(c) If EOQ is reached, write the completion pointer and go to Step 8.
(d) Otherwise, continue with Step 4.

4. Move the SW_Pointer to point to this next descriptor.
5. Go back to Step 3.
6. Write the completion pointer based on the current SW_Pointer value.
7. Check the ownership bit for the next descriptor again:

(a) If it is owned by software, go to Step 3b.
(b) Otherwise, continue with Step 8.

8. Write the interrupt pacing register to enable the next interrupt.

35SPRZ247I–October 2007–Revised July 2011 TMS320TCI6486 DSP—Silicon Revisions 2.1, 2.0, 1.2, 1.1, 1.0
Submit Documentation Feedback

Copyright © 2007–2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRZ247I

If CPPI
Interrupt?

End
No

Current_Desc

Yes

Check CC and
Perform Packet

Processing

Peripheral

Application Software (CPU)

Write the
Interrupt Pacing

Register

Peripheral

Return from ISR

Application
Software
(CPU)

Check EOQ?

Yes

Current_Desc =
Current_Desc +

0x10

No

Write the
completion

pointer

Write the
completion
pointer with

Previous_Desc

Previous_Desc =
Current_Desc –

0x10

Ownership of
Current_Desc?

Ownership of
Current_Desc?

Silicon Revision 2.1 Usage Notes and Known Design Exceptions to Functional Specifications www.ti.com

Figure 6. ISR Workaround Flowchart

36 TMS320TCI6486 DSP—Silicon Revisions 2.1, 2.0, 1.2, 1.1, 1.0 SPRZ247I–October 2007–Revised July 2011
Submit Documentation Feedback

Copyright © 2007–2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRZ247I

www.ti.com Silicon Revision 2.1 Usage Notes and Known Design Exceptions to Functional Specifications

Advisory 33 Serial RapidIO Internal Digital Loopback is Not Always Stable

Revision(s) Affected: 2.1 and earlier

Details: A digital loopback control function provides testability features with the ability to loop a
port's transmit data back to the receive side. Digital loopback is controlled through bit 25
of the RIO_PER_SET_CNTL register. This single bit control affects every 1X port, or all
lanes of a 4X port, depending on the supported mode of the device. This loopback is
done in the digital logic domain and is before the SerDes. An issue was discovered
where ports that are in digital loopback exhibit sporadic errors and are unreliable. In
these instances, the ports are unable to maintain Port_ok status and may encounter
multiple various error stopped states.

In digital loopback, the normal physical layer RX FIFO is bypassed altogether for data.
The data is actually handed from TX to RX via a separate path. This handoff is being
performed correctly, however, the RX FIFO sideband signals that indicate under/over run
conditions are erroneously being evaluated by the digital logic, instead of being ignored.
This means that the RX state machine continues acting upon the under/over run signals
that can be affected by external signals or even noise coming in on the device pins. For
example, if the SerDes device pins are connected to a link partner's active transmitter,
the port is not able to remain initialized in loopback since the under/over run signals are
following the link traffic. Unreliable digital loopback has also been observed without an
active transmitting device attached.

Workaround: Avoid using the digital loopback mode. TX-to-RX loopback is also supported within the
SerDes macros themselves. This internal SerDes loopback mode incorporates the
complete RapidIO data path (including the RX FIFO) and eliminates the above
mentioned issue. SerDes loopback is very stable and can be enabled with the following
bits in the RapidIO SerDes registers:

RIO_SERDES_CFG1_CNTL[7:6] = 0b10
RIO_SERDES_CFGRXn_CNTL[1] = 0b1
RIO_SERDES_CFGTXn_CNTL[1] = 0b1

Note that loopback needs to be individually enabled for each port, or each lane of a 4X
port, by setting bit 1 of the appropriate RIO_SERDES_CFGRXn_CNTL and
RIO_SERDES_CFGTXn_CNTL register.

37SPRZ247I–October 2007–Revised July 2011 TMS320TCI6486 DSP—Silicon Revisions 2.1, 2.0, 1.2, 1.1, 1.0
Submit Documentation Feedback

Copyright © 2007–2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRZ247I

Silicon Revision 2.0 Usage Notes and Known Design Exceptions to Functional Specifications www.ti.com

3 Silicon Revision 2.0 Usage Notes and Known Design Exceptions to Functional
Specifications

3.1 Silicon Revision 2.0 Usage Notes

Silicon revision 2.0 applicable usage notes have been found on a later silicon revision; for more detail, see
Section 2.1, Silicon Revision 2.1 Usage Notes, of this document.

3.2 Silicon Revision 2.0 Known Design Exceptions to Functional Specifications

Table 11 lists the silicon revision 2.0 known design exceptions to functional specifications. Advisories are
numbered in the order in which they were added to this document. If the design exceptions are still
applicable, the advisories move up to the latest silicon revision section. If the design exceptions are no
longer applicable or if the information has been documented elsewhere, those advisories are removed.
Therefore, advisory numbering may not be sequential.

All other known design exceptions to functional specifications for silicon revision 2.0 still apply and have
been moved up to Section 2.2, Silicon Revision 2.1 Known Design Exceptions to Functional
Specifications, of this document.

Table 11. Silicon Revision 2.0 Advisory List

Title .. Page

Advisory 24 —DMA Access to L2 SRAM May Stall When the DMA and the CPU Command Priority is Equal........... 39
Advisory 26 —DMA Corruption of L2 RAM Data... 40

Advisory 27 —SDMA/IDMA Blocking Issue Update: L2 Victim Traffic Due To L2 Block Writeback During Any Pending
CPU Request ... 48

Advisory 28 —L1P$ Miss May Block SDMA Accesses ... 50

38 TMS320TCI6486 DSP—Silicon Revisions 2.1, 2.0, 1.2, 1.1, 1.0 SPRZ247I–October 2007–Revised July 2011
Submit Documentation Feedback

Copyright © 2007–2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRZ247I

www.ti.com Silicon Revision 2.0 Usage Notes and Known Design Exceptions to Functional Specifications

Advisory 24 DMA Access to L2 SRAM May Stall When the DMA and the CPU Command Priority
is Equal

Revision(s) Affected: 2.0, 1.2, 1.1, 1.0

Details: The L2 memory controller in the GEM has programmable bandwidth management
features that are used to control bandwidth allocation for all requestors. There are two
parameters to control this, command priority and arbitration counter MAXWAIT values.
Each requestor has a command priority and the requestor with the higher priority wins.
However, there are also counters associated with each requestor that track the number
of cycles each requestor loses arbitration. When this counter reaches a threshold
(MAXWAIT), which is programmed by the user (or default value), the losing requestor
gets an arbitration slot and wins for that cycle. There are four such requestors: CPU,
DMA (SDMA and IDMA), user cache coherency operation, and global cache coherence.
Global-coherence operations are highest priority, while user-coherence operations are
lowest priority. However, there is active arbitration done for the CPU and the DMA
(SDMA/IDMA) commands. The priority for DMA commands comes from an external
master as part of the SDMA command or a programmable register, IDMA1_COUNT, in
the GEM for IDMA commands. The priority for CPU accesses to L2 is in a
programmable register, CPUARBU, in the GEM. For the default priority values, see
Table 12.

More details on the bandwidth management feature can be found in the C64x+ DSP
Megamodule Reference Guide (SPRU871).

Table 12. TCI6486 Default Master Priorities

DEFAULT MASTER PRIORITIES
MASTER (0 = Highest priority, PRIORITY CONTROL

7 = Lowest priority)

EDMA3TCx 0 QUEPRI.PRIQx (EDMA3 register)

SRIO (Data Access) 0 PER_SET_CNTL.CBA_TRANS_PRI
(SRIO register)

EMAC 7 PRI_ALLOC.EMAC

HPI 7 PRI_ALLOC.HOST

UTOPIA - PDMA 1 PRI_ALLOC.UTOPIAPDMA

TSIP 7 DMACTL (TSIP register)

C64x+ Megamodule (MDMA port) 7 MDMAARBE.PRI (C64x+ Megamodule
register)

C64x+ Megamodule (CPU Arbitration 1 CPUARBU (C64x+ Megamodule register)
control to L2)

C64x+ Megamodule (IDMA channel 1) 0 IDMA1_COUNT (C64x+ Megamodule
register)

The L2 memory controller is supposed to give equal bandwidth to the DMA and the
CPU, by alternating between the two for arbitration. Instead, the L2 memory controller
gives larger bandwidth allocation to the CPU accesses when the DMA and the CPU
priorities are same. The CPU commands keep winning arbitration over the DMA as long
as there are no other internal conditions (stalls, etc.) that force the DMA to win
arbitration. This typically happens when CPU accesses keep the L2 memory controller
busy every cycle, hence, the DMAs stall until the stream of CPU accesses completes.
For example, if a continuous stream of L1D write misses to L2 keep the L2 memory
controller busy every cycle, the DMAs stall for the entire duration of the write miss
stream.

Workaround: Set the CPU and the DMA commands to L2 on different priorities.

39SPRZ247I–October 2007–Revised July 2011 TMS320TCI6486 DSP—Silicon Revisions 2.1, 2.0, 1.2, 1.1, 1.0
Submit Documentation Feedback

Copyright © 2007–2011, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/lit/pdf/SPRU871
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRZ247I

Silicon Revision 2.0 Usage Notes and Known Design Exceptions to Functional Specifications www.ti.com

Advisory 26 DMA Corruption of L2 RAM Data

Revision(s) Affected: 2.0

Details: Under a specific set of circumstances, a snoop-write updates an unintended L2 RAM
location. This is a result of a corrupted L1D cache writeback, and can lead directly to
program misbehavior. If that line is then modified by CPU accesses, a subsequent victim
writeback from L1D could commit this corrupted line to lower levels of memory. Three
key requirements for this issue are:

• The DMA reads or writes to buffers in L2 SRAM.

– This must be cached and modified in L1D (read and written by the CPU).
• The CPU reads from any L2 or external, cacheable address.
• A second DMA write to the same cache line address (within 64B) in L2 RAM that the

CPU is reading from.

NOTE:
1. For information on L1D cache coherence protocol, see section 3.3.6,

Cache Coherence Protocol, in the C64x+ DSP Megamodule
Reference Guide (SPRU871).

2. The DMA in the following description refers to all non-CPU
requestors. This includes IDMA, EDMA, and any other master in the
system.

Under the specific set of circumstances listed below, a snoop-write results in a data
corruption in L2 RAM. This issue exists only when L1D evicts a dirty line from its cache
while allocating a new line to the same set/way. Both lines must be from L2 SRAM in
either UMAP0 or UMAP1. The issue occurs when there is a DMA to L2 for the allocated
(clean) line and a DMA to or from the victim (dirty) line. The L2 sends the DMA request
as a snoop-read or -write to the L1D cache after it allocates the new line. When the
issue occurs, the snoop-write to the allocated line corrupts the line being evicted instead.
The L2 writes this corrupted victim back to L2 SRAM.

The prerequisite before the window where the issue occurs is:

• The CPU reads an L2 location and has modified (written to) the same cache line
location before the window where the issue occurs. That means that it is not
necessarily the same exact address that is written to, but within the same 64B cache
line.

– Because of this, a 64B cache line is allocated and dirty in L1D (referred to here as
Cache Line A).

The following steps must all occur concurrently to see the issue:

1. The CPU reads from any address in L2 SRAM that is a set match to Cache Line A.
(To determine if you have a set match, see below.)

• The set match to Cache Line A is referred to here as Cache Line B.
• This results in a cache miss from the CPU and sends a read request to L2 cache

for the line (and possibly an external source if it was through L2 cache or if no L2
cache is present).

• Since Cache Line A is dirty, a victim is prepared to be sent after Cache Line B is
allocated and is held in a temporary victim data buffer.

Determining if two addresses are a set match can be done by comparing certain bits
of two addresses. The mapping of an address to a location in L1D cache is shown in
Figure 7.

40 TMS320TCI6486 DSP—Silicon Revisions 2.1, 2.0, 1.2, 1.1, 1.0 SPRZ247I–October 2007–Revised July 2011
Submit Documentation Feedback

Copyright © 2007–2011, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/lit/pdf/SPRU871
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRZ247I

31 X+1 X 6 5 4 2 1 0

Tag Set
Offset

Sub-line Bank Byte

www.ti.com Silicon Revision 2.0 Usage Notes and Known Design Exceptions to Functional Specifications

The value X is determined by how large the L1D cache is in the particular application (see Table 13).

Figure 7. L1D Cache Address Mapping

Table 13. Value of X for L1D Cache

AMOUNT OF L1D CACHE X BIT POSITION

0KB N/A

4KB 10

8KB 11

16KB 12

32KB 13

If you use the default configuration, 32KB, as an example, bits [13:6] are a set match
if they are identical in two different addresses. Some examples of set matches are
shown below:

• 0x0080 2A80 00000000100000000010101010000000
• 0x8000 2A80 10000000100000000010101010000000
• 0x0080 2A8A 00000000100000000010101010001010

2. The DMA read or writes from/to Cache Line A, mentioned in the prerequisite above.
This means that it is not necessarily the same exact address, but within the same
64B cache line.

• As a result, a snoop-read/-write request is generated.
3. The DMA writes to Cache Line B, mentioned in Step 1. This means that it is not

necessarily the same exact address, but within the same 64B cache line as Step 1.

• As a result, a snoop-write request is generated but not immediately issued, as it
is blocked by the snoop-read/-write issued in Step 2.

The results of the above cause the following:

(A) The L1D controller receives the new line (B) back from the L2 Controller.
(B) If Step 2 above was a write, the snoop-write to Cache Line A updates the victim

buffer correctly. If it was a read, the snoop-read returned the correct data to the DMA.
(C) The snoop-write to Cache Line B (Step 3 above) incorrectly updates the victim buffer

instead of the newly allocated line that was returned in Step A.

As a result, the following is true:

1. Cache Line A now holds data that was corrupted by Steps 3 and C above.

• A subsequent read of this data returns a corrupted value.
2. Cache Line B now holds stale data, as it was never updated with the data it was

supposed to get from Steps 3 and C.

• The CPU gets stale data (not updated).

Corruption only happens when the DMA accesses an L1D cache line that the CPU also
writes to. This results in DMAs that may match victim lines leaving L1D. Thus, it can
affect buffers that the CPU fills with writes and the DMA reads, as well as buffers where
both the DMA and CPU write. It does not affect DMA buffers that the CPU only reads.

Figure 8 shows the sequence of events.

41SPRZ247I–October 2007–Revised July 2011 TMS320TCI6486 DSP—Silicon Revisions 2.1, 2.0, 1.2, 1.1, 1.0
Submit Documentation Feedback

Copyright © 2007–2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRZ247I

L1D

UMAPx

Incorrect Order Correct Order

t0

t2

t3

t3¢

Corruption

Dirty

CPU Read
(L2 Cache)

DMA Write
(Snoop Write)

SRAM

t1

t4

t0: CPU Allocate

t1: Victim Start

t2: Allocation Data

t3: DMA Write (SNPW)

t4: Victim Done

t0: CPU Allocate

t1: Victim Start

t2: Allocation Data

t3: DMA Write (SNPW)

t4: Victim Done

Silicon Revision 2.0 Usage Notes and Known Design Exceptions to Functional Specifications www.ti.com

Figure 8. Sequence of Events

Table 14 shows the expected data values after this sequence completes and the actual
values that are now present because of this issue.

Table 14. Expected vs. Actual Data Values (1)

EXPECTED ACTUAL

Buffer A A′′′ B′′
Buffer B B′′ B

(1) Key:
A, B = Original data
A′ = CPU-written data
A′′, B′′ = DMA-written data
A′′′ = CPU- and DMA-written data, properly merged

42 TMS320TCI6486 DSP—Silicon Revisions 2.1, 2.0, 1.2, 1.1, 1.0SPRZ247I–October 2007–Revised July 2011
Submit Documentation Feedback

Copyright © 2007–2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRZ247I

OK

Y

OK

OK

Is CPU reading

from this buffer?

Potential Problem

OK

N
OK

OK

OK

OK

Is the CPU reading
from this buffer?

Y

Is CPU reading

from this buffer?

Is the CPU writing
to this buffer?

Y

Is CPU reading

from this buffer?
Does the DMA access

the same buffer
(read or write)

?

N

Is CPU reading

from this buffer?
Is there a software

control mechanism to
force buffer ownership between

the CPU and the DMA
through WB/invalidate

?

N

N

Y

www.ti.com Silicon Revision 2.0 Usage Notes and Known Design Exceptions to Functional Specifications

With all the steps above, it is fairly painful to determine if a particular buffer has the
potential to see this issue. Figure 9 is a simple decision tree to help make a
determination for a particular buffer.

Figure 9. Decision Tree

If you approach one of the "OK" fields, then the buffer should not have a potential of
being affected. If you arrive at "Potential Problem," see the workarounds below.

NOTE: Figure 9 assumes that each buffer is aligned to a 64B boundary and
spans a multiple of 64B. This is because the cache line size of our L1D is
64B. If that is not the case, there is a chance that you might still see this
issue even if you get to an OK state in the diagram (see the Workaround
for "False-sharing" section below).

Workarounds: The issue occurs when the CPU writes within the same L1D cache line that the DMA
reads or writes. This can happen for multiple reasons. The following sections detail
workarounds for three scenarios:

1. The CPU writes to a buffer that the DMA then reads. This could either be due to an
"in-place" algorithm that operates on data brought to it by DMA or an "out-of-place"
algorithm where the CPU fills a buffer that the DMA then reads. In either case, the

43SPRZ247I–October 2007–Revised July 2011 TMS320TCI6486 DSP—Silicon Revisions 2.1, 2.0, 1.2, 1.1, 1.0
Submit Documentation Feedback

Copyright © 2007–2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRZ247I

Silicon Revision 2.0 Usage Notes and Known Design Exceptions to Functional Specifications www.ti.com

CPU and DMA explicitly synchronize.
2. The CPU and DMA are updating distinct or unrelated objects that happen to share a

cache line. (This is sometimes called "false sharing.") Because the objects are
unrelated, the DMA and CPU are not synchronized.

3. The CPU and DMA are both writing to the same structure without external
synchronization. This pattern often underlies software synchronization
implementations and lockless multiprocessing algorithms.

Workaround for Synchronizing DMA and CPU Access to Buffers

The CPU potentially triggers this issue when it reads and later writes to a buffer that the
DMA also accesses (read or write). The issue can happen when the DMA accesses the
affected line when the L1D cache writes it back to L2. To avoid this issue, programmers
can explicitly manage coherence on the buffer so that the buffer is not present and dirty
in L1D when the DMA accesses it.

To explicitly manage coherence on the buffer, programmers should adhere to the
programming model described earlier: Programs should write back or discard in-bound
DMA buffers immediately after use and keep a strict policy of buffer ownership such that
a given buffer is owned only by the CPU or the DMA at any given time.

This model assumes the following:

1. The DMA fills the buffer during a period when the CPU does not access it.
2. The DMA engine or other mechanism signals to the CPU that it has finished filling the

buffer.
3. The CPU operates on the buffer, reading and writing to it, as necessary. The DMA

does not access the buffer at this time.
4. The CPU relinquishes control of the buffer so that DMA may refill it. (This may be an

implicit step in many implementations if the period between refills is much longer than
the time it takes the CPU to process the refilled buffer.)

To implement this workaround, programmers must write back (and optionally invalidate)
the buffer from L1D cache after Step 3 and before Step 4. There are multiple
mechanisms for doing this, but the most straightforward is to use the L1D block cache
writeback mechanism via L1DWBAR/L1DWWC or the L1D block cache
writeback-invalidate mechanism via L1DWIBAR/L1DWIWC.

The recommended implementation of this workaround requires calling the
l1d_block_wb.asm and l1d_block_wbinv.asm functions (see the L1D Block Writeback
and L1D Writeback-Invalidate Routines below). The functions can be invoked as follows:
void l1d_block_wb(void *base, size_t byte_count);

or
void l1d_block_wbinv(void *base, size_t byte_count);

To writeback a C array, one could then do:
char array[SIZE];

/* ... */

l1d_block_wb(&array[0], sizeof(array));

The above example could be used to writeback-invalidate as well by calling the other
function.

Programmers should insert such a call whenever the CPU code is done with a particular
DMA buffer, before the DMA controller can refill it. The l1d_block_wb() and
l1d_block_wbinv() functions are non-interruptible. The overhead is proportional to the
size of the buffer.

44 TMS320TCI6486 DSP—Silicon Revisions 2.1, 2.0, 1.2, 1.1, 1.0 SPRZ247I–October 2007–Revised July 2011
Submit Documentation Feedback

Copyright © 2007–2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRZ247I

www.ti.com Silicon Revision 2.0 Usage Notes and Known Design Exceptions to Functional Specifications

NOTE: To ensure complete effectiveness, ensure that the DMA buffers always
start on an L1D cache-line boundary (64-byte boundary) and occupy a
multiple of 64 bytes. This may require increasing the size of some DMA
buffers slightly. This is necessary to prevent accesses to an unrelated
buffer or variable from bringing a portion of the DMA buffer back into the
L1D cache.

L1D Block Writeback Routine
;; == ;;
;; L1D Block Writeback ;;
;; ;;
;; l1d_block_wb(void *base, size_t byte_count); ;;
;; ;;
;; Performs a block writeback from L1D to L2. It can be used ;;
;; on any address range (L2 or external), but it only operates on L1D ;;
;; cache. ;;
;; ;;
;; Maximum block size is 256K. Exact maximum byte count depends on the ;;
;; alignment of the block. ;;
;; ;;
;; Interrupts are disabled during the block writeback operation. ;;
;; == ;;

.asg 0x01844040, L1DW ; L1D Block Wb; BAR at 0, WC at 1

.global _l1d_block_wb

.text

.asmfunc
_l1d_block_wb:

MVC DNUM, B0 ; _ Get global alias prefix
ADDK 0x10, B0 ; /
SHRU A4, 24, B2 ; Get prefix from address
CMPEQ B0, B2, B0 ; Check if address prefix is global

[B0] EXTU A4, 8, 8, A4 ; Remove global prefix from address
MVKL L1DW, B6 ;

CLR A4, 0, 5, A1 ; Align to L1D cache line boundary
|| ADD A4, B4, B1 ; Compute end of buffer

ADDK 63, B1 ; _ Round to next L1D cache line
CLR B1, 0, 5, B1 ; /

SUB B1, A1, B1 ; Count cache-line span in bytes
|| MVKH L1DW, B6 ;

SHR B1, 2, B1 ; Convert to "word count"
|| DINT ; Disable interrupts

STW A1, *B6[0] ; Store base address
STW B1, *B6[1] ; Store word count

; Note: The following loop is intentionally low-rate to avoid
; interfering with the block writeback operation.

loop: LDW *B6[1], B1 ; Read remaining word-count
NOP 4

[B1] BNOP loop, 5 ; Loop until done

RINT ; Reenable interrupts
RETNOP B3, 5 ; Return to caller

.endasmfunc

;; == ;;
;; End of file: l1d_block_wb.asm ;;
;; == ;;

45SPRZ247I–October 2007–Revised July 2011 TMS320TCI6486 DSP—Silicon Revisions 2.1, 2.0, 1.2, 1.1, 1.0
Submit Documentation Feedback

Copyright © 2007–2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRZ247I

Silicon Revision 2.0 Usage Notes and Known Design Exceptions to Functional Specifications www.ti.com

L1D Block Writeback-Invalidate Routine
;; == ;;
;; L1D Block Writeback-Invalidate ;;
;; ;;
;; l1d_block_wbinv(void *base, size_t byte_count); ;;
;; ;;
;; Performs a block writeback-invalidate from L1D to L2. It can be used ;;
;; on any address range (L2 or external), but it only operates on L1D ;;
;; cache. ;;
;; ;;
;; Maximum block size is 256K. Exact maximum byte count depends on the ;;
;; alignment of the block. ;;
;; ;;
;; Interrupts are disabled during the block writeback operation. ;;
;; == ;;

.asg 0x01844030, L1DWI ; L1D Block Wb-Inv; BAR at 0, WC at 1

.global _l1d_block_wbinv

.text

.asmfunc
_l1d_block_wbinv:

MVC DNUM, B0 ; _ Get global alias prefix
ADDK 0x10, B0 ; /
SHRU A4, 24, B2 ; Get prefix from address
CMPEQ B0, B2, B0 ; Check if address prefix is global

[B0] EXTU A4, 8, 8, A4 ; Remove global prefix from address
MVKL L1DWI, B6 ;

CLR A4, 0, 5, A1 ; Align to L1D cache line boundary
|| ADD A4, B4, B1 ; Compute end of buffer

ADDK 63, B1 ; _ Round to next L1D cache line
CLR B1, 0, 5, B1 ; /

SUB B1, A1, B1 ; Count cache-line span in bytes
|| MVKH L1DWI, B6 ;

SHR B1, 2, B1 ; Convert to "word count"
|| DINT ; Disable interrupts

STW A1, *B6[0] ; Store base address
STW B1, *B6[1] ; Store word count

; Note: The following loop is intentionally low-rate to avoid
; interfering with the block writeback operation.

loop: LDW *B6[1], B1 ; Read remaining word-count
NOP 4

[B1] BNOP loop, 5 ; Loop until done

RINT ; Reenable interrupts
RETNOP B3, 5 ; Return to caller

.endasmfunc

;; == ;;
;; End of file: l1d_block_wbinv.asm ;;
;; == ;;

Workaround for "False Sharing"

This issue can occur when the CPU and the DMA both access distinct objects that share
a single L1D cache line. This is often referred to as "false sharing."

To avoid false sharing, ensure that the DMA buffers begin on 64-byte boundaries and
occupy a multiple of 64 bytes. This may require increasing the size of some DMA
buffers. If an application has many small DMA buffers, consider packing these together
to limit the overall growth in DMA buffer space implied by this workaround.

Workaround for Buffers that the CPU and DMA Access Asynchronously

While this situation is rare in most programs, there are some cases where both the CPU
and the DMA both access the same structure without explicit synchronization. In some

46 TMS320TCI6486 DSP—Silicon Revisions 2.1, 2.0, 1.2, 1.1, 1.0 SPRZ247I–October 2007–Revised July 2011
Submit Documentation Feedback

Copyright © 2007–2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRZ247I

www.ti.com Silicon Revision 2.0 Usage Notes and Known Design Exceptions to Functional Specifications

cases, this is due to the fact that said accesses are part of an algorithm that implements
a synchronization primitive. Regardless of the purpose, these accesses potentially
trigger this issue.

The easiest way to avoid the issue with this case is to freeze the L1D whenever the CPU
reads this buffer. This prevents the buffer from allocating in the L1D cache so that the
DMA never sends a snoop (read or write) to the DMC on behalf of this buffer.

Alternately, programs can always invalidate the line in L1D after reading it so that all
writes to the line miss L1D and the line is never present and dirty in L1D cache.
Programs can use the L1D block invalidate (L1DIBAR/L1DIWC) or L1D block
writeback-invalidate (L1DWIBAR/L1DWIWC) to perform these explicit coherence
operations.

47SPRZ247I–October 2007–Revised July 2011 TMS320TCI6486 DSP—Silicon Revisions 2.1, 2.0, 1.2, 1.1, 1.0
Submit Documentation Feedback

Copyright © 2007–2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRZ247I

Silicon Revision 2.0 Usage Notes and Known Design Exceptions to Functional Specifications www.ti.com

Advisory 27 SDMA/IDMA Blocking Issue Update: L2 Victim Traffic Due To L2 Block Writeback
During Any Pending CPU Request

Revision(s) Affected: 2.0, 1.2, 1.1, 1.0

Details: This advisory is an update to Advisory 6 in this document. Advisory 6 lists the following
four blocking conditions to trigger an SDMA/IDMA stall:

1. Bursts of writes to non-cacheable locations.
2. L1D read miss generating victim traffic to L2 (cache or SRAM) or external memory.
3. L1D read request missing L2 (going external) while another L1D request is pending.
4. L2 victim traffic to external memory during any pending L1D request.

NOTE: Items 1, 2, 3, and 4 shown in the list above and in Table 15 below are
actually labeled as 1, 2a, 2b, and 2c in Advisory 6.

This advisory covers one more blocking condition:
5. L2 victim traffic due to L2 block writeback during any pending CPU request.

For silicon revisions 1.0, 1.1, and 1.2 that contain the original SDMA/IDMA blocking
errata, this is a fifth way to encounter the issue in addition to the previously
communicated four errata conditions in Advisory 6.

No additional deadlock risk potential is created by the addition of the new condition to
silicon revisions 1.0, 1.1, and 1.2 that currently contain the SDMA/IDMA blocking
conditions 1-4. This means that this issue can lead to a deadlock in the same manner
that the other four conditions can. On silicon revision 2.0, without the original stall
conditions 1-4, this creates a deadlock condition that is identical to the previous
revisions.

Table 15. Stall Conditions on Silicon Revisions

STALL CONDITIONSSILICON
REVISIONS 1 2 3 4 5

1.0 YES YES YES YES YES

1.1 YES YES YES YES YES

1.2 YES YES YES YES YES

2.0 NO NO NO NO YES

Under certain conditions, L2 victim traffic due to a block writeback can block
SDMA/IDMA accesses to UMAP0 during CPU requests. On the TCI6486 device, UMAP0
(L2 RAM0) is mapped at 0x00800000 - 0x00897FFF and UMAP1 (SL2 RAM) is mapped
at 0x00200000 - 0x002BFFFF in the local memory map of each core. There are four
transactions that must occur to cause an SDMA/IDMA to stall because of this condition:

1. L1D/L1P needs to create an L2$ hit. This happens as a result of one of the following:

• An L1D victim (through L1D writeback or writeback-invalidate).
• An L1D read+victim (through L1D read miss resulting in a writeback).
• An L1D write miss (write-through to an uncached line).
• An L1D read miss.
• An L1P fetch miss.

2. A user-initiated L2 block writeback must occur involving the same cache set as the
L1D/L1P cache accesses in the previous bullet.

3. An SDMA access to UMAP0.
4. The CPU also accesses the same cache set as the L1D/L1P cache accesses and

the L2 block writeback as described in the first two bullets. This happens as a result
of a CPU LDx/STx instruction or instruction fetch that causes one of the following:

• An L1D victim (through L1D writeback or writeback-invalidate).
• An L1D write miss (write-through to an uncached line).
• An L1D read miss.

48 TMS320TCI6486 DSP—Silicon Revisions 2.1, 2.0, 1.2, 1.1, 1.0 SPRZ247I–October 2007–Revised July 2011
Submit Documentation Feedback

Copyright © 2007–2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRZ247I

www.ti.com Silicon Revision 2.0 Usage Notes and Known Design Exceptions to Functional Specifications

• An L1P fetch miss.

As a result of the four items above, any further SDMAs to UMAP0 are blocked. SDMAs
to UMAP1 are unaffected. Note that three of these items must involve the same L2$ set
in order to see the issue and, thus, is not as likely as the other conditions listed in the
original errata. The stall persists until the operations above are complete.

Workarounds: Workaround 1: Leave in previous SDMA/IDMA stall workarounds

For silicon revisions 1.0, 1.1, 1.2 that were already affected with the other four conditions
of the SDMA/IDMA stall issue from Advisory 6, there is no additional workaround
needed. If all of the deadlock avoidance steps listed in Advisory 6 have been followed,
there is no risk for a deadlock because of this issue. Methods to reduce stalling due to
this issue are also already covered in Advisory 6.

For silicon revision 2.0 that fixed the initial four conditions of SDMA/IDMA stall issue, the
deadlock avoidance steps that are already listed in Advisory 6 for previous revisions of
silicon should be followed to ensure that there is no chance of a deadlock. The
workarounds to avoid stalls are also the same as communicated in previous revisions of
the device with the issue.

Workaround 2: Do not use L2$

Systems that do not use L2$ are not affected by this issue.

49SPRZ247I–October 2007–Revised July 2011 TMS320TCI6486 DSP—Silicon Revisions 2.1, 2.0, 1.2, 1.1, 1.0
Submit Documentation Feedback

Copyright © 2007–2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRZ247I

Silicon Revision 2.0 Usage Notes and Known Design Exceptions to Functional Specifications www.ti.com

Advisory 28 L1P$ Miss May Block SDMA Accesses

Revision(s) Affected: 2.0, 1.2, 1.1, 1.0

Details: This advisory is an update to Advisory 6 and Advisory 27 in this document. Advisory 6
and Advisory 27 list the following five blocking conditions to trigger an SDMA/IDMA stall:

1. Bursts of writes to non-cacheable locations.
2. L1D read miss generating victim traffic to L2 (cache or SRAM) or external memory.
3. L1D read request missing L2 (going external) while another L1D request is pending.
4. L2 victim traffic to external memory during any pending L1D request.
5. L2 victim traffic due to L2 block writeback during any pending CPU request.

NOTE: Items 1, 2, 3, and 4 shown in the list above and in Table 16 below are
actually labeled as 1, 2a, 2b, and 2c in Advisory 6. Item 5 is described in
Advisory 27.

This advisory covers one more blocking condition:
6. L1P$ miss may stall SDMA accesses.

For silicon revisions 1.0, 1.1, and 1.2 that contain the original SDMA/IDMA blocking
errata, this is a sixth way to encounter the issue in addition to the previously
communicated five errata conditions in Advisory 6 and Advisory 27.

No additional deadlock risk potential is created by the addition of the new condition to
silicon revisions 1.0, 1.1, and 1.2 that currently contain the SDMA/IDMA blocking
conditions 1-4. This means that this issue can lead to a deadlock in the same manner
that the other four conditions can. On silicon revision 2.0, without the original stall
conditions 1-4, this creates a deadlock condition that is identical to the previous
revisions.

Table 16. Stall Conditions on Silicon Revisions

STALL CONDITIONSSILICON
REVISIONS 1 2 3 4 5 6

1.0 YES YES YES YES YES YES

1.1 YES YES YES YES YES YES

1.2 YES YES YES YES YES YES

2.0 NO NO NO NO YES YES

Under certain conditions, L2 accesses to external memory resulting from an L1P$ miss
can block SDMA/IDMA accesses during CPU/DMA requests. There are several
transactions that must occur to cause an SDMA/IDMA to stall because of this condition:

1. A DMA access to UMAP0.
Note that this transfer is not needed to see a fail on the TCI6486 device. A fail may
occur only with transactions 2-5.

2. An L1D$ read miss from UMAP0.
Note that if the software is currently running in L1D$ freeze mode during this
transaction, transaction 1 is also not needed to reproduce this issue.

3. An L1D$ write or victim to UMAP1. This happens as a result of one of the following:

• An L1D victim (through L1D writeback or writeback-invalidate) to UMAP1.
• An L1D read+victim (through L1D read miss resulting in a writeback) to any L2.

The victim generated still needs to go to UMAP1. The reason that the L1D$ read
can be to any L2 address (UMAP0 or UMAP1) is that there is no way of knowing
if the least recently used cache line that will be evicted is in UMAP0 or 1.

• An L1D write miss (write-through to an uncached line).
4. An L1P$ miss that results in an L2 access to external memory.

This step may not be necessary if a long-distance write to external memory is

50 TMS320TCI6486 DSP—Silicon Revisions 2.1, 2.0, 1.2, 1.1, 1.0 SPRZ247I–October 2007–Revised July 2011
Submit Documentation Feedback

Copyright © 2007–2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRZ247I

SDMA

to UMAP0

L1D read miss
UMAP0

SDMA in FSM

L1P$ miss,
L2$miss

L2 WB/VCT in FSM

SDMA Stalled

L1D WB (or) VCT SDMA UMAP1

L2 RD Miss in FSM

2 cycles between these two events

5 cycles between these two events

L2 P1 CMD Pipe - Time Progression

www.ti.com Silicon Revision 2.0 Usage Notes and Known Design Exceptions to Functional Specifications

currently pending.
5. An SDMA access to UMAP1.

It is also important to note that without item 5, this issue does not exist. That means
that if the resolution of the pipeline is completed before item 5, then the issue is not
seen.
If an SDMA access to UMAP0 occurs before transaction item 5, the pipeline is
flushed and this issue is not seen.

The SDMA in item 1 sets up a bank conflict for the L1D$ read in item 2. The L1D$
allocate in item 2 prevents the L1D$ write/victim (item 3) from advancing, so it is stuck in
the pipeline. This occurs at the same time as an L1P$ allocate that also results in an L2
access to external memory (item 4), which is also in the same pipeline stage as the
L1D$ write/victim (item 3). At this point, the L1P$ allocate (item 4) advances to the next
pipeline stage but the L1D$ write/victim (item 3) is still stuck waiting on the L1D$ allocate
(item 2). This now sets up the pipeline for the stall condition, which is actually triggered
by an SDMA to UMAP1 (item 5). This is what causes further SDMAs to stall. After the
L1P$ allocate (item 4) is complete, item 2 resolves, allowing item 3 to resolve, thus,
freeing the SDMA pipeline again. Therefore, the stall is effectively for the length of the
L1P$ allocate in item 4.

Note that the above four conditions do not guarantee that you will see a stall; it may stall
depending on the timing between the transactions. Items 2 and 3 must occur within two
CPU cycles of each other and items 3 and 4 must occur within five CPU cycles of each
other. Figure 10 shows the timing relationship.

Figure 10. Timing Between Transactions

Workarounds: Workaround 1: Leave in previous SDMA/IDMA stall workarounds (for devices with
the original SDMA/IDMA stall)

For silicon revisions 1.0, 1.1, 1.2 that were already affected with the other four conditions
of the SDMA/IDMA stall issue from Advisory 6, there is no additional workaround
needed. If all of the deadlock avoidance steps listed in Advisory 6 have been followed,
there is no risk for a deadlock because of this issue. Methods to reduce stalling due to
this issue are also already covered in Advisory 6.

For silicon revision 2.0 that fixed the initial four conditions of SDMA/IDMA stall issue, the
deadlock avoidance steps that are already listed in Advisory 6 for previous revisions of
silicon should be followed to ensure that there is no chance of a deadlock. The
workarounds to avoid stalls are also the same as communicated in previous revisions of
the device with the issue.

51SPRZ247I–October 2007–Revised July 2011 TMS320TCI6486 DSP—Silicon Revisions 2.1, 2.0, 1.2, 1.1, 1.0
Submit Documentation Feedback

Copyright © 2007–2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRZ247I

Silicon Revision 2.0 Usage Notes and Known Design Exceptions to Functional Specifications www.ti.com

Workaround 2: Do not place program code in external memory

This issue can be avoided by either ensuring that all program code is in L1P or L2
SRAM or SL2 SRAM. This eliminates the possibility of creating an L1P$ miss that
generates an L2 read from external memory.

Workaround 3: Allocate all CPU-writeable DMA buffers/variables in UMAP0 or L1D
RAM

NOTE: DMA in this case refers to EDMA and other masters external to the
C64x+ Megamodule.

If possible, move DMA buffers that are also writeable by the CPU to completely reside in
UMAP0 or L1D RAM. This prevents SDMA traffic to multiple UMAP ports.

Workaround 4: Allocate CPU data buffers/variables in UMAP0

If possible, move CPU data buffers/variables out of UMAP1 to UMAP0. This eliminates
the CPU data accesses to/from UMAP1.

Workaround 5: Allocate CPU-readable data buffers/variables in UMAP1

NOTE: Since the L2$ is located in UMAP0, this workaround assumes that L2$
is disabled.

If possible, move CPU-readable data buffers/variables out of UMAP0 to UMAP1. This
eliminates the CPU data reads from UMAP0. CPU writes are OK to UMAP1.

52 TMS320TCI6486 DSP—Silicon Revisions 2.1, 2.0, 1.2, 1.1, 1.0 SPRZ247I–October 2007–Revised July 2011
Submit Documentation Feedback

Copyright © 2007–2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRZ247I

www.ti.com Silicon Revision 1.2 Usage Notes and Known Design Exceptions to Functional Specifications

4 Silicon Revision 1.2 Usage Notes and Known Design Exceptions to Functional
Specifications

4.1 Silicon Revision 1.2 Usage Notes

Silicon revision 1.2 applicable usage notes have been found on a later silicon revision; for more detail, see
Section 2.1, Silicon Revision 2.1 Usage Notes, of this document.

4.2 Silicon Revision 1.2 Known Design Exceptions to Functional Specifications

Table 17 lists the silicon revision 1.2 known design exceptions to functional specifications. Advisories are
numbered in the order in which they were added to this document. If the design exceptions are still
applicable, the advisories move up to the latest silicon revision section. If the design exceptions are no
longer applicable or if the information has been documented elsewhere, those advisories are removed.
Therefore, advisory numbering may not be sequential.

All other known design exceptions to functional specifications for silicon revision 1.2 still apply and have
been moved up to Section 2.2, Silicon Revision 2.1 Known Design Exceptions to Functional Specifications
or Section 3.2, Silicon Revision 2.0 Known Design Exceptions to Functional Specifications, of this
document.

Table 17. Silicon Revision 1.2 Advisory List

Title .. Page

Advisory 6 —DSP SDMA/IDMA: Unexpected Stalling of SDMA/IDMA Access to L2 SRAM 54
Advisory 7 —Potential SerDes Clocking Issue ... 61
Advisory 8 —Potential Insertion or Deletion of 2 Bits in SerDes Data Stream... 62
Advisory 10 —Atomic Operations Fail to Complete ... 63
Advisory 12 —PMC: Local Reset (lreset) Followed By Block Invalidate Hangs ... 65
Advisory 13 —PMC: L1P Cache Not Invalidated During lreset .. 66
Advisory 14 —UMC: L2MPFAR Fails to Log CPU Protection Faults Under Certain Conditions 67
Advisory 18 —PrivID For Non-CPU Masters Is Same as GEM0 CPU .. 68
Advisory 19 —UTOPIA Lock-Up Issue .. 69
Advisory 23 —DMA Access to L2 SRAM May Stall When the DMA Has Lower Priority Than the CPU 70

53SPRZ247I–October 2007–Revised July 2011 TMS320TCI6486 DSP—Silicon Revisions 2.1, 2.0, 1.2, 1.1, 1.0
Submit Documentation Feedback

Copyright © 2007–2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRZ247I

Silicon Revision 1.2 Usage Notes and Known Design Exceptions to Functional Specifications www.ti.com

Advisory 6 DSP SDMA/IDMA: Unexpected Stalling of SDMA/IDMA Access to L2 SRAM

Revision(s) Affected: 1.2, 1.1, 1.0

Details:

NOTE: Only when DSP level 2 (L2) memory is configured as non-cache (RAM),
unexpected stalling may occur on DSP SDMA/IDMA accesses. If DSP L2
memory is used only as cache or if L2 RAM is not accessed by IDMA or
via the SDMA interface during run-time, then this exception does not
apply.

The C64x+ megamodule has a Master Direct Memory Access (MDMA) bus interface and
a Slave Direct Memory Access (SDMA) bus interface. The MDMA interface provides
DSP access to resources outside the C64x+ megamodule (i.e., DDR2 memory). The
MDMA interface is used for CPU/cache accesses to memory beyond the level 2 (L2)
memory level. These accesses include cache line allocates, write-backs, and
non-cacheable loads and stores to/from system memories. The SDMA interface allows
other master peripherals in the system to access level 1 data (L1D), level 1 program
(L1P), and L2 RAM DSP memories. The masters that are allowed to access these
memories are GEM megamodules, DMA controllers, TSIPs, EMAC, UTOPIA, HPI,
SRIO, and SRIO wrapper. The DSP Internal Direct Memory Access (IDMA) is a C64x+
megamodule DMA engine used to move data between internal DSP memories (L1, L2)
and/or the DSP peripheral configuration bus. The IDMA engine shares resources with
the SDMA interface.

The C64x+ megamodule has an L1D cache and an L2 cache, both of which implement
write-back data caches. The C64x+ megamodule holds updated values for external
memory as long as possible. It writes these updated values, called victims, to external
memory when it needs to make room for new data or when requested to do so by the
application or when a load is performed from a non-cacheable memory for which there is
a set match in the cache (i.e., the non-cacheable line would replace a dirty line if
cached). The L1D sends its victims to L2. The caching architecture has pipelining,
meaning multiple requests could be pending between L1, L2, and MDMA. For more
details on the C64x+ megamodule and its MDMA and SDMA ports, see the
TMS320C64x+ Megamodule Reference Guide (literature number SPRU871).

Ideally, the MDMA (the blue lines in Figure 11) and SDMA/IDMA paths (the orange lines
in Figure 11) operate independently with minimal interference. Normally, MDMA
accesses may stall for extended periods of time (clock cycles) due to expected system
level delays (e.g., bandwidth limitations, DDR2 memory refreshes). However, when
using L2 as RAM, SDMA and/or IDMA accesses to L2/L1 may experience unexpected
stalling in addition to the normal stalls seen by the MDMA interface. For latency-sensitive
traffic, the SDMA stall can result in missing real-time deadlines.

NOTE: SDMA/IDMA accesses to L1P/D will not experience an unexpected stall
if there are no SDMA/IDMA accesses to L2. Unexpected SDMA/IDMA
stalls to L1 happen only when they are pipelined behind L2 accesses.

Figure 11 is a simplified view for illustrative purposes only. The IDMA/SDMA path
(orange lines) can also go to L1D/L1P memories and IDMA can go to the DSP CFG
peripherals. MDMA transactions (blue lines) can also originate from L1P or L1D through
the L2 controller or directly from the DSP.

54 TMS320TCI6486 DSP—Silicon Revisions 2.1, 2.0, 1.2, 1.1, 1.0 SPRZ247I–October 2007–Revised July 2011
Submit Documentation Feedback

Copyright © 2007–2011, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/lit/pdf/SPRU871
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRZ247I

Cache Control

Memory Protect

Bandwidth Mgmt

L1P

RAM/
Cache

256

Bandwidth Mgmt

Memory Protect

Cache Control

256

L2

256

RAM/
Cache ROM

256

Instruction Fetch

C64x + CPU

256

Cache Control

Memory Protect

Bandwidth Mgmt

L1D

64 64

8 x 32

256

256

256
CFG

MDMA SDMA

EMC

256

32
Peripherals

128 128

RAM/
Cache

Register
File A

Register
File B

EDMA Master
Peripherals

ID
M

A

128
Power Down

Interrupt
Controller

CPU/Cache Access Origination

Master Peripheral Origination

www.ti.com Silicon Revision 1.2 Usage Notes and Known Design Exceptions to Functional Specifications

Figure 11. IDMA, SDMA, and MDMA Paths

55SPRZ247I–October 2007–Revised July 2011 TMS320TCI6486 DSP—Silicon Revisions 2.1, 2.0, 1.2, 1.1, 1.0
Submit Documentation Feedback

Copyright © 2007–2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRZ247I

Silicon Revision 1.2 Usage Notes and Known Design Exceptions to Functional Specifications www.ti.com

SDMA/IDMA stalls may occur during the following scenarios. Each of these scenarios
describes expected normal DSP functionality, but the SDMA/IDMA access potentially
exhibits additional unexpected stalling.

1. Bursts of writes to non-cacheable MDMA space (i.e., DDR2). The DSP buffers up to
4 non-cacheable writes. When this buffer fills, SDMA/IDMA is blocked until the buffer
is no longer full. Therefore, bursts of non-cacheable writes longer than three writes
can stall SDMA/IDMA traffic.

2. Various combinations of L1 and L2 cache activity:

(a) L1D read miss generating victim traffic to L2 (cache or SRAM) or external
memory. The SDMA/MDMA may be stalled while servicing the read miss and the
victim. If the read miss also misses L2 cache, the SDMA/IDMA may be stalled
until data is fetched from external memory to service the read miss. If the read
access is to non-cacheable memory, there will still potentially be an L1D victim
generated even though the read data will not replace the line in the L1D cache.

(b) L1D read request missing L2 (going external) while another L1D request is
pending. The SDMA/IDMA may be stalled until the external memory access is
complete.

(c) L2 victim traffic to external memory during any pending L1D request. The
SDMA/IDMA may be stalled until external memory access and the pending L1D
request are complete.

The duration of the SDMA/IDMA stalls depends on the quantity/characteristics of the
L1/L2 cache and the MDMA traffic in the system. In cases 2a, 2b, and 2c, stalling may or
may not occur depending on the state of the cache request pipelines and the traffic
target locations. These stalling mechanisms may also interact in various ways, causing
longer stalls. Therefore, it is difficult to predict if stalling will occur and for how long.

SDMA/IDMA stalling and any system impact is most likely in systems with excessive
context switching, L1/L2 cache miss/victim traffic, and heavily loaded EMIF.

Use the following steps to determine if SDMA/IDMA stalling is the cause of real-time
deadline misses for existing applications. Situations where real-time deadlines may be
occurring include lower-than-expected peripheral throughput or loss of I/O data.

1. Determine if the transfer missing the real-time deadline is accessing L2 or L1D
memory. If not, then SDMA/IDMA stalling is not the source of the real-time deadline
miss.

2. Identify all SDMA transfers to/from L2 memory (e.g., EDMA transfer to/from L2
from/to external memory or non-local L2, TSIP Tx/Rx data transfer or an EMAC
Tx/Rx/CPPI transfer or UTOPIA Tx/Rx transfers, SRIO Tx/RX/CPPI message
transfers, SRIO direct IO accesses, or HPI accesses). If there are no SDMA transfers
going to L2, then SDMA/IDMA stalling is not the source of the problem.

3. Redirect all SDMA transfers writing to L2 memory to other memories using one of the
following methods:

• Temporarily transfer all the L2 SDMA transfers to L1D SRAM.
• If not all L2 SDMA transfers can be moved to L1D memory, temporarily direct

some of the transfers to DDR memory and keep the rest in L1D memory. There
should be no L2 SDMA transfers.

• If neither of the above approaches are possible, move the transfer with the
real-time deadline to the EMAC CPPI RAM. If the EMAC CPPI RAM is not big
enough, a two-step mechanism can be used to page a small working buffer
defined in the EMAC CPPI RAM into a bigger buffer in L2 SRAM. The EDMA
module can be setup to automate this double buffering scheme without CPU
intervention for moving data from the EMAC CPPI RAM. Some throughput
degradation is expected when the buffers are moved to the EMAC CPPI RAM.

Note: EMAC CPPI RAM memory is word-addressable only and, therefore, must
be accessed using an EDMA index of 4 bytes.

If real-time deadlines are still missed after implementing any of the options in Step 3,
then SDMA/IDMA stalling is likely not the cause of the problem. If real-time deadline
misses are solved using any of the options in Step 3, then SDMA/IDMA stalling is likely

56 TMS320TCI6486 DSP—Silicon Revisions 2.1, 2.0, 1.2, 1.1, 1.0 SPRZ247I–October 2007–Revised July 2011
Submit Documentation Feedback

Copyright © 2007–2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRZ247I

VBUS#
Master B

VBUS#
Master A

VBUSM
Master C

GEM -
MDMA

SCR*

Bridge B2
(M/P) : (M)

Main
MSCR

GEM -
SDMA

SlaveX

Satellite SCR

#
.
.
*

#
.
.
*

*
.
.
M

* denotes M or P.

www.ti.com Silicon Revision 1.2 Usage Notes and Known Design Exceptions to Functional Specifications

the source of the problem.

An extreme consequence of the IDMA/SDMA stall issue is the C64x+ MDMA-SDMA
deadlock that requires a device reset or power cycle in order for the system to recover.
The following summarizes the deadlock conditions:

• Master(s) on a single main MSCR port write to the GEM's SDMA followed by a write
to slaveX

• The GEM issues victim traffic to slaveX
• Any one of the following (see Figure 12):

– A write data path pipelined in main MSCR between master(s) and the GEM's
SDMA

– A bridge exists between master(s) and the main MSCR
– Master(s) are able to issue a command to slaveX concurrent with the write to the

GEM's SDMA.

A load (either cacheable or non-cacheable) from another core's L1D or L2 memory can
additionally create a deadlock condition. When the load is issued, the read command is
propagated to the SDMA port of the other core through a shared cross-connect bridge
that is shared with either TC0 or TC1 and GEM MDMA traffic from two other GEMs.
When the load is issued, if a victim is generated in L1D cache, then the SDMA may stall
until the load completes. If other masters are issuing commands through the shared
cross-connect bridge, then the bridge may fill due to the stalled SDMA before the read
command can propagate through the bridge and complete. The TCI6486 device has two
cross-connect bridges (Xconn1 and Xconn2). GEMs 0, 1, 2, and TC0 use cross-connect
bridge 1. GEMs 3, 4, 5, and TC1 use cross-connect bridge 2. In summary, a deadlock
can occur if the following is true:

• GEMx issues a read to any of other GEM's L1D or L2 SRAM through cross-connect
bridge 1 or 2.

• Any of the other GEMs or TCx on the same cross-connect bridge issue commands to
GEMx L2.

Figure 12. Data Pipelined SCR

57SPRZ247I–October 2007–Revised July 2011 TMS320TCI6486 DSP—Silicon Revisions 2.1, 2.0, 1.2, 1.1, 1.0
Submit Documentation Feedback

Copyright © 2007–2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRZ247I

Silicon Revision 1.2 Usage Notes and Known Design Exceptions to Functional Specifications www.ti.com

Workarounds: Method 1

To reduce the SDMA/IDMA stalling system impact, perform any of the following:

1. Improve system tolerance on DMA side (SDMA/IDMA/MDMA):

• Understand and minimize latency-critical SDMA/IDMA accesses to L2 or L1P/D.
• Directly reduce critical real-time deadlines, if possible, at peripheral/IO level (e.g.,

increase word size and/or reduce bit rates on serial ports).
• To reduce DSP MDMA latency:

– Increase the priority of the DSP access to DDR2 such that MDMA latency of
MDMA accesses causing stalls is minimized.
Note: Other masters may have real-time deadlines that dictate higher priority
than the DSP.

– Lower the PRIO_RAISE field setting in the DDR2 memory controller's burst
priority register. Values ranging between 0x10 and 0x20 should give decent
performance and minimize latency; lower values may cause excessive
SDRAM row thrashing.

2. Minimize offending scenarios on DSP/caching side:

• If the DSP performing non-cacheable writes is causing the issue, insert protected
non-cacheable reads (as shown in the last list item below) every few writes to
allow the write buffer to empty.

• Use explicit cache commands to trigger cache writebacks during appropriate
times (L1D Writeback All, L2 Writeback All). Do not use these commands when
real-time deadlines must be met.

• Restructure program data and data flow to minimize the offending cache activity.

– Define the read-only data as const. The const C keyword tells the compiler
not to write to the array. By default, such arrays are allocated to the .const
section as opposed to BSS. With a suitable linker command file, the
developer can link the .const section off chip, while linking .bss on chip.
Because programs initialize .bss at run time, this reduces the program's
initialization time and total memory image.

– Explicitly allocate lookup tables and writeable buffers to their own sections.
The #pragma DATA_SECTION (label, section) directive tells the compiler to
place a particular variable in the specified COFF section. The developer can
explicitly control the layout of the program with this directive and an
appropriate linker command file.

– Avoid directly accessing data in slow memories (e.g., flash); copy at
initialization time to faster memories.

• Modify troublesome code.

– Rewrite using DMAs to minimize data cache writebacks. If the code accesses
a large quantity of data externally, consider using DMAs to bring in the data,
using double buffering and related techniques. This will minimize cache
write-back traffic and the likelihood of SDMA/IDMA stalling.

– Re-block the loops. In some cases, restructuring loops can increase reuse in
the cache and reduce the total traffic to external memory.

– Throttle the loops. If restructuring the code is impractical, then it is reasonable
to slow it down. This reduces the likelihood that consecutive SDMA/IDMA
blocks stack up in the cache request pipelines, resulting in a long stall.

•

58 TMS320TCI6486 DSP—Silicon Revisions 2.1, 2.0, 1.2, 1.1, 1.0 SPRZ247I–October 2007–Revised July 2011
Submit Documentation Feedback

Copyright © 2007–2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRZ247I

www.ti.com Silicon Revision 1.2 Usage Notes and Known Design Exceptions to Functional Specifications

Protect non-cacheable reads from generating an SDMA stall by freezing the L1D
cache during the non-cacheable read access(es). The following example code
contains a function that protects non-cacheable reads, avoids blocking during the
reads, and, therefore, avoids the deadlock state.

;; == ;;
;; Long Distance Load Word ;;
;; ;;
;; int long_dist_load_word(volatile int *addr) ;;
;; ;;
;; This function reads a single word from a remote location with the L1D ;;
;; cache frozen. This prevents L1D from sending victims in response to ;;
;; these reads, thus preventing the L1D victim lock from engaging for the ;;
;; corresponding L1D set. ;;
;; ;;
;; The code below does the following: ;;
;; ;;
;; 1. Disable interrupts ;;
;; 2. Freeze L1D ;;
;; 3. Load the requested word ;;
;; 4. Unfreeze L1D ;;
;; 5. Restore interrupts ;;
;; ;;
;; Interrupts are disabled while the cache is frozen to prevent affecting ;;
;; the performance of interrupt handlers. Disabling interrupts during ;;
;; the long distance load does not greatly impact interrupt latency, ;;
;; because the CPU already cannot service interrupts when it's stalled by ;;
;; the cache. This function adds a small amount of overhead (~20 cycles) ;;
;; to that operation. ;;
;; ;;
;; == ;;

.asg 0x01840044, L1DCC ; L1D Cache Control

.global _long_dist_load_word

.text

.asmfunc
; int long_dist_load_word(volatile int *addr)
_long_dist_load_word:

MVKL L1DCC, B4
MVKH L1DCC, B4

|| DINT ; Disable interrupts
|| MVK 1, B5

STW B5, *B4 ; _ Freeze cache
LDW *B4, B5 ; /
NOP 4
SHR B5, 16, B5 ; POPER -> OPER

|| LDW *A4, A4 ; read value remotely
NOP 4
STW B5, *B4 ; _ Restore cache
RET B3

|| LDW *B4, B5 ; /
NOP 4
RINT ; Restore interrupts
.endasmfunc

;; == ;;
;; End of file: ldld.asm ;;
;; == ;;

In the TCI6486 multi-core device, when one GEM is accessing another GEM's L1 or L2
memory it is an MDMA access, so the potential SDMA/IDMA stall can occur. The stall
can be avoided by using the EDMA to transfer data from one GEM's memory to another.

59SPRZ247I–October 2007–Revised July 2011 TMS320TCI6486 DSP—Silicon Revisions 2.1, 2.0, 1.2, 1.1, 1.0
Submit Documentation Feedback

Copyright © 2007–2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRZ247I

Silicon Revision 1.2 Usage Notes and Known Design Exceptions to Functional Specifications www.ti.com

Method 2

Entirely eliminate the exception by removing all SDMA/IDMA accesses to L2 SRAM. For
example, EMAC descriptors and EMAC payload cannot reside in L2. Master peripherals
like the EDMA/QDMA, IDMA, and SRIO cannot access L2. There are no issues with the
CPU itself accessing code/data in L2. This issue only pertains to SDMA/IDMA accesses
to L2.

Dataflow Requirements

To avoid the issue due to a C64x+ deadlock, workarounds depend on the
CPU/peripheral bus master that is accessing the GEM internal or external memory:

CPU/PERIPHERAL BUS WORKAROUNDMASTER

GEM GEMs should not write to the memory of any other GEM. GEMs must not directly read from the
memory of any other GEMs without providing the L1D cache disable workaround, mentioned in
Method 1, to ensure that the load will not stall itself indefinitely and hang the system.

EDMA3TCx Inbound and outbound traffic should be programmed on different TC ports(i.e., two different
EDMA queues, since a given queue maps to a given TC). Any TC used to write to DDR should
not be used to write to a GEM even when the TC writing to the DDR is also reading from the
DDR.

TSIP0,1,2 All TSIPs (0, 1, 2) should either write to the GEM's memory or the DDR, but not both.

SRIO, SRIO CPPI SRIO should transfer payload data to only the GEM memories or to the DDR2 SDRAM, but not
both. This includes any direct I/O writes as well as any inbound receive messaging transfers.
SRIO CPPI descriptors should be placed wholly in the local wrapper memory, any combination of
wrapper and L2 memory, or any combination of wrapper and DDR2 SDRAM. Buffer descriptors
should not be placed in any combination of L2 and DDR2 SDRAM.

EMAC0, EMAC1, UTOPIA, HPI All four masters should write to the GEM's memory or the DDR, but not both. This includes
buffers and buffer descriptors of EMAC and any writes issued by the host. EMAC CPPI
descriptors should be placed wholly in local wrapper memory, any combination of wrapper and L2
memory, or any combination of wrapper and DDR2 SDRAM.

60 TMS320TCI6486 DSP—Silicon Revisions 2.1, 2.0, 1.2, 1.1, 1.0 SPRZ247I–October 2007–Revised July 2011
Submit Documentation Feedback

Copyright © 2007–2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRZ247I

www.ti.com Silicon Revision 1.2 Usage Notes and Known Design Exceptions to Functional Specifications

Advisory 7 Potential SerDes Clocking Issue

Revision(s) Affected: 1.2, 1.1, 1.0

Details: An issue has been found in the SerDes interfaces that causes a SerDes clocking
problem in normal functional operation. This problem will not occur when external
pull-down is applied on the TCK pin (JTAG controller clock).

The TCK pin (JTAG controller clock) is internally assigned to an internal signal that is
used by the SerDes macro. For the SerDes macro to get proper clocking in the normal
functional operation, it needs the internal signal to be held low. However, there is an
internal pull-up on the TCK, creating problems for SerDes operation.

Workaround: The TCK pin should be externally pulled down with a 1-kΩ resistor.

61SPRZ247I–October 2007–Revised July 2011 TMS320TCI6486 DSP—Silicon Revisions 2.1, 2.0, 1.2, 1.1, 1.0
Submit Documentation Feedback

Copyright © 2007–2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRZ247I

Silicon Revision 1.2 Usage Notes and Known Design Exceptions to Functional Specifications www.ti.com

Advisory 8 Potential Insertion or Deletion of 2 Bits in SerDes Data Stream

Revision(s) Affected: 1.2, 1.1, 1.0

Details: For arbitrary phase mode, a FIFO function is integrated into the SerDes TX serializer.
This FIFO has three states (minus1, center, plus1) and is supposed to be reset to the
center state at startup. From this position, the SerDes is then tolerant to variations of
phase between the input clock (TXBCLKIN) and the SerDes internal clock, caused by
temperature and voltage variations. However, as a result of a logic issue, the possibility
exists that under some circumstances, the FIFO may not start in the center state. When
this happens, there is a risk that the FIFO may subsequently overflow or underflow.

Whether the FIFO fails to initialize to the center state depends on the timing
relationships between several signals, including the SerDes internal clock. Even if the
FIFO initializes to the center state, the FIFO will only underflow or overflow if the phase
relationship between the TXBCLKIN input and the internal SerDes clock vary (due to
temperature or voltage changes) in such a way as to cause their edges to cross in one
particular direction. Overflow results in two bits being added to the data stream.
Underflow results in two bits being deleted. If overflow or underflow occurs at all, it only
happens once per TX lane because after it has occurred the FIFO is configured exactly
as if it had initialized to the center state at startup.

The precise silicon process of the device will also be a factor in whether the overflow or
underflow occurs. Some devices may exhibit this behavior at some particular PVT
combinations, others may never exhibit it. It is not possible to predict whether, or under
what conditions, a device is susceptible. If overflow or underflow occur, it could be at any
time ranging from immediately after startup to weeks, months, or years later.

Workaround: SRIO has an auto-recovery in silicon rev. 1.0 and 1.1. Auto-recovery resets the link and
re-exposes the issue. TI is working to understand the likelihood of repeated recovery and
whether there could be performance impacts due to repeated recovery.

62 TMS320TCI6486 DSP—Silicon Revisions 2.1, 2.0, 1.2, 1.1, 1.0 SPRZ247I–October 2007–Revised July 2011
Submit Documentation Feedback

Copyright © 2007–2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRZ247I

www.ti.com Silicon Revision 1.2 Usage Notes and Known Design Exceptions to Functional Specifications

Advisory 10 Atomic Operations Fail to Complete

Revision(s) Affected: 1.2, 1.1, 1.0

Details: In the TCI6486 device atomic access monitors are located only in the shared-memory
controller. These monitors assure that only the correct sequence of accesses are
successful. Successful completion of atomic operations requires the successful
completion of a sequence of load-linked (LL), store-linked (SL), and commit-linked
(CMTL) instructions to a single address by a single CPU. The atomic operation
instructions were intended to temporarily freeze the cache for execution of those
instructions, in all respects. However, the implicit cache freezing functionality is
incomplete due to an internal exception. Therefore, for the accesses to be successful,
the L1D cache must be explicitly temporarily frozen around the execution of these
instructions to ensure that the accesses generated by these instructions are made all the
way to the shared-memory controller. Since the L1D memory controller (DMC) does not
completely disable the cache functionality for these instructions resulting in a failure to
complete, explicit disables and, possibly, re-enables of the L1D cache around these
instructions must be provided by the software.

Workaround: Reference implementations of atomic add and atomic exchange that incorporate
workarounds for atomic operations and L1D freeze mode are provided below. Since the
L1D cache lines must be explicitly frozen, the memory objects of the atomic access
instructions should be the only thing stored in a 64B L1D cache line (i.e., normal reads
and writes should not be performed to the remaining locations in the same L1D cache
line).
;Atomically add A4 to the value pointed to by B4. Returns the sum.
;This is a C-callable function as written.
; int atomic_add(int value, volatile int *sema)
;

.asg 0x01840044, L1DCC

.global _atomic_add
_atomic_add:

MV A4, B5 ; Copy value to exchange to B side.
|| MVKL L1DCC, A5 ; _ L1D cache control for freezing

MVKH L1DCC, A5 ; / and unfreezing L1D.
|| MVK 1, A0 ; Value to put into L1DCC.OPER for freeze.

loop:
STW .D1T1 A0, *A5 ; Freeze L1D.

|| DINT ; Disable interrupts.
LDW .D1T1 *A5, A2 ; Get previous freeze. Stall until frozen.

[!A0] MVK .D2 0, B1 ; (block EDI)
LL .D2 *B4, B6 ; Establish monitor and get old value.

[!A0] MVK .D2 0, B1 ; (block EDI)
NOP 3 ; wait for LL to complete.
ADD .D2 B5, B6, B7 ; Add new value to old *and* block EDI.
SL .D2 B7, *B4 ; Store new value to monitor.

[!A0] MVK .D2 0, B1 ; (block EDI)
CMTL.D2 *B4, B0 ; Attempt to commit.

[!A0] MVK .D2 0, B1 ; (block EDI)

SHRU A2, 16, A2 ; Shift L1DCC.POPER down to L1DCC.OPER.
STW .D1T1 A2, *A5 ; Restore previous frozen/non-frozen state.
RINT ; Restore interrupts

;; ==== Interrupt may occur here prior to issuing branch.

[!B0] BNOP.S2 loop, 0 ; Loop if it didn't commit.
|| MV B7, A4 ; Copy sum to return register.
[B0] BNOP.S2 B3, 5 ; Return if it did commit.
;; ==== Interrupt may occur here prior to reaching branch target.
;; ==== Branch occurs.

; Atomically exchange the value pointed to by B4 with the value in A4.
; This is a C-callable function as written.

63SPRZ247I–October 2007–Revised July 2011 TMS320TCI6486 DSP—Silicon Revisions 2.1, 2.0, 1.2, 1.1, 1.0
Submit Documentation Feedback

Copyright © 2007–2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRZ247I

Silicon Revision 1.2 Usage Notes and Known Design Exceptions to Functional Specifications www.ti.com

;
; int atomic_exhange(int value, volatile int *sema)
;

.asg 0x01840044, L1DCC

.global _atomic_exchange
_atomic_exchange:

MV A4, B5 ; Copy value to exchange to B side.
|| MVKL L1DCC, A5 ; _ L1D cache control for freezing

MVKH L1DCC, A5 ; / and unfreezing L1D.
|| MVK 1, A0 ; Value to put into L1DCC.OPER for freeze.

loop:
STW .D1T1 A0, *A5 ; Freeze L1D.

|| DINT ; Disable interrupts.
LDW .D1T1 *A5, A2 ; Get previous freeze. Stall until frozen.

[!A0] MVK .D2 0, B1 ; (block EDI)
LL .D2 *B4, B6 ; Establish monitor and get old value.

[!A0] MVK .D2 0, B1 ; (block EDI)
SL .D2 B5, *B4 ; Store new value to monitor.

[!A0] MVK .D2 0, B1 ; (block EDI)
CMTL.D2 *B4, B0 ; Attempt to commit.

[!A0] MVK .D2 0, B1 ; (block EDI)

SHRU A2, 16, A2 ; Shift L1DCC.POPER down to L1DCC.OPER.
STW .D1T1 A2, *A5 ; Restore previous frozen/non-frozen state.
RINT ; Restore interrupts.

;; ==== Interrupt may occur here prior to issuing branch.

[!B0] BNOP.S2 loop, 0 ; Loop if it didn't commit.
|| MV B6, A4 ; Copy exchanged value to return register.
[B0] BNOP.S2 B3, 5 ; Return if it did commit.
;; ==== Interrupt may occur here prior to reaching branch target.
;; ==== Branch occurs.

64 TMS320TCI6486 DSP—Silicon Revisions 2.1, 2.0, 1.2, 1.1, 1.0 SPRZ247I–October 2007–Revised July 2011
Submit Documentation Feedback

Copyright © 2007–2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRZ247I

www.ti.com Silicon Revision 1.2 Usage Notes and Known Design Exceptions to Functional Specifications

Advisory 12 PMC: Local Reset (lreset) Followed By Block Invalidate Hangs

Revision(s) Affected: 1.2, 1.1, 1.0

Details: The PMC never goes into idle when lreset is followed by a programmed block invalidate
without sufficient delay. The L1PINV command issued to the PMC is not acknowledged
until the CFG request is read in. When combined with an lreset, the PMC treats it as a
new L1PINV command every cycle and the invalidation counter never increments. The
result is a deadlock.

Workaround: Ensure that 2Kb CPU cycles have elapsed after beginning execution at the reset vector
before an L1PINV is issued. The minimum number of CPU cycles is decided by the time
duration for the global cache invalidation to finish before a new L1PINV starts.

Note: Advisories 12 and 13 must be used together.

65SPRZ247I–October 2007–Revised July 2011 TMS320TCI6486 DSP—Silicon Revisions 2.1, 2.0, 1.2, 1.1, 1.0
Submit Documentation Feedback

Copyright © 2007–2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRZ247I

Silicon Revision 1.2 Usage Notes and Known Design Exceptions to Functional Specifications www.ti.com

Advisory 13 PMC: L1P Cache Not Invalidated During lreset

Revision(s) Affected: 1.2, 1.1, 1.0

Details: The PMC is supposed to perform cache invalidation on lreset. However, due to an
internal exception, the PMC may drop cache invalidate on lreset and the remaining
addresses are skipped from invalidation.

Workaround: The code that is located at the lreset start address, beginning of the local L2 memory by
default, must perform a complete invalidation of the L1P before proceeding.

Note: Advisories 12 and 13 must be used together.

66 TMS320TCI6486 DSP—Silicon Revisions 2.1, 2.0, 1.2, 1.1, 1.0 SPRZ247I–October 2007–Revised July 2011
Submit Documentation Feedback

Copyright © 2007–2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRZ247I

www.ti.com Silicon Revision 1.2 Usage Notes and Known Design Exceptions to Functional Specifications

Advisory 14 UMC: L2MPFAR Fails to Log CPU Protection Faults Under Certain Conditions

Revision(s) Affected: 1.2, 1.1, 1.0

Details: When a CPU memory protection fault on a UMAP0 access occurs in the same cycle as
a DMA memory protection fault on a UMAP1 access, the DMA fault information, rather
than the CPU fault information, is logged in L2MPFAR and L2MPFSR.

Workaround: There is no workaround for this advisory.

67SPRZ247I–October 2007–Revised July 2011 TMS320TCI6486 DSP—Silicon Revisions 2.1, 2.0, 1.2, 1.1, 1.0
Submit Documentation Feedback

Copyright © 2007–2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRZ247I

Silicon Revision 1.2 Usage Notes and Known Design Exceptions to Functional Specifications www.ti.com

Advisory 18 PrivID For Non-CPU Masters Is Same as GEM0 CPU

Revision(s) Affected: 1.2, 1.1, 1.0

Details: The GEM0 CPU and all non-EDMA system masters on the device are assigned the
same privilege ID. (The EDMA inherits the privilege ID from the programming GEM.)
This requires the software to take corrective actions to differentiate memory accesses
from the GEM0 CPU and the non-CPU peripheral masters when a memory access
violation occurs. Note: Within GEM0, the CPU generated accesses are identified as
local, although IDMA accesses are recognized as PrivID=0 accesses. This provides
some distinction between true CPU accesses and non-EDMA system masters for GEM0.

Workaround: A partial workaround is to keep the non-GEM traffic always as user access and the
GEM0 traffic always as supervisor access. In that case, AID0 supervisor transactions are
known to be GEM0 CPU and AID0 user transactions are known to be non-CPU and
non-EDMA peripheral masters. Note: If the HPI/SRIO are configured as supervisors for
host accesses to on-chip memory and certain MMRs, then it is not possible to
distinguish between GEM0 supervisor traffic and HPI/SRIO traffic.

Note: This issue was fixed in later silicon revisions. GEM0 CPU privilege ID was
changed from 0 to 6.

PID SILICON REVISION ≤1.2 SILICON REVISION >1.2

Non-EDMA System Non-EDMA System0 Masters; GEM0 CPU 0 Masters

1 GEM1 CPU GEM1 CPU

2 GEM2 CPU GEM2 CPU

3 GEM3 CPU GEM3 CPU

4 GEM4 CPU GEM4 CPU

5 GEM5 CPU GEM5 CPU

6 - GEM0 CPU

68 TMS320TCI6486 DSP—Silicon Revisions 2.1, 2.0, 1.2, 1.1, 1.0 SPRZ247I–October 2007–Revised July 2011
Submit Documentation Feedback

Copyright © 2007–2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRZ247I

www.ti.com Silicon Revision 1.2 Usage Notes and Known Design Exceptions to Functional Specifications

Advisory 19 UTOPIA Lock-Up Issue

Revision(s) Affected: 1.2, 1.1, 1.0

Details: A PDMA issue could cause the UTOPIA receive cell buffer in memory to become
corrupted and UTOPIA and PDMA to stop transmitting and receiving cells. UTOPIA and
PDMA must be reset through the PSC and reconfigured to restart operation.

Workaround(s): A partial workaround is to perform a software recovery. A lock-up detection and UTOPIA
reset routine on the TCI6486 device can recover the lockup. Lock-up detection can be
performed by a polling routine running at 1-kHz frequency. When the lockup occurs, no
calls are lost; no calls must be torn down and setup again. The detection and recovery
procedure is:

1. Core y detects a cell with a bad header and signals Core A through the IPC.
2. Core A disables the UTOPIA, closes all DMA channels (on all cores), and executes a

reset of UTOPIA through the PSC.
3. Core A signals all other cores to perform a local UTOPIA restart through the IPC.
4. Core A waits for all other cores to acknowledge the restart.
5. Core A performs a global UTOPIA enable.

In addition to the software recovery, the following three optional workarounds could
reduce the risk of UTOPIA lock-up occurrence.

1. One cell per block for transmits.

(a) One transmit block with multi-cells could block a PDMA receive channel from
winning arbitration to copy data from the UTOPIA receive FIFO to the PDMA
receive channel buffer in time to avoid a super-sized cell. The maximum block
time depends on the number of cells in the block due to the PDMA arbitration
mechanism.

(b) One-cell transmit reduces the time until the PDMA re-arbitrates between the
receive and transmit channels. The re-arbitration enables the blocked receive
channel to win the grant.

(c) The implementation of one-cell transmit is purely software based and has minimal
impact on UTOPIA throughput.

2. Any two cells that arrive in the UTOPIA are sent to different PDMA channels. This
cuts the available bandwidth in half, but it prevents the problem.

3. Set the UCLK at the lowest possible speed without impacting the system
performance. The lower the UCLK speed, the higher the tolerance for stalls. The
chance for lockup is significantly reduced.

69SPRZ247I–October 2007–Revised July 2011 TMS320TCI6486 DSP—Silicon Revisions 2.1, 2.0, 1.2, 1.1, 1.0
Submit Documentation Feedback

Copyright © 2007–2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRZ247I

Silicon Revision 1.2 Usage Notes and Known Design Exceptions to Functional Specifications www.ti.com

Advisory 23 DMA Access to L2 SRAM May Stall When the DMA Has Lower Priority Than the
CPU

Revision(s) Affected: 1.2, 1.1, 1.0

Details: The L2 memory controller in the GEM has programmable bandwidth management
features that are used to control bandwidth allocation for all requestors. There are two
parameters to control this, command priority and arbitration counter MAXWAIT values.
Each requestor has a command priority and the requestor with the higher priority wins.
However, there are also counters associated with each requestor that track the number
of cycles each requestor loses arbitration. When this counter reaches a threshold
(MAXWAIT), which is programmed by the user (or default value), the losing requestor
gets an arbitration slot and wins for that cycle. There are four such requestors: CPU,
DMA (SDMA and IDMA), user cache coherency operation, and global cache coherence.
Global-coherence operations are highest priority, while user-coherence operations are
lowest priority. However, there is active arbitration done for the CPU and the DMA
(SDMA/IDMA) commands. The priority for DMA commands comes from an external
master as part of the SDMA command or a programmable register, IDMA1_COUNT, in
the GEM for IDMA commands. The priority for CPU accesses to L2 is in a
programmable register, CPUARBU, in the GEM. For the default priority values, see
Table 18.

More details on the bandwidth management feature can be found in the C64x+
Megamodule Reference Guide (SPRU871).

Table 18. TCI6486 Default Master Priorities

DEFAULT MASTER PRIORITIES
MASTER (0 = Highest priority, PRIORITY CONTROL

7 = Lowest priority)

EDMA3TCx 0 QUEPRI.PRIQx (EDMA3 register)

SRIO (Data Access) 0 PER_SET_CNTL.CBA_TRANS_PRI (SRIO register)

EMAC 7 PRI_ALLOC.EMAC

HPI 7 PRI_ALLOC.HOST

UTOPIA - PDMA 1 PRI_ALLOC.UTOPIAPDMA

TSIP 7 DMACTL (TSIP register)

C64x+ Megamodule (MDMA port) 7 MDMAARBE.PRI (C64x+ Megamodule register)

C64x+ Megamodule (CPU Arbitration 1 CPUARBU (C64x+ Megamodule register)
control to L2)

C64x+ Megamodule (IDMA channel 1) 0 IDMA1_COUNT (C64x+ Megamodule register)

To enable bandwidth management, the L2 memory controller has an internal (non-user
visible) counter that counts MAXWAIT every cycle that a DMA command is blocked
because of a CPU access. When the internal counter reaches the MAXWAIT threshold,
it is supposed to stay saturated at that value and force the DMA access to win arbitration
over the CPU. In the case where DMA priority is less than CPU priority, the internal
counter does not saturate at the MAXWAIT threshold value. Instead, it wraps around and
keeps counting, thereby, giving more bandwidth to the CPU than intended by the
MAXWAIT threshold value. The result is that the DMA may lose to the CPU over multiple
arbitration cycles. This typically happens when CPU accesses keep the L2 memory
controller busy every cycle; for example, a continuous stream of L1D write misses to L2.

Workaround: Set the CPU at a lower priority than the DMA commands to L2. The priority for CPU
accesses to L2 is in a programmable register, CPUARBU, in the GEM. However,
lowering the CPU priority may impact the performance since CPU accesses to L2 may
stall due to DMA accesses, in case of contention.

This issue has been fixed on a later silicon revision.

70 TMS320TCI6486 DSP—Silicon Revisions 2.1, 2.0, 1.2, 1.1, 1.0 SPRZ247I–October 2007–Revised July 2011
Submit Documentation Feedback

Copyright © 2007–2011, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/lit/pdf/SPRU871
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRZ247I

www.ti.com Silicon Revision 1.1 Usage Notes and Known Design Exceptions to Functional Specifications

5 Silicon Revision 1.1 Usage Notes and Known Design Exceptions to Functional
Specifications

5.1 Silicon Revision 1.1 Usage Notes

Silicon revision 1.1 applicable usage notes have been found on a later silicon revision; for more detail, see
Section 2.1, Silicon Revision 2.1 Usage Notes, of this document.

5.2 Silicon Revision 1.1 Known Design Exceptions to Functional Specifications

Table 19 lists the silicon revision 1.1 known design exceptions to functional specifications. Advisories are
numbered in the order in which they were added to this document. If the design exceptions are still
applicable, the advisories move up to the latest silicon revision section. If the design exceptions are no
longer applicable or if the information has been documented elsewhere, those advisories are removed.
Therefore, advisory numbering may not be sequential.

All other known design exceptions to functional specifications for silicon revision 1.1 still apply and have
been moved up to Section 2.2, Silicon Revision 2.1 Known Design Exceptions to Functional
Specifications, Section 3.2, Silicon Revision 2.0 Known Design Exceptions to Functional Specifications, or
Section 4.2, Silicon Revision 1.2 Known Design Exceptions to Functional Specifications, of this document.

Table 19. Silicon Revision 1.1 Advisory List

Title .. Page

Advisory 9 — I2C Slave Boot Does Not Work .. 72

71SPRZ247I–October 2007–Revised July 2011 TMS320TCI6486 DSP—Silicon Revisions 2.1, 2.0, 1.2, 1.1, 1.0
Submit Documentation Feedback

Copyright © 2007–2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRZ247I

Silicon Revision 1.1 Usage Notes and Known Design Exceptions to Functional Specifications www.ti.com

Advisory 9 I2C Slave Boot Does Not Work

Revision(s) Affected: 1.1, 1.0

Details: I2C Slave Boot is intended to speed the boot process for a system with more than two
devices by allowing a single master read of the I2C EEPROM followed by a broadcast
by that master to all remaining devices on the I2C bus. However, during the I2C slave
boot process an internal exception is encountered causing the boot sequence to abort
on the slave device(s). Consequently, I2C slave boot does not complete.

Workaround: Use I2C master boot for all devices in the system.

72 TMS320TCI6486 DSP—Silicon Revisions 2.1, 2.0, 1.2, 1.1, 1.0 SPRZ247I–October 2007–Revised July 2011
Submit Documentation Feedback

Copyright © 2007–2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRZ247I

www.ti.com Silicon Revision 1.0 Usage Notes and Known Design Exceptions to Functional Specifications

6 Silicon Revision 1.0 Usage Notes and Known Design Exceptions to Functional
Specifications

6.1 Silicon Revision 1.0 Usage Notes

Silicon revision 1.0 applicable usage notes have been found on a later silicon revision; for more detail, see
Section 2.1, Silicon Revision 2.1 Usage Notes, of this document.

6.2 Silicon Revision 1.0 Known Design Exceptions to Functional Specifications

Table 20 lists the silicon revision 1.0 known design exceptions to functional specifications. Advisories are
numbered in the order in which they were added to this document. If the design exceptions are still
applicable, the advisories move up to the latest silicon revision section. If the design exceptions are no
longer applicable or if the information has been documented elsewhere, those advisories are removed.
Therefore, advisory numbering may not be sequential.

All other known design exceptions to functional specifications for silicon revision 1.0 still apply and have
been moved up to Section 2.2, Silicon Revision 2.1 Known Design Exceptions to Functional
Specifications, Section 3.2, Silicon Revision 2.0 Known Design Exceptions to Functional Specifications,
Section 4.2, Silicon Revision 1.2 Known Design Exceptions to Functional Specifications, or Section 5.2,
Silicon Revision 1.1 Known Design Exceptions to Functional Specifications, of this document.

Table 20. Silicon Revision 1.0 Advisory List

Title .. Page

Advisory 1 —SRIO: Packet-Forwarding NREAD Operations Larger Than 16 Bytes Fail..................................... 74
Advisory 2 —RGMII EMAC: Boot Start-Up Issue .. 75
Advisory 3 —DDR2 EMIF: Clock Synchronization Issue.. 76
Advisory 4 —TSIP: Receive Channel 4 Bitmap Corruption Issue ... 78
Advisory 5 —Device Configuration: HOUT is Not Generated When HPI is Disabled ... 81

73SPRZ247I–October 2007–Revised July 2011 TMS320TCI6486 DSP—Silicon Revisions 2.1, 2.0, 1.2, 1.1, 1.0
Submit Documentation Feedback

Copyright © 2007–2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRZ247I

DSP 1 DSP 2

Network/
System

Host

Port 0 Port 1 Port 0 Port 1 Port 0

DSP 3

Silicon Revision 1.0 Usage Notes and Known Design Exceptions to Functional Specifications www.ti.com

Advisory 1 SRIO: Packet-Forwarding NREAD Operations Larger Than 16 Bytes Fail

Revision(s) Affected: 1.0

Details: Packet forwarding uses programmable look-up tables to direct incoming packets to an
outbound port when the packets do not belong to the local device. Packet forwarding is
carried out at the logical layer of the serial RapidIO (SRIO) without the interaction of the
CPU. The SRIO logical layer copies incoming packets from an inbound buffer to an
outbound buffer. When used for packet forwarding, it forwards all types of packets,
including response, maintenance, DOORBELL, and message packets.

The current SRIO design fails to correctly copy response packets with a payload greater
than 16 bytes from the inbound to the outbound buffer. The first 16 bytes are correctly
copied, but the remainder of the payload is discarded. This issue affects only NREAD
response packets since their payloads can be up to 256 bytes. Packet types with small
responses, such as NWRITE_R, maintenance, message, and DOORBELL packets are
not affected by this issue.

Workaround: 1: Use a data push model, where each device in the daisy chain only submits write
requests. Using this approach will avoid the issue and provide the lowest latency
solution.

Workaround: 2: Two options exist if NREAD response packets cannot be avoided; for example, when
reading core dump information from an unresponsive processor which is unable to
initiate traffic by itself. The first option is to use software to segment read requests into
16-byte NREADs. Note that this option will work functionally, but may take too much
time.

The second option is illustrated in Figure 13.

Figure 13. Daisy-Chain Example

In this example, assume that DSP3 is down and the system host wants to do a large
NREAD of DSP3 to examine the core dump. The issue discussed above prohibits the
NREAD from completing correctly because, as the response packets from DSP3 are
sent back, they are corrupted by DSP2 and DSP1 packet forwarding. Instead, the
system host needs to request that the adjacent DSP (DSP2) generates the NREAD
request to DSP3. The NREAD responses are sent to DSP2 and temporarily stored in
memory. Then, DSP2 can generate NWRITE/NWRITE_R/SWRITE packets to the
system host with the needed payload. These packets are correctly forwarded by DSP1
to the system host since they are request packets and not responses.

74 TMS320TCI6486 DSP—Silicon Revisions 2.1, 2.0, 1.2, 1.1, 1.0 SPRZ247I–October 2007–Revised July 2011
Submit Documentation Feedback

Copyright © 2007–2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRZ247I

www.ti.com Silicon Revision 1.0 Usage Notes and Known Design Exceptions to Functional Specifications

Advisory 2 RGMII EMAC: Boot Start-Up Issue

Revision(s) Affected: 1.0

Details: The RGMII EMAC boot mode in the TCI6486 will fail to transmit an Ethernet-ready frame
when that boot mode is selected by the BOOTMODE[3:0] pins at device reset. In most
systems, the host that is responsible for sending the boot table will not send the table
until it sees the Ethernet-ready frame.

Workarounds: Three workarounds could be used to address this issue:

1. Select one of the I2C master boots. Program the selected parameter table in the I2C
device to select EMAC boot as the extended boot mode type. Table 21 is a
parameter table that selects the EMAC boot mode. The minimum set of parameters
also includes the chip PLL multiplier, which allows this mode to automatically set the
multiplier value as required by the DDR clock issue alert for use of external memory.
More detailed information on programming the I2C parameter tables for additional
boot configuration requirements can be found in the TMS320TCI648x Bootloader
User’s Guide (literature number SPRUEA7).

Table 21. I2C Parameter Table for EMAC Boot

OFFSET VALUE COMMENTS

0x00 0x000A Parameter table is 10 bytes

0x02 0xFED2 1's complement checksum

0x04 0x0105 EMAC boot

0x06 0x0000 Port 0

0x08 0x001E PLL multiplier is x30 (Assumes CLKIN1=16.667MHz and PG1.0 silicon)

2. Have the host that is responsible for sending the boot table broadcast a small boot
table with the program that is shown in the example below. This causes any TCI6486
devices that have not sent an Ethernet-ready frame and have not begun to receive
boot table packets to restart the EMAC boot procedure and transmit the
Ethernet-ready frame.
Boot Restart Code
warm_restart .equ 0x00100110

mvkl #warm_restart, b0
mvkh #warm_restart, b0
bnop b0, 5
nop

3. If the host responsible for sending the boot table already knows the identity of all
devices it is responsible to boot, then the host can begin sending the boot table
packets after some customer TBD delay following a device reset. Under typical
conditions, the device will be ready to receive EMAC boot packets within 2 ms
following the deassertion of reset.

75SPRZ247I–October 2007–Revised July 2011 TMS320TCI6486 DSP—Silicon Revisions 2.1, 2.0, 1.2, 1.1, 1.0
Submit Documentation Feedback

Copyright © 2007–2011, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/lit/pdf/SPRUEA7
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRZ247I

26.67-MHz
clock

oscillator

TCI6486

CLKIN1 (CHIP PLL)
PLL multiply: x20

CLKIN3 (DDR PLL)
PLL multiply: x20 (fixed)

CLKIN2 (EMAC PLL)
PLL multiply: x20 (fixed)

25-MHz
clock

oscillator

TCI6486

CLKIN1 (CHIP PLL)
PLL multiply: x20

CLKIN3 (DDR PLL)
PLL multiply: x20 (fixed)

CLKIN2 (EMAC PLL)
PLL multiply: x20 (fixed)

25-MHz
clock

oscillator 0 W

26.67-MHz
clock

oscillator

Silicon Revision 1.0 Usage Notes and Known Design Exceptions to Functional Specifications www.ti.com

Advisory 3 DDR2 EMIF: Clock Synchronization Issue

Revision(s) Affected: 1.0

Details: The DDR2 EMIF in the TCI6486 device requires that specific consideration be given to
the DDR2 clock with respect to the CPU clock, in order to successfully complete all
writes to external memory. When independent clock sources are used for CLKIN1 (CHIP
clock) and CLKIN3 (DDR2 clock), writes to the DDR2 external memory may be corrupted
in certain situations.

Workaround: Provide a single clock source to both CLKIN1 and CLKIN3 and set the PLL1 multiplier to
multiply CLKIN1 by x30.

The selected frequency should be 16.67 MHz and the PLL1 multiplier should be set to
multiply CLKIN1 by x30. This will create a 500-MHz clock to each CPU. The DDR2 data
rate, which has a fixed multiply by x20 of CLKIN3, will be 333 MHz.

The following three figures help illustrate the likely hardware changes. Figure 14 shows
the clock source diagram that TI expects most customers have implemented. Figure 15
shows the requested implementation change. Figure 16 shows the workaround
implementation requirement.

Figure 14. Expected Customer Implementation

Figure 15. Requested Implementation Change

76 TMS320TCI6486 DSP—Silicon Revisions 2.1, 2.0, 1.2, 1.1, 1.0 SPRZ247I–October 2007–Revised July 2011
Submit Documentation Feedback

Copyright © 2007–2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRZ247I

16.67-MHz
clock

oscillator

TCI6486

CLKIN1 (CHIP PLL)
PLL multiply: x30

CLKIN3 (DDR PLL)
PLL multiply: x20 (fixed)

CLKIN2 (EMAC PLL)
PLL multiply: x20 (fixed)

25-MHz
clock

oscillator

0 W

www.ti.com Silicon Revision 1.0 Usage Notes and Known Design Exceptions to Functional Specifications

Figure 16. Interim Workaround for Silicon Revision 1.0

77SPRZ247I–October 2007–Revised July 2011 TMS320TCI6486 DSP—Silicon Revisions 2.1, 2.0, 1.2, 1.1, 1.0
Submit Documentation Feedback

Copyright © 2007–2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRZ247I

Silicon Revision 1.0 Usage Notes and Known Design Exceptions to Functional Specifications www.ti.com

Advisory 4 TSIP: Receive Channel 4 Bitmap Corruption Issue

Revision(s) Affected: 1.0

Details: The bitmap memory for receive channel 4 will be corrupted if an error occurs on any
TSIP channel. This results in the receive data for channel 4 (associated with GEM4)
being lost for frame intervals beginning with the first error until the issue is addressed
and the receive channel 4 bitmap has been reinitialized and activated. Corruption is due
to a double translation of the address going to the memory used for bitmaps and error
queues (see Figure 17). Figure 18 shows a bitmap memory snapshot where the TSIP
receive channel 4 bitmap has been corrupted.

If an error occurs during execution of the normal application, then a TSIP error interrupt
is asserted for every channel that experiences an error. This error interrupt is asserted to
the corresponding DSP subsystem. The DSP subsystem that receives the error interrupt
must correct the error condition to avoid prolonged loss of data on its own channel as
well as on channel 4. When DSP subsystem 4 receives an error it must determine
whether the error is due to its own failure and, if it is, that error must be corrected first.

78 TMS320TCI6486 DSP—Silicon Revisions 2.1, 2.0, 1.2, 1.1, 1.0 SPRZ247I–October 2007–Revised July 2011
Submit Documentation Feedback

Copyright © 2007–2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRZ247I

TX1

TX2

TX3

TX4

TX5

Not Used

Not Used

RX0

RX1

RX2

RX3

RX4

RX5

Eq

Not Used

TX0 A

B

TX1

TX2

TX3

TX4

TX5

RX4

RX5

RX0

RX1

RX2

RX3

Eq

TX0 A

B

TX1

TX2

TX3

TX4

TX5

RX4 + Eq

RX5

RX0

RX1

RX2

RX3

Not Used

TX0 A

B
512B

1024B

Un-optimized Solution Intended Single Translation Incorrect Double Translation

www.ti.com Silicon Revision 1.0 Usage Notes and Known Design Exceptions to Functional Specifications

Figure 17. Bitmap Memory Address Translation

79SPRZ247I–October 2007–Revised July 2011 TMS320TCI6486 DSP—Silicon Revisions 2.1, 2.0, 1.2, 1.1, 1.0
Submit Documentation Feedback

Copyright © 2007–2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRZ247I

�

�

Errors logged in channel 0

error queue.

Errors (code=0x10) are due to

bitmap CID mismatch in the
transmit channel.

�

�

Errors logged in channel 4

error queue.

Errors (code=0x03) are due to

bitmap and buffer size
mismatch in the receive
channel.

Silicon Revision 1.0 Usage Notes and Known Design Exceptions to Functional Specifications www.ti.com

Figure 18. Bitmap Memory Corruption Example

Workaround: The following describes the two-part Workaround

1. Fix the application code or use condition that is responsible for generating the TSIP
error. This requires examination of the TSIP error registers for all the channels.

2. Re-initialize the receive channel 4 bitmap after the error condition is rectified.

Regardless of the cause of the failure, DSP subsystem 4 must re-initialize the content of
its bitmap memory. The re-initialization of its bitmap memory must start with the A set.

80 TMS320TCI6486 DSP—Silicon Revisions 2.1, 2.0, 1.2, 1.1, 1.0 SPRZ247I–October 2007–Revised July 2011
Submit Documentation Feedback

Copyright © 2007–2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRZ247I

www.ti.com Silicon Revision 1.0 Usage Notes and Known Design Exceptions to Functional Specifications

Advisory 5 Device Configuration: HOUT is Not Generated When HPI is Disabled

Revision(s) Affected: 1.0

Details: HOUT is a host output signal that is pulsed by a write to IPCGR15, which is a register in
the CRLF. HOUT is placed in a high-impendence state when HPI is disabled in the
system. This occurs even though HOUT is functionally independent of HPI.

Workaround: HPI must remain enabled if HOUT is used, even if there is no plan to use HPI. Since the
I/O buffers for HPI are on when HPI is enabled, board resistors should be used to pull all
HPI I/O buffers to the 3.3-V supply rail or to ground. The preferred direction of the
resistors is the same as the internal pull resistors that are present when HPI is disabled.

81SPRZ247I–October 2007–Revised July 2011 TMS320TCI6486 DSP—Silicon Revisions 2.1, 2.0, 1.2, 1.1, 1.0
Submit Documentation Feedback

Copyright © 2007–2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRZ247I

82 TMS320TCI6486 DSP—Silicon Revisions 2.1, 2.0, 1.2, 1.1, 1.0 SPRZ247I–October 2007–Revised July 2011
Submit Documentation Feedback

Copyright © 2007–2011, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRZ247I

www.ti.com Appendix A

Appendix A Revision History

This silicon errata revision history highlights the technical changes made to the document in this revision.

Scope: Applicable updates relating to the TCI6486 device have been incorporated.

Table 22. TCI6486 Revision History

SEE ADDITIONS/MODIFICATIONS/DELETIONS

Section 1.2 Package Symbolization and Revision Identification:

Modified Figure 1 to include CTZ package and changed figure caption to: Lot Trace Code Examples for
TMS320TCI6486 (CTZ/GTZ/ZTZ Packages)

83SPRZ247I–October 2007–Revised July 2011 Revision History
Submit Documentation Feedback

Copyright © 2007–2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRZ247I

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are
sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where
mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide
adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual
property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional
restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not
responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in
such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated
products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products Applications

Audio www.ti.com/audio Communications and Telecom www.ti.com/communications

Amplifiers amplifier.ti.com Computers and Peripherals www.ti.com/computers

Data Converters dataconverter.ti.com Consumer Electronics www.ti.com/consumer-apps

DLP® Products www.dlp.com Energy and Lighting www.ti.com/energy

DSP dsp.ti.com Industrial www.ti.com/industrial

Clocks and Timers www.ti.com/clocks Medical www.ti.com/medical

Interface interface.ti.com Security www.ti.com/security

Logic logic.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Power Mgmt power.ti.com Transportation and www.ti.com/automotive
Automotive

Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID www.ti-rfid.com Wireless www.ti.com/wireless-apps

RF/IF and ZigBee® Solutions www.ti.com/lprf

TI E2E Community Home Page e2e.ti.com

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com/audio
http://www.ti.com/communications
http://amplifier.ti.com
http://www.ti.com/computers
http://dataconverter.ti.com
http://www.ti.com/consumer-apps
http://www.dlp.com
http://www.ti.com/energy
http://dsp.ti.com
http://www.ti.com/industrial
http://www.ti.com/clocks
http://www.ti.com/medical
http://interface.ti.com
http://www.ti.com/security
http://logic.ti.com
http://www.ti.com/space-avionics-defense
http://power.ti.com
http://www.ti.com/automotive
http://microcontroller.ti.com
http://www.ti.com/video
http://www.ti-rfid.com
http://www.ti.com/wireless-apps
http://www.ti.com/lprf
http://e2e.ti.com

	TMS320TCI6486 Digital Signal ProcessorSilicon Revisions 2.1, 2.0, 1.2, 1.1, 1.0
	Table of Contents
	1 Introduction
	1.1 Device and Development Support Tool Nomenclature
	1.2 Package Symbolization and Revision Identification
	1.3 Silicon Updates

	2 Silicon Revision 2.1 Usage Notes and Known Design Exceptions to Functional Specifications
	2.1 Silicon Revision 2.1 Usage Notes
	2.1.1 Device: Heatsink/Airflow Recommended to Lower Case Temperature
	2.1.2 EMAC: Gigabit Mode Cannot Be Used With CPU Running at Speeds Lower Than 375 MHz
	2.1.3 DDR2 EMIF: Delay Before CKE Goes High With Different Combinations of REFRESH_RATE and DDR Clock
	2.1.4 EMIF Read Incurs High Latency Under Certain Conditions
	2.1.5 I2C Bus Hang After Master Reset
	2.1.6 EMAC Boot Using the RGMII Interface

	2.2 Silicon Revision 2.1 Known Design Exceptions to Functional Specifications

	3 Silicon Revision 2.0 Usage Notes and Known Design Exceptions to Functional Specifications
	3.1 Silicon Revision 2.0 Usage Notes
	3.2 Silicon Revision 2.0 Known Design Exceptions to Functional Specifications

	4 Silicon Revision 1.2 Usage Notes and Known Design Exceptions to Functional Specifications
	4.1 Silicon Revision 1.2 Usage Notes
	4.2 Silicon Revision 1.2 Known Design Exceptions to Functional Specifications

	5 Silicon Revision 1.1 Usage Notes and Known Design Exceptions to Functional Specifications
	5.1 Silicon Revision 1.1 Usage Notes
	5.2 Silicon Revision 1.1 Known Design Exceptions to Functional Specifications

	6 Silicon Revision 1.0 Usage Notes and Known Design Exceptions to Functional Specifications
	6.1 Silicon Revision 1.0 Usage Notes
	6.2 Silicon Revision 1.0 Known Design Exceptions to Functional Specifications

	Appendix A Revision History

