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In this paper, translation motion stabilization of video in embedded applications like digital still camera
(DSC), digital camcorder, and security camera is discussed. In embedded systems, computational load
and power consumption are critical parameters along with the quality of stabilization. The method and
apparatus described in this paper use boundary signal computation (BSC), a single instruction multiple
data (SIMD) core, enhanced DMA, and the ARM9EJ processor to accelerate the computations and save
power.

The algorithm starts with a projection vector (boundary signal) computation of each block in a frame. A
block is a logical partitioning of a frame. The projection vectors are used for estimating the block motion
vector of each block within the frame. The block motion vector estimation uses sum of absolute
differences (SAD) computation and its derivatives to find the best matching position of boundary signals
from successive frames. The best match position results in block motion vectors which are passed
through histogram stages of frame or global motion estimation.

The histogram module consists of raw, windowed, accumulated and weighted histogram sub-modules. All
of these sub-modules along with spurious data detection logic are used in the estimation of global motion.
The global motion is passed though a biquad filter array with delay and clip compensation to estimate
jitter. The jitter is compensated for by generating a cropped window within the frame. The position of the
window is chosen to negate the global motion. The cropping can be done either using DMA or using the
line offset feature in on screen display (OSD).

Index Terms: image stabilizer, motion jitter estimation and compensation, translational motion estimation
and compensation, video stabilizer
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The video sequences recorded by a digital still camera (DSC) or digital camcorder typically have
unwanted frame motion due to unintentional shaking of the camera. The unwanted motion can be
translational (vertical and/or horizontal) or rotational. The video sequences may have desired frame
motion as in panning shots. The purpose of video stabilization is to remove unwanted motion from the
video sequences being recorded or captured. Video stabilization can also be performed during playback of
captured video. The vertical axis tends to have more jitter generally due to gravity affecting a camera held
by hand. The horizontal motion is prominent when the video is shot from moving vehicles. This paper
provides a video stabilization algorithm for compensating or eliminating translational motion by estimating
frame motion from block motion vectors. Videos shot while walking tend to have rotational motion. The
rotation motion needs quite a bit of processing on motion compensation and hence is not discussed.

Section 2 provides prior art so that the reader can understand the problem and existing solutions.
Section 2 dwells in depth into the three major computational stages: the block motion estimation
(Section 3.1), frame motion estimation (Section 3.2), unwanted motion estimation (Section 3.3), and
motion compensation by cropping (Section 3.4). The embedded system design for video stabilization is
illustrated in Section 4. Section 5 and Section 6 provide brief algorithm evaluation results and a summary
of the algorithm.

Integral projection matching based translation video stabilization algorithm using a frame level boundary
signal (or projection vector) and the unrestricted motion compensation described in [1] have their
limitations on quality of stabilization and ability to compensate motion. If stabilization is performed by
cropping, the stabilized frames are of smaller size. The cropped image can be resized to original scale if
required at the cost of video quality. Most often, the capture sensors produce more pixels than that is used
for the video stream and hence cropping is not a problem. If a single projection vector is used, object
movement can get interpreted as motion jitter. However, projection vector approach is useful with
hardware acceleration and use of multiple vector spaces for eliminating local motion vector resulting from
object motion.

Rotational jitter along with translation motion jitter removal by use of binary motion estimation in selected
area of the frames, local motion outlier removal for global motion estimation and use of 1st order damping
filter for ARM based platform is illustrated in [2]. This paper is useful in understanding the complexity and
loading of video stabilization on an ARM based system-on-a-chip (SoC).
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3 Algorithm Design
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Matsushita et al. [3] present a method for enhancing the quality of stabilization by means of using motion
inpainting and de-blurring. Due to limitations on available clock cycles for video stabilization in SoC
intended for low end digital still cameras, the proposed motion compensation scheme is not practical. This
method can be used if accelerators are available for performing stabilization.

In [4], a method incorporating circular block matching is used for translational and large rotational motion
stabilization for handheld digital cameras. The paper does not provide computational complexity or
hardware requirements for implementation of circular block matching. The probability based approach in
global motion estimation should be computationally less intensive. Rotation motion compensation has
additional problems in compensation further requiring specialized hardware acceleration. A method for
estimating translational, rotational motion jitter in the presence of depth changes using a 2.5-D inter-frame
motion model is presented in [10]. This method uses an inertial motion filtering for estimating jitter
component of the global motion vector. A method for affine motion estimation based on local and global
projection is presented in [11]. Affine motion compensation requires hardware acceleration to meet
real-time constraints required by cameras.

Kalman filter based jitter motion estimation is presented in [5]. This approach is practical as it considers
constraints on the amount of rotational and translational motion that can be compensated in addition to
interdependencies of the constraints. Frame Position Smoothing (FPS) based jitter estimation is presented
by Ertuk in [9]. Viterbi dynamic programming algorithm based motional jitter estimation method is
presented in [6]. The computational load is the least on jitter estimation irrespective of the use of this
algorithm or any of the other methods like Kalman filter, damping filter or IIR filters. In [8], Litvin et al.
present a method for estimating jitter using a Kalman filter and mosaicking for compensation. Mosaicking
requires extra computational cycles.

A method for implementing motion detector using 11,000 gates is explained in [7]. This method uses band
extract representative points (BERP) for motion estimation and object movement recognition for improving
stabilization quality.

The video stabilization algorithm consists of:
1. Block motion estimation (BME)
2. Frame motion estimation (FME)
3. Unwanted motion estimation (UME)
4. Frame motion compensation (FMC)

The computations need to be performed for horizontal and vertical axes. The boundary signal computation
(BSC) and sum of absolute differences (SAD) computations used in BME are computationally intensive.
The computational complexity of FMC depends on the technique used for compensation.

The video frame is divided vertically and horizontally to produce blocks. Only luma (Y) samples are used
for BSC and SAD computations used in block motion vector (BMV) and frame motion vector (FMV)
estimation. The reasons for using Y are because of the availability of Y samples for all pixels in a frame,
and the texture information contained in the samples. Figure 1 illustrates the 3×3 division of a frame
resulting in nine blocks. This division is carried out for getting block motion vectors, rather than a frame
vector. If the frame has a moving object, only a few of the BMV will be incorrect. Thus, this division helps
in finding FMV even in the presence of moving objects in the video frames being stabilized. The number of
blocks in a frame can equal as much as the number of Y pixels. The smaller the block dimension, the
higher the computational load for BMV and FMV computation. The division of 3×3 is more optimal in the
sense there is a center block with a focus on the object of interest and eight boundary blocks. The division
of 5×5 is good for larger frame sizes since there are nine inside blocks and 16 boundary blocks.

SPRAAX8–August 2008 Translational Motion Stabilization for Embedded Video Applications 3
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAX8


Σ

Σ

Σ

Σ

Σ

Σ

Σ

Σ

Σ

Σ

Σ

Σ

Σ

Σ

Σ

Σ

Σ

Σ

BS_V[0] BS_V[1] BS_V[2]

BS_H[0]

BS_H[1]

BS_H[2]

Σ
Row
Summation Σ

Column
Summation

3x3 Blocks
in a Frame

3.1 Block Motion Estimation (BME)

3.1.1 Boundary Signal Computation (BSC)

BSH (h) =

?=H

?=0

Y (h, ), where h= 0, 1, 2,..., W?

(1)
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Figure 1. Blocks in a Frame

The smaller the block dimension, the higher the computational load for BMV and FMV computation. The
division of 3×3 is more optimal in the sense there is a center block with focus on object of interest and
eight boundary blocks. The division of 5×5 is good for larger frame sizes since there are nine inside blocks
and 16 boundary blocks.

The computational steps in BME are BSC, SAD and derivatives computation and Motion Estimation (ME).
Luma (Y) samples in a video frame are used for Boundary Signal (BS) calculation. The BS is used for
computing SAD vector. The SAD and derivative vectors are used for estimating Motion Vector (MV) for
each of the blocks in the video frame.

The boundary signal (BS) is the 1-D vector representing the texture information contained in the 2-D video
frame. Horizontal BS (BS_H) is computed by summation of all pixels along a column, as given by (1) for
the entire frame (1×1). Thus, the length of the boundary signal will equal the width of the video frame (W).

Figure 2 shows BS_H computation in the case of 3×3 division. In 3×3 block division of the video frame, the
summation is performed for each block. The frame is divided into three equal divisions horizontally. The
summation is performed for each horizontal division. This results in three BS_H signals of a length equal
to W. Each BS_H can be divided into three equal pieces to produce one BS_H signal per block.
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Figure 2. Horizontal BS Computation

Vertical BS (BS_V) is computed in a manner similar to BS_H. The summation of pixels along a row
produces a BS_V of a length equal to the height of the video frame (H), as given by (2). The image is
divided vertically into three equal pieces. The row summation on each division produces three BS_V, as
shown in Figure 3. Each BS_V is divided into three equal pieces to produce one BS_V signal per block.
Thus, there are nine BS_V and nine BS_H vectors.
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Figure 3. Vertical BS Computation

A practical example of boundary signal is provided in Figure 4.
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3.1.2 Sum of Absolute Differences (SAD)

SAD(n) =

n=+BMV max

n=–BMV max

m=L –2xBMV maxBS

m=0

|BSref (m + n + BMV max) – BS(m + BMV max)|

(3)
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Figure 4. Waveform of Boundary Signal

The SAD computation on a 1-D BS results in a 1-D SAD vector. The SAD computation requires the
reference (BSref) and current BS. The previous frame BS is the reference BS for the current frame. The
current BS is slid on BSref in one sample step. For each sliding position, summation is carried out on all
absolute differences between reference and current BS samples, as given by (3).

Sliding is carried out from negative maximum BMV (-BMVmax) to positive maximum (+BMVmax) position
with respect to BS of length LBS. This means the BS is shorter than BSref by 2×BMVmax, as shown in
Figure 5 and Figure 6.
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15
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Figure 5. Horizontal SAD Computation

Figure 6. Vertical SAD Computation

The SAD vector is computed for both the horizontal and vertical BS of each block in the video frame.
Thus, there are nine horizontal SAD vectors (SADh) and nine vertical SAD vectors (SADv). In other words,
one SAD vector per BS vector is computed. The three horizontal and three vertical SAD vector
computations illustrated in Figure 5 and Figure 6, respectively, need a 2×BMVmax search margin on the
edge of the boundary signals BS for sliding. The inner vector can use the outer boundary signal samples
for sliding.

The SAD values will require 22-bit memory locations for 640×480 resolution with 3×3 blocks. The result
can be shifted right to fit in 16-bit memory without any significant loss in BME capability. The amount of
shift (rsh) is dynamically computed based on the past frame maximum SAD value as given in (4), (5) and
(6). The SAD values are right shifted by rsh and saturated to 216-1 before storing in 16-bit memory.
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3.1.3 Derivatives of SAD

SAD = SAD(n) – SAD(n–1),
d

dn

where n = 1,2,3,...,2* BMVmax (7)

SAD =       SAD(n) – SAD(n–1),
d

2

dn
2

where n = 1,2,3,...,2* BMVmax – 1

d

dn

d

dn

(8)

SAD of the Nine Blocks in a Frame

1st Derivative of SAD

2nd Derivative of SAD
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If automatic exposure or gain control is applied on input YUV frames, the boundary signals (reference and
current) will vary in amplitude by a constant bias for correlated data. This variation will cause SAD to
detect the reference and current frame as uncorrelated data due to the non-linear nature of the building
block in SAD, namely absolute computation. However, equal or proportional gain change (gain or
exposure time) as applied to the current frame can be applied to the reference BS to circumvent this
problem. Note that the uncorrelated data problem that is due to the variation in luma magnitude still
causes a problem in lighting changes caused by shadows or obstructions in the light path for the same
scene content.

The first and second derivatives of SAD are computed as in (7) and (8).

The derivatives are computed for both horizontal and vertical SAD vectors. There is a first and second
derivative vector for each vertical and horizontal SAD vector in a block. The example waveforms are
shown in Figure 7.

Figure 7. Waveforms of SAD and Derivatives
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3.1.4 Block Motion Vector (BMV) Computation
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The BMV computation relies on the nature of SAD curves for correlated data. In the case of highly
correlated data, the SAD vector will have a minimum at the best match position. On either side of this
minimum, the correlation will gradually decrease resulting in the increasing magnitude of SAD values. If
the relative motion between adjacent frames is higher than the search range (-BMVmax to + BMVmax), then
the SAD vector may simply have a negative or positive slope, depending on whether the motion is to right
or to the left. This is because the best match position lies outside the search range. If the reference and
current frame data are uncorrelated, then SAD may have many minima (false minima). In some cases of
uncorrelated data, the SAD vector may even show a positive or negative slope line similar to the high
motion case. The building blocks and data/control flow of the BME stage is given in Figure 8.

Figure 8. BME Block Diagram

Step 1:
If the distance between the positions on which SAD reached minima (minSADpos) and the second
derivative reached maxima (maxSAD2pos) is within a threshold (2×BMVmax/12), the BMV for the block is
estimated as the position of the second derivative maxima(maxSAD2pos).

Step 2:
If BMV cannot be determined using step 1, a window of region (2×BMVmax/5) is established in the first
derivative of SAD around the position on which SAD reached minima. All the positions on which the first
derivative of SAD transitions from negative to positive within this window are recorded. If the number of
such transitions is unity and the distance between the positions of this zero crossing (xingPos) and the
SAD minima are within a threshold (2×BMVmax/12), the BMV for the block is estimated as the position of
the zero crossing.
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Vertical BMV of the 9 Blocks Within Each Frame

Frame Index
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Step 3:
If step 1 and 2 do not yield a BMV, then BMV may have reached maxima. The maxima and minima values
in the first derivative of SAD are added. If the sum is positive, a negative threshold of a value equivalent to
10% of the maxima is established. Otherwise, a positive threshold of 10% of the minima is established. If
all values in the first derivative of the SAD vector are below the threshold, BMV is on positive maxima
(BMVmax). If all the values in the first derivative of SAD are above the threshold, BMV is on negative
maxima (-BMVmax).

Step 4:
If steps 1, 2 and 3 failed to estimate BMV, BMV is marked as invalid. If the maximum and minimum value
of SAD is the same or within a threshold (either statically defined or dynamically estimated) then BMV is
considered invalid. In this case, the minimum SAD most likely is not an index of motion.

The steps 1 to 4 are performed for each block in a frame for both the vertical and horizontal direction. The
result from this stage is BMV and BMV validity in vertical and horizontal directions for each block within a
frame. The BMV and its validity are passed on to the application via the interface to facilitate algorithms
like image stabilization. An example of BMV waveforms is shown in Figure 9.

Figure 9. Example Waveforms of BMV
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3.2 Frame Motion Estimation (FME)
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The FME uses the BMV of each block in a frame to estimate the global or frame motion vector. The
estimation step consists of raw histogram, windowed histogram, accumulated histogram, filtered
histogram, FMV computation, spurious FMV detection, and FMV smoothing as shown in Figure 10. The
histograms provide information to the FMV computer for estimating the frame or global motion vector. In
addition, the parameters from the histogram are used by a spurious FMV detector for isolating potential
jitter introduced by the algorithm. The main causes for spurious values are due to scene change
(uncorrelated data), Luma variation (shadows and auto exposure algorithms), and object motion across
frames. The spurious FMV detector validates whether the estimated FMV is erroneous. The FMV
smoother minimizes the unwanted motion caused from valid to invalid transition and vice versa, when
invalid FMV are detected.

Figure 10. FME Block Diagram
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3.2.1 Raw Histogram
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3.2.2 Windowed Histogram
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The x-axis of the histogram is BMV values. The y-axis of the histogram is the number of blocks in the
current frame that have the particular BMV value. A raw histogram example is given in Figure 11.

Figure 11. Raw Histogram Example

In windowed histogram, a window of pre-determined length is slid across the raw histogram. The BMV
position which is at the center of the window is accumulated with all the histogram bars within the window.
The accumulated value is added with the center bar in the window, to avoid neighborhood bars of different
height resulting in equal bar length with windowing. On completion of sliding across the raw histogram, a
windowed histogram is generated.

Figure 12 is an example for the windowed histogram computation procedure.
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Figure 12. Windowed Histogram Example
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3.2.3 Accumulated Histogram
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The largest bar in the windowed histogram is selected as the center. A window is established with this
center. The window length is the same as in a windowed histogram. All the bars within the window are
accumulated to this center. Once accumulation is completed, the bars used in this accumulation process
are excluded from further accumulation. In other words, the bars contribute in only one accumulation. The
above mentioned procedure for accumulation is repeated until all bars are used for accumulation.

When two or more bars have the same length and a center needs to be established, the bar closest to the
previous valid FMV is selected as the center. When two bars are of the same distance from the previous
valid FMV, the FMV closest to the BMV value of zero is selected as the center.

Figure 13 is an example for the accumulated histogram computation procedure.

Figure 13. Accumulated Histogram Example
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3.2.4 Filtered Histogram

BMV [n][blkId] =

4

k=0

bk * BMV [n – k][blkId],valid
filt

valid

where is frame number and is blocks in frame(0..8)n blkId (9)

3.2.5 FMV Computation
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The filtered histogram relies on the past frame BMV validity status. A finite impulse response (FIR) filter
with coefficients b0=2-1, b1=2-2, b2=2-3, b3=2-4, and b4=2-4 is applied on BMV validity of each block in
the current frame and the past four frames. The number of past frames used in filtering process can be
increased or decreased as needed and the coefficients may be adjusted accordingly. The filter equation is
given by (9). The filter result will have a value between 0 and 1. The filter result of each block (blkId) is
mapped against the corresponding BMV of the block in the current frame. Steps in accumulated histogram
are performed on this mapped result to yield filtered histogram.

If there are any valid BMV in the current frame, FMV can be estimated using the results of histogram
stages. When an automatic exposure algorithm is active and the gain change is not adjusted during the
SAD computation, FMV estimation is skipped since SAD will not have a minima at the BMV position.

Step 1:
If a raw histogram has a single maxima bar with the maxima value (maxValraw) greater than the threshold
(numBlkRawHistThr = 3) and the maxima bar value is greater than or equal to the sum of all the other
histogram bar values, then the BMV value on the maxima bar is picked as the FMV of the current frame.

If maxValraw is less than or equal to one fourth the number of valid BMVs, no FMV is available from this
step. If maxValraw is greater than or equal to one fourth the number of valid BMVs, then the accumulated
and filtered histogram based FMV detection in steps 3 and 4 are bypassed.

Step 2:
If the raw histogram failed to yield an FMV, the steps of FMV detection is repeated on the windowed
histogram. The threshold value (numBlkWinHistThr = 6) is increased to accommodate for the windowing
procedure of the histogram.

Step 3:
If the raw and windowed histogram does not yield a FMV, an accumulated histogram is used for FMV
estimation. If there is a single maximum bar, the BMV corresponding to the maxima bar in the
accumulated histogram is picked as the FMV. If the histogram bar value is below a limit
(numBlkAccHistThr=12), a flag (spuriouspossible) is notified to the spurious FMV detector stage.

If there are two or more maxima, the BMV position closest to the zero vector at which the maxima
histogram bar is detected is picked as the FMV. If two maxima are positioned at equal distance from zero
BMV, the BMV position closest to the past FMV and nearest to the zero BMV is picked as the FMV from
the histogram bars having maxima. If FMV is detected from multiple maxima, a flag (spuriouspossible) is
notified to the spurious FMV detector stage. In addition, the flag (spuriouspossible) is notified if |FMV| is
positioned close to BMVmax or within the 15% limit of BMVmax.

Step 4:
If the accumulated histogram based FMV detection failed to pick the FMV or the flag (spuriouspossible) is
set, then the filtered histogram based FMV detection is triggered. FMV is detected if the filtered histogram
yields a single maxima with maxima value more than or equal to a dynamic threshold
(b0+b1×numBlkFiltHistThr), where numBlkFiltHistThr is the maximum of numBlkRawHistThr or maxValraw. If the
filtered maximum filtered histogram bar value is less than or equal to maxraw, then the flag (spuriouspossible)
is set.

16 Translational Motion Stabilization for Embedded Video Applications SPRAAX8–August 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAX8


3

2

1

0

N
u

m
b

e
r 

o
f 

B
lo

c
k

s Raw Histogram

Windowed Histogram

10
8
6
4
2
0

ACC Win Histogram

40

30

20

10

0

8

6

4

2

0

Weighed Histogram

FMV from Acc Win Histogram

-24 -22 -20 -18 -16 -14 -12 -10 -8 -6 -4 -2 0 2 4 6 8 10 12 14 16 18 20 22 24

BMV (Pixels)

www.ti.com Algorithm Design

Step 5:
If flag (spuriouspossible) is set by step 3 or step 4, or if the difference of FMV detected at step 3 (if available)
and step 4 is more than threshold (BMVmax/12) then set flag (spuriousdetected). If flag (spuriouspossible) is set
by step 3 and difference of FMV detected at step 3 and 4 is within threshold (BMVmax/12), use the FMV
from filtered histogram (step 4).

Figure 14 provides an example of FMV estimation using histograms in a frame.

Figure 14. Example of FMV Estimation Using Histogram

Extreme motion jitter compensation can be disabled by treating the estimated FMV as zero. The extreme
motion compensation disable facility passes FMV as zero during the attenuation period in FMV smoother.
Extreme FMV values may result due to flicker introduced luma variation across successive frames. Thus,
this feature may be used in poorly tuned cameras where there will be flicker in video being captured under
artificial lighting conditions.
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3.2.6 Spurious FMV Detector

bmv [n] =DynamicThr max
bmv bmvx DynamixThr [n – 1],SF

DynamicThr

bmv        x max(bmvrange [n-m])SF
range

,

where = 1,2,3,..., MAX_PAST(= 5)m

n =
bmv [n] – bmv

currentframe number

range min[n] = bmvmax [n]

bmv = 0.9
SF
DynamicThr

bmv = 1.25
SF
range (10)

bmv [n] =Thr saturate _round (bmv [n], bmv       bmv      ),DynamicThr

where

max
Thr

max
Thr

bmv      = round( BMV )0.6 x 2 x max
max
Thr

bmv      = round( BMV )0.35 x 2 x max
min
Thr (11)
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If FMV is not detected from the histograms or no BMVs are detected in the current frame, the fame is
marked as having no FMV (FMV_INVALID). In case of luminance variation on input frame, the boundary
signals would have picked up the gain corresponding to Luma variation. Due to non-linearity in the SAD
computation, this would result in a negative or positive slope SAD vector or a SAD vector having a pseudo
minimum. To avoid spurious FMV due to luma variation, several low computational measures are used to
detect spurious FMV.
1. If the BMVs within a frame have larger variation across blocks and if the majority of BMVs are not

close to each other, the frame is marked as not having FMV (FMV_INVALID). Otherwise, the other
methods described below are used for spurious FMV detection.
If BMV variation within the frame (bmvrange) is more than the dynamic threshold (bmvThr) computed as
in (10), and (11), BMV concentration is checked. If BMV concentration is not centered on estimated
FMV, the frame is marked as not having FMV (FMV_INVALID). A window (bmvDynamicThr) is established
around FMV. The number of BMVs outside the window should be greater than the truncated value of
the number of BMVs inside the window, scaled by 0.5 for the frame to be classified as not having FMV.

Figure 15 is an example for spurious FMV detection using this procedure.
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Figure 15. Example of Spurious FMV Elimination Using BMV Spread

2. If the deviation of BMV within a frame (bmvrange) is more than the dynamic threshold (BMVThr) and
|FMV| is positioned close to BMVmax or within the 15% limit of BMVmax, the FMV is marked as invalid
(FMV_INVALID). This method checks for a positive or negative slope SAD vector with high BMV
deviation within a frame to detect spurious FMV.

3. If any of the FMV in the past five frames is invalid and |FMV| is positioned close to BMVmax or within
the 15% limit of BMVmax, the FMV is marked as invalid (FMV_INVALID). If a frame is marked as invalid
using this condition alone then the frame invalidity of this frame is not used for making the future
frames invalid via this step.

4. If the number of BMVs outside the window is greater than the truncated value of the number of BMVs
inside the window scaled by 0.5 and |FMV| is positioned close to BMVmax or within the 15% limit of
BMVmax, the FMV is marked as invalid (FMV_INVALID). This step checks for the number of BMVs
closer to FMV and any high BMV deviation within a frame to detect spurious FMV.
If any frame in the MAX_PAST past frames (MAX_PAST=5) is invalid (FMV_INVALID) and |FMV| is
positioned close to BMVmax or within the 15% limit of BMVmax, the FMV is marked as invalid
(FMV_INVALID). If this condition alone designated the frame as INVALID, a flag
(SKIP_INVALID_HIST) is set to handle the state update. This step looks for any one of the recent
frames declared as invalid and with high BMV deviation to designate the current frame as invalid
(FMV_INVALID).

5. If the flag (spuriouspossible) is set and |FMV| is positioned close to BMVmax or within the 15% limit of
BMVmax, the FMV is marked as invalid (FMV_INVALID).

6. If the flag (spuriousdetected) is set, the FMV is marked as invalid (FMV_INVALID). This is determined by
the result of the filtered histogram and the accumulated histogram is the same (within a range) .

If the frame is not marked as invalid and an FMV is available for the current frame, the FMV is flagged as
valid (FMV_VALID).
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If any of the above steps forced the FMV to be marked as invalid, a counter is incremented. Otherwise,
the counter is reset. If the counter is more than or equal to the threshold (value of 2), the BMVs within a
frame have a smaller variation across blocks and the majority of the BMVs are close to each other, then
the state variables holding history of bmvrange[n-m] and bmvDynamicThr[n-1] are updated. Figure 16 shows
the vertical and horizontal FMV with spurious FMV detection and smoothing at frame number 68 for
vertical FMV.

Each of the conditions for detecting spurious FMV can be disabled or enabled independently, or
collectively with any possible combination, depending on the nature of video input.

Figure 16. Example of FMV with Spurious Data Handling
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3.2.7 FMV Smoother

fmv [n] =DynamicThr max
fmv fmvx DynamixThr [n – 1],SF

DynamicThr

fmv max(bmvx diff [n-m])SF
range

,

where = 1,2,3,..., MAX_PAST(= 5)m

n =
fmv [n] – fmv

currentframe number

diff [n] = fmv [n – 1]

fmv = 0.9
SF
DynamicThr

fmv = 1.5
SF
range (12)

fmv [n] =Thr saturate _round (fmv [n], fmv     , fmv      ),DynamicThr

where

max
Thr

max
Thr

fmv      = round( FMV )0.8 x 2 x max
max
Thr

fmv      = round( FMV )0.4 x 2 x max
min
Thr (13)
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The FMV smoother gradually increases attenuation of previous valid FMV for use as the current FMV
where the current FMV is invalid. The attenuation is carried out until the FMV reaches 0. This step can
possibly compensate jitter in an output stabilized frame when the current FMV is invalid and takes as 0. In
addition, this logic gradually releases attenuation on transition from invalid FMV to valid FMV to avoid
possible jerks.

The FMV smoother can be disabled if not required by the application scenario. By default, the smoother is
disabled since the smoother is preferred to be present at output stabilization coordinate. The main
purpose of the smoother at the disabled state is to detect spurious FMV which are not detected by the
spurious FMV detector.

The computational steps are as follows:
1. If an FMV is invalid, the last valid FMV is gradually attenuated until the FMV reaches 0. The

attenuations factors are 1, 0.75, 0.5, 0.25 and 0. The attenuation is gradually increased (attenuation
factor is decreased) on each successive invalid frame until the FMV reaches 0.

2. If there is a valid FMV when the attenuation is in progress (FMV has not been fully attenuated to 0) or
if any one of the past N (5) FMV was invalid, and if the FMV deviation (fmvdiff) between the current
FMV and the previous FMV is above the dynamic threshold (fmvDynamicThr) then the FMV attenuation is
continued using the previous valid FMV. The FMV of the current frame is treated as invalid. The
dynamic threshold is computed as in (12) and (13).

If a disabled state occurs, the FMV is marked as invalid (FMV_INVALID) if any of the past N FMV was
invalid (note that the FMV marked as INVALID by the smoother does not contribute to this decision)
and if the FMV deviation (fmvdiff) between the current FMV and the previous FMV is above the dynamic
threshold (fmvDynamicThr).

3. If the FMV deviation (fmvdiff) is less than or the same as the dynamic threshold (fmvDynamicThr) and
attenuation is in progress, then the attenuation is gradually removed until the attenuation factor
reaches unity. The attenuation factor is applied on the current frame's valid FMV. The FMV of the
current frame is treated as valid in this case.
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3.3 Unwanted Motion Estimation (UME)
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In this stage, the unwanted motion of the frame is estimated. The unwanted motion is converted into (x, y)
coordinates of the top-left corner of the current frame that is to be used for cropping by FMC. The block
diagram is shown in Figure 17.

Figure 17. UME Block Diagram

The UME module consists of a bank of biquad filters: low frequency bias, clip removal bias, control logic,
and output formatter. The biquad filters are used for smoothing the FMV signal. The smoothed signal is
used for estimating motion jitter. Different orders of filter are used so as to filter out the jitter to different
levels. For example, panning (motion is intentional) video sequences need to track fast and steady shots
(no desired motion) require no tracking.
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As shown in Figure 18, the low frequency bias module, which consists of an averaging filter, is used for
compensating any delay introduced by the biquad filters that may result in errors in tracking/compensation.
Control logic is used for tuning the biquad filter parameters (filter selection) and low frequency bias module
(order of averaging filter). Since allowable motion compensation is limited by the amount pixels excluded
from the original frame during cropping, the jitter to be compensated is limited to a threshold. To minimize
the effect of clipped jitter compensation, a steady bias component is generated using the clip removal bias
module.

Figure 18. UME Flowchart

Figure 19 illustrates the functioning of jitter motion compensation using all the waveforms processed inside
UME.
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Figure 19. UME Waveforms Example

The computational steps in the UME flowchart as shown in Figure 18 are:
1. Estimate if the filter bank needs to be changed.
2. If the filter bank changes, the filter coefficients are copied from the filter bank.
3. The frame motion vector obtained from the previous stage is passed through a second order IIR filter.
4. Low frequency bias is computed.
5. The motion to be compensated is computed. The coordinates for cropping the window are computed.

Clip protection is done for the coordinates if the cropping window is large.

If FMV is invalid, the UME stage is bypassed. The UME stage retains the state so that the previously used
compensation coordinate is retained. This is essential to avoid any jerks introduced by the algorithm when
FMV estimation is inaccurate. That is, the inherent jitter in stream is passed through when FMV is invalid.

If FMV is invalid for two consecutive frames, the UME IIR filter state and settling timer are reset. All other
parameters like filter selection, low frequency bias and clip protection are retained as that of the most
recent frame having valid FMV.

In cases where FMV is invalid for more than a specified number of frames (N=6) consecutively, the states
of BME and FME are reset to the initial values. Additionally, default filter bank settings are chosen on
UME and UME is bypassed. No other parameters in UME are altered under such conditions so that the
compensation coordinate is retained as the same as that of last frame that contained valid FMV, until the
next valid FMV. If the consecutive frame invalid is due to disabling of extreme jitter compensation, FME
parameters only are reset.
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3.3.1 IIR Filter Bank

a0 x y[n] = b0 x x(n) + b1 x x(n–1) + b2 x x(n–2) – a1 x y(n–1) – a2 x y(n–2),
where b0, b1, b2, a0, a1, a2 are filter coefficients. (14)

www.ti.com Algorithm Design

Second order (biquad) IIR filters with frequency responses as shown in Figure 20 are used for building the
filter bank.

Figure 20. Magnitude Response of Filter Bank

The filter is implemented as in (14).

The coefficients {b0, b1, b2, a0, a1, a2} of the filters are as follows:
{1.768435e-002, -3.527182e-002, 1.768435e-002,
1.0000000e+000, -1.986156e+000, 9.862525e-001}, // IIR1

{1.763447e-002, -3.488359e-002, 1.763447e-002,
1.0000000e+000, -1.972291e+000, 9.726761e-001}, // IIR2

{1.767785e-002, -3.382677e-002, 1.767785e-002,
1.0000000e+000, -1.944431e+000, 9.459598e-001}, // IIR3

{1.833034e-002, -3.058438e-002, 1.833034e-002,
1.0000000e+000, -1.887696e+000, 8.937721e-001}, // IIR4

{2.207892e-002, -1.908483e-002, 2.207892e-002,
1.0000000e+000, -1.765662e+000, 7.907348e-001}, // IIR5

{4.104093e-002, 2.736051e-002, 4.104093e-002,
1.0000000e+000, -1.483873e+000, 5.933153e-001} // IIR6

The cut-off frequencies of the low pass filters are at [0.5/30; 1/30; 2/30; 4/30; 8/30; 15/30], with 1.0
corresponding to half the sample rate. Chebyshev type II order filter with attenuation of 35 dB is used to
achieve faster roll-off [12], [13].
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3.3.2 Low Frequency Bias
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Filter Bank Switching
The settling time of the filters are [680; 340; 170; 84; 42; 21] samples, respectively. The IIR1 filter is ideal
for steady shots with motional jitter and IIR6 is best suited for high panning motion with jitter. When the
pass band is narrow, filter response is slow and settling time is large. When the pass band is wide, filter
response is fast and settling time is low. Generally, the filter is switched to new parameters only when the
current filter is in a steady state.

If the filter has reached steady state and if there was any clipping of jitter compensation during the filter
transience period, the filter cutoff frequency is increased. For example, the selection is changed from IIR3
to IIR4. During the cut-off frequency change, the previous filter stage state is retained to minimize the
transience state in the new filter stage. If the current filter is IIR1 or IIR2 during which clipping occurred,
and if the filter has exceeded the settling time of the IIR3 filter then the filter is switched directly to IIR4.
This is done to avoid a large period of clipping caused by tight control. For example, a steady state shot
may suddenly transition to panning motion and the filter switch is required sooner to minimize the amount
of clipping caused by the start of panning due to tight tolerances of the IIR1 and IIR2.

If the filter has reached steady state and if there was no clipping during the filter transience, the cut-off
frequency of the filter is decreased. For example, the filter selection is changed from IIR3 to IIR2. The filter
states are unaltered during the switching.

This filter switching procedure is repeated until the least or highest cut-off frequency is reached. The filter
switching logic is active throughout the duration of motion jitter stabilization.

The low frequency bias is estimated using an averaging filter on the difference between the actual motion
(accumulated FMV) and the absolute motion (accumulated IIR output). The difference is a low frequency
bias caused by lag in IIR filter and filter switching. When this difference exceeds a limit, it will cause
saturation of motion jitter compensation. The purpose of low frequency bias is to avoid saturation while
being able to provide effective jitter removal. The stage reduces the motion lag caused by the second
order filter during panning sequences and intentional motion of the camera.

The averaging filter order is dynamically computed based on whether motion compensation is saturated.
On start up the filter order gradually increases from 1 to max order (32). In case the absolute motion
compensation vector is more than the threshold (BMVmax/16) and the counter tracking this event reaches
a limit (16), the filter order is decreased by 1 on each frame. The minimum order is limited to a minimum
limit (4). Similarly, if the counter is 0, the order is increased until the order reaches the maximum allowed
(32). The counter is incremented each time the motion compensation vector has the same sign and it
exceeds the threshold (BMVmax/16), or if there is no clipping of the motion compensation vector. The
counter is less than the limit (16) and if the previous and current frame motion compensation factor were
more than threshold (BMVmax/16) on opposite directions, the counter is set to 0. Otherwise, the counter is
decremented by 1.

Figure 21 is an example of low frequency bias waveform.
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AbsoluteMotion =

Present

0

FMV, FMVwhere is input to IIR filter

(15)

AbsoluteFilterMotion =

Present

0

FiltOut, FiltOutwhere is output from IIR filter

(16)

cf = min(AbsoluteMo tion, floor (AbsoluteFi lterMotion ))
AbsoluteMo tion = AbsoluteMo tion – cf
AbsoluteFi lterMotion = AbsoluteFi lterMotion – cf (17)

Diff[n] = AbsoluteMo tion – AbsoluteFi lterMotion (18)
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Figure 21. Low Frequency Bias Waveform Example

The computational steps are as follows:
• The absolute motion from FME stage (AbsoluteMotion) is obtained by summing all FMVs as shown in

(15). Similarly the absolute motion of IIR output (AbsoluteFilterMotion) is obtained as shown in (16).

• The absolute motion and absolute filter motion are prevented from overflowing over time by subtracting
a common factor (cf) from both variables as shown in (17). The subtraction factor is the minimum
integer value among both variables.

• The difference (Diff) between AbsoluteMotion and AbsoluteFilterMotion is stored in a circular buffer of
length equal to the maximum order of the averaging filter (32) as shown in (18).
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LFB[n] =

m=order-1

m=0

1
order

x Diff[n–m] + LFB[n-1]

2

where order = order of averaging filter (19)

3.3.3 Clip Bias

Residue = residue – clip remove value
errGMV =

min (errGMV, max compensation)
Current clip = YES

Reset clip count negative to 1.
Increment clip count positive

Clip remove value =
min (clip remove limit,

(Clip remove component *
clip count positive))

Error
Value >

(90% of max
compensation)

?

Residue = residue + clip remove value
errGMV =

min (errGMV, – max compensation)
Current clip = YES

Reset clip count positive to 1.
Increment clip count negative

Clip remove value =
min (clip remove limit,

(Clip remove component *
clip count positive))

Error
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(–90% of max
compensation)

?
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Current clip = NO
Reset both clip count positive
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Clip remove value =

Clip remove component
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Compensation
Value

(Error Value)

Start
Input:

Error Value

ClipBias = sign max   numClipsx x
2 x BMVmax

48
, 2 x BMVmax

12
,

where is the number of consecutive frames exceeding
motion compensation limit in the same direction

numClips

(20)
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• The low frequency bias is computed by taking the average of available samples in the LFB array and
averaging the obtained value with the previous value of the low frequency bias as shown in (19). On
start-up, use the FMV of the current frame for initializing LFB[n-1].

If the motion compensation vector is more than 90% of the compensation limit, clip removal bias is used to
minimize the effect of clipping as shown in Figure 22.

Figure 22. Compensation Coordinate Estimation and Clip Bias Estimation

The minimum and maximum threshold clip removal bias are 0 and 2×BMVmax/12, respectively. The clip
removal bias least count is 2×BMVmax/48. On each consecutive frame that needs clip removal bias in the
same direction, the clip removal bias (ClipBias) is linearly increased as shown in (20). The sign of ClipBias
(sign) is opposite in sign of the motion compensation vector. For example, if there is negative clipping on
motion compensation, apply positive clip removal bias.
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3.3.4 Unwanted Motion Computation

Err[n] = AbsoluteMo tion[n] – AbsoluteFi ltMotion[n] – LFB[n] + ClipBias[n] (21)

3.4 Frame Motion Compensation (FMC)

Input Frame Output Frame
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The error value or compensation vector (Err) is computed as shown in (21). The error or compensation
vector in a vertical and horizontal direction can be mapped to the compensation coordinate for
stabilization.

The simplest FMC can be cropping of the window for display from the captured frame. The captured frame
is larger than the window being recorded or displayed, large enough to allow for FMC as shown in
Figure 23. By changing the coordinate (h, v) for the window start position, the unwanted motion can be
compensated. The window is positioned in the opposite direction of the jitter for compensation. The
horizontal window position can be adjusted to the nearest even pixel to avoid chroma sample reversal, as
can be seen from the chroma sample arrangement YCbYCrYCbYCr… in YCbCr 422 format.

Figure 23. Motion Compensation by Cropping
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In an ARM9EJ processor performing fixed point computations, the BSC amounts to 69% of the
computational load, SAD computation is 25%, and BME and FME computation are the remaining 6%. The
BSC, SAD and motion estimation (ME) computations require 51 MHz and 200 MHZ for (Quarter VGA)
QVGA and (Video Graphics Array) VGA, respectively [14], [15]. This necessitates hardware acceleration
for performing BSC and SAD computation as shown in Figure 24.

Figure 24. Hardware-Software Partition

The DM355 System on a Chip (SoC) for DSC provides Boundary Signal Calculator (BSC) hardware
accelerator and programmable SIMD image processing engine (iMX) for BS and SAD computations,
respectively [16], [17], [18]. Though BS computation can be performed using iMX, BSC is efficient and
offloads the iMX engine. The task of scheduling and triggering iMX execution and the direct memory
access (DMA) peripheral is handled by programmable sequencer (SEQ) to offload control code from the
ARM9EJ involved in managing the coprocessors and accelerators. The DM355 includes the ARM9EJ core
for BME and FME. The ARM9EJ is efficient in performing control-related code like BME and FME. If
cropping is required for FMC, iMX can be used for the rearrangement of data as may be required in the
YCbCr 422 format. If there is window position adjustment in the YCbCr 422 format video sequence, the odd
horizontal pixel position will reverse the Cb and Cr position in YCbYCrYCbYCr… sample sequence.
Interpolation of adjacent pixels, on iMX, can be used to estimate the chroma samples.

The video stabilizer apparatus is shown in Figure 25. The Y samples of the video frames are advanced
one pixel at a time to the BSC. The BSC performs the accumulation of Y samples horizontally and
vertically to generate BS in memory residing in the BSC module. The BSC can be programmed to
generate one or more boundary signals vertically and horizontally. The generated boundary signal can be
divided horizontally or vertically for vertical and horizontal boundary signals, respectively, to produce N×N
block division. The computation of BSC is stopped for the last few lines of the video frame in order to
allow for the copying of BS to DDR. The BSC generates the completion INT, which triggers the DMA
transfer of BS to DDR. On transfer completion, the DMA generates INT to the ARM9EJ.

The ISR triggers the video stabilization algorithm to initiate the SAD computation using iMX. Once the
SAD computation is initiated, the ARM9EJ is free to do other functions. An RTOS scheduler can schedule
the next task. One SAD vector is computed per execution of the iMX program. The first and second
derivatives are computed for each SAD vector. In addition, the minimum SAD position, minimum and
maximum SAD value, and maximum second derivative position are computed using the iMX. The
positions are used for estimating BMV. The maximum SAD value is used for estimating the dynamic right
shift value to be applied to the SAD vector for the next frame.
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When the iMX is processing data in one image buffer, the DMA is fetching input for the next SAD vector
computation into the second iMX buffer. In the mean time, the previous result is transferred to DDR from
the third iMX buffer. The buffers cyclically switch to avoid any waits for input data fetch or output data
store before executing the next iMX program. Thus, the input BS data fetch for the next SAD computation,
current SAD computation, and past SAD result store are happening concurrently. When the DMA and iMX
are performing their functions, SEQ is waiting for completion sync of DMA and iMX. On receiving
completion sync, SEQ switches the buffers cyclically and initiates DMA transfers and starts the iMX
program. On completion of the SAD computation, the SEQ INT ARM9EJ and VS algorithm are ready to
run again. Now the rest of the computation is carried out in the ARM9EJ to find the video stabilization
coordinates. The coordinates are passed onto the video recorder and video display threads.

Figure 25. Video Stabilizer Apparatus

Figure 26 illustrates the sequence of events during the stabilization progress. The BSC hardware is active
for most of the time except when the BS data is being copied to DDR. The SEQ and iMX programs are
briefly active to perform SAD computation. The SEQ and iMX hardware can be multiplexed to perform
video encode, noise filter, etc when not in use by the video stabilizer. ARM9EJ is active for a short time to
perform block motion estimation, frame motion estimation and coordinate computation for compensating
unwanted motion.
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Figure 26. Video Stabilizer Sequence Diagram

The flowchart in Figure 27 provides a top level view of the ARM9 program required in the video stabilizer.
The program initializes the BSC, DMA, SEQ and iMX hardware. Once the video stabilization is enabled,
the BSC hardware is started. On receiving the EDMA transfer completion of BS signal, the SEQ and iMX
program and data memory are initialized. Then, ARM transfers control to SEQ. On completion of the SAD
computation, SEQ signals the VS algorithm in the ARM9EJ to estimate unwanted motion. ARM9EJ
performs block and frame motion estimation, and compensates unwanted motion by outputting the start
coordinates of the top-left corner of the frame. In addition, the stabilizer will output the FMV and maximum
BMV of each frame. These output parameters may be provided as input for image stabilization for
detecting any object or frame movement.
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Figure 27. Top Level Flowchart for VS Program
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5 Results

*Error =
2001

200 1
(jitter – (– compensati on)); Total number of frames = 200. (22)

**Stabilization ratio = 100 x Number of frames not stabilizes
Total number of frames (=200) (23)

Results www.ti.com

Table 1 illustrates the stabilization quality measurement of videos containing known motion jitter. The
video stream is a well illuminated scene with automobiles and a train moving in a small area of the scene.
One frame of the 640×480 video stream is shown in Figure 28.

Table 1. Video Stabilization Quality
Jitter Type Stream Description Jitter Magnitude Stabilization Error (22) Stabilization Ratio (23)

(pixels/frame) (pixels/frame) (%)
Constant Horizontal jitter +-31 0 0
Constant Vertical jitter +-23 0 0
Random Jitter in both directions Varying 1 0
Random Vertical panning with jitter in both +-12 (max) 3 4

directions. Varying pane of 4 pixels.
Random Horizontal panning with jitter in both +-16 (max) 2 0

directions.
Random Diagonal panning with jitter in both +-12 (max) V 3 5

directions. Varying pane of 4 pixels. +-16 (max) H
Constant Vertical jitter +-24 1 0
Constant Horizontal jitter +-32 1 0

Figure 28. Video stream used in quality measurement in Table 1

Table 2 illustrates the improvement in performance of the DM355 video stabilizer with respect to the
ARM9EJ with a data cache and instruction cache. The use of BSC and iMX offloads the ARM9EJ
processing load by 69% and 27 % respectively. The ARM device is free to execute any task while iMX is
performing the SAD computation.
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Table 2. Video Stabilization Performance ARM9EJ vs DM355
Resolution ARM9EJ (MHz) DM355

ARM9EJ (MHz) iMX, SEQ (MHz)
640×480 @ 30 fps 200 5.184 5.054

The histogram of all the block motion vector in a frame, sliding window on raw histogram, neighborhood
accumulated histogram on windowed, and weighted accumulated histogram based on past frame
histograms aid in better global motion estimation. The spurious data handling minimizes the global motion
estimation induced jitter that is caused due to scene changes, luma variations, and object motion
effectively. Thus, the precise control using variable cut-off low pass filter aids in maximum motion jitter
removal. The averaging filter of variable order eliminates the delay introduced by the low pass IIR filter
and minimizes the control lag and clipping. The effect of clipping even if present is minimized by the use of
dynamically computed steady bias. This helps in gaining a better stabilization result when the difference of
the cropped area to the frame area is smaller. The tests carried out with synthetic and natural videos
(about 175 video streams of average 500 frames per stream) validate the above theory.

The computational efficiency is achieved by the use of hardware accelerator/coprocessors for projection
vector (boundary signal), and a SAD vector and its derivative computations. With the aid of sequencer
(SEQ) hardware and the use of an enhanced DMA, the ARM9 is freed up from control and data transfer
activities. The ARM9 is used for a very small amount of time for control algorithms and filter. The use of
accelerators allows the clock frequency requirement to be lower and thus power usage to be less. In
addition, ARM9 (GPP) is offloaded for carrying out other application tasks when accelerators are
functioning. Since the accelerators execution time is constant for the boundary signal generation, the
algorithm execution speed is the same for all resolution videos. In case of frames of resolution higher than
640×480, the accelerator down-samples the spatial data before computing projection vector. This means
the stabilization quality may be sacrificed while maintaining the same clock frequency requirement for
video resolutions greater than 640×480.

The author thanks Jayanth R. Rai (project trainee) for his contributions in implementation of the C-model
of the algorithm, and providing inputs for algorithm enhancements.
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