A newer version of this product is available

open-in-new Compare alternates
This product continues to be available for existing customers. New designs should consider an alternate product.
Same functionality with different pin-out to the compared device
NEW OPA928 ACTIVE High-voltage femtoampere-input-bias precision e-trim™ operational amplifier with RRIO Next generation ultra-low bias current (1 fA) with improved bandwidth (2.5 MHz) and offset voltage (0.025 mV)

Product details

Number of channels 1 Total supply voltage (+5 V = 5, ±5 V = 10) (max) (V) 15.5 Total supply voltage (+5 V = 5, ±5 V = 10) (min) (V) 4.5 Rail-to-rail In to V-, Out GBW (typ) (MHz) 1.3 Slew rate (typ) (V/µs) 1.5 Vos (offset voltage at 25°C) (max) (mV) 0.35 Iq per channel (typ) (mA) 0.45 Vn at 1 kHz (typ) (nV√Hz) 22 Rating Catalog Operating temperature range (°C) -40 to 85 Offset drift (typ) (µV/°C) 2.5 Input bias current (max) (pA) 0.025 CMRR (typ) (dB) 83 Iout (typ) (A) 0.021 Architecture CMOS Input common mode headroom (to negative supply) (typ) (V) -0.4 Input common mode headroom (to positive supply) (typ) (V) -1.9 Output swing headroom (to negative supply) (typ) (V) 0.1 Output swing headroom (to positive supply) (typ) (V) -0.13
Number of channels 1 Total supply voltage (+5 V = 5, ±5 V = 10) (max) (V) 15.5 Total supply voltage (+5 V = 5, ±5 V = 10) (min) (V) 4.5 Rail-to-rail In to V-, Out GBW (typ) (MHz) 1.3 Slew rate (typ) (V/µs) 1.5 Vos (offset voltage at 25°C) (max) (mV) 0.35 Iq per channel (typ) (mA) 0.45 Vn at 1 kHz (typ) (nV√Hz) 22 Rating Catalog Operating temperature range (°C) -40 to 85 Offset drift (typ) (µV/°C) 2.5 Input bias current (max) (pA) 0.025 CMRR (typ) (dB) 83 Iout (typ) (A) 0.021 Architecture CMOS Input common mode headroom (to negative supply) (typ) (V) -0.4 Input common mode headroom (to positive supply) (typ) (V) -1.9 Output swing headroom (to negative supply) (typ) (V) 0.1 Output swing headroom (to positive supply) (typ) (V) -0.13
  • (Maximum Limit, 25°C Unless Otherwise Noted)
  • Input Current (100% Tested): 25 fA
  • Input Current Over Temperature: 2 pA
  • Low Power: 750 µA
  • Low VOS: 350 µV
  • Low Noise: 22 nV/√Hz at 1 kHz Typical
  • (Maximum Limit, 25°C Unless Otherwise Noted)
  • Input Current (100% Tested): 25 fA
  • Input Current Over Temperature: 2 pA
  • Low Power: 750 µA
  • Low VOS: 350 µV
  • Low Noise: 22 nV/√Hz at 1 kHz Typical

Featuring 100% tested input currents of 25 fA maximum, low operating power, and ESD protection of 2000 V, the LMC6001 device achieves a new industry benchmark for low input current operational amplifiers. By tightly controlling the molding compound, Texas Instruments is able to offer this ultra-low input current in a lower cost molded package.

To avoid long turnon settling times common in other low input current op amps, the LMC6001A is tested three times in the first minute of operation. Even units that meet the 25-fA limit are rejected if they drift.

Because of the ultra-low input current noise of 0.13 fA/√Hz, the LMC6001 can provide almost noiseless amplification of high resistance signal sources. Adding only 1 dB at 100 kΩ, 0.1 dB at 1 MΩ and 0.01 dB or less from 10 MΩ to 2,000 MΩ, the LMC6001 is an almost noiseless amplifier.

The LMC6001 is ideally suited for electrometer applications requiring ultra-low input leakage such as sensitive photodetection transimpedance amplifiers and sensor amplifiers. Because input referred noise is only 22 nV/√Hz, the LMC6001 can achieve higher signal to noise ratio than JFET input type electrometer amplifiers. Other applications of the LMC6001 include long interval integrators, ultra-high input impedance instrumentation amplifiers, and sensitive electrical-field measurement circuits.

Featuring 100% tested input currents of 25 fA maximum, low operating power, and ESD protection of 2000 V, the LMC6001 device achieves a new industry benchmark for low input current operational amplifiers. By tightly controlling the molding compound, Texas Instruments is able to offer this ultra-low input current in a lower cost molded package.

To avoid long turnon settling times common in other low input current op amps, the LMC6001A is tested three times in the first minute of operation. Even units that meet the 25-fA limit are rejected if they drift.

Because of the ultra-low input current noise of 0.13 fA/√Hz, the LMC6001 can provide almost noiseless amplification of high resistance signal sources. Adding only 1 dB at 100 kΩ, 0.1 dB at 1 MΩ and 0.01 dB or less from 10 MΩ to 2,000 MΩ, the LMC6001 is an almost noiseless amplifier.

The LMC6001 is ideally suited for electrometer applications requiring ultra-low input leakage such as sensitive photodetection transimpedance amplifiers and sensor amplifiers. Because input referred noise is only 22 nV/√Hz, the LMC6001 can achieve higher signal to noise ratio than JFET input type electrometer amplifiers. Other applications of the LMC6001 include long interval integrators, ultra-high input impedance instrumentation amplifiers, and sensitive electrical-field measurement circuits.

Download

Technical documentation

star =Top documentation for this product selected by TI
No results found. Please clear your search and try again.
View all 1
Type Title Date
* Data sheet LMC6001 Ultra, Ultra-Low Input Current Amplifier datasheet (Rev. I) PDF | HTML 29 Sep 2015

Ordering & quality

Information included:
  • RoHS
  • REACH
  • Device marking
  • Lead finish/Ball material
  • MSL rating/Peak reflow
  • MTBF/FIT estimates
  • Material content
  • Qualification summary
  • Ongoing reliability monitoring
Information included:
  • Fab location
  • Assembly location

Support & training

TI E2E™ forums with technical support from TI engineers

Content is provided "as is" by TI and community contributors and does not constitute TI specifications. See terms of use.

If you have questions about quality, packaging or ordering TI products, see TI support. ​​​​​​​​​​​​​​

Videos