UCC27512
4-A/8-A single-channel gate driver with 5-V UVLO and split outputs in SON package
UCC27512
- Low-Cost Gate-Driver Device Offering Superior
Replacement of NPN and PNP Discrete Solutions - 4-A Peak Source and 8-A Peak Sink Asymmetrical
Drive - Strong Sink Current Offers Enhanced Immunity
Against Miller Turnon - Split Output Configuration (Allows Easy and
Independent Adjustment of Turnon and Turnoff
Speeds) in the UCC27511 Saves 1 Diode - Fast Propagation Delays (13-ns Typical)
- Fast Rise and Fall Times (9-ns and 7-ns Typical)
- 4.5-V to 18-V Single Supply Range
- Outputs Held Low During VDD UVLO (Ensures
Glitch-Free Operation at Power Up and Power
Down) - TTL and CMOS Compatible Input-Logic Threshold
(Independent of Supply Voltage) - Hysteretic-Logic Thresholds for High-Noise
Immunity - Dual-Input Design (Choice of an Inverting
(IN– Pin) or Noninverting (IN+ Pin)
Driver Configuration)- Unused Input Pin can be Used for Enable or
Disable Function
- Unused Input Pin can be Used for Enable or
- Output Held Low When Input Pins Are Floating
- Input Pin Absolute Maximum Voltage Levels Not
Restricted by VDD Pin Bias Supply Voltage - Operating Temperature Range of –40°C
to 140°C - 6-Pin DBV (SOT-23) and 6-Pin DRS (3-mm ×
3-mm WSON With Exposed Thermal Pad) Package
Options
The UCC27511 and UCC27512 single-channel, high-speed, low-side gate-driver device can effectively drive MOSFET and IGBT power switches. Using a design that inherently minimizes shoot-through current, UCC27511 and UCC27512 are capable of sourcing and sinking high peak-current pulses into capacitive loads offering rail-to-rail drive capability and extremely small propagation delay, typically 13 ns.
UCC27511 features a dual-input design which offers flexibility of implementing both inverting (IN pin) and noninverting (IN+ pin) configuration with the same device. Either IN+ or IN pin can be used to control the state of the driver output. The unused input pin can be used for enable and disable functions. For safety purpose, internal pullup and pulldown resistors on the input pins ensure that outputs are held low when input pins are in floating condition. Hence the unused input pin is not left floating and must be properly biased to ensure that driver output is in enabled for normal operation.
The input pin threshold of the UCC27511 device is based on TTL and CMOS-compatible low-voltage logic which is fixed and independent of the VDD supply voltage. Wide hysteresis between the high and low thresholds offers excellent noise immunity.
The UCC27511 and UCC27512 provides 4-A source, 8-A sink (asymmetrical drive) peak-drive current capability. Strong sink capability in asymmetrical drive boosts immunity against parasitic, Miller turnon effect. The UCC27511 device also features a unique split output configuration where the gate-drive current is sourced through OUTH pin and sunk through OUTL pin. This unique pin arrangement allows the user to apply independent turnon and turnoff resistors to the OUTH and OUTL pins respectively and easily control the switching slew rates.
UCC27511 and UCC27512 are designed to operate over a wide VDD range of 4.5 to 18 V and wide temperature range of 40°C to 140°C. Internal Undervoltage Lockout (UVLO) circuitry on VDD pin holds output low outside VDD operating range. The capability to operate at low voltage levels such as below 5 V, along with best-in-class switching characteristics, is especially suited for driving emerging wide band-gap power-switching devices such as GaN power-semiconductor devices.
Technical documentation
Design & development
For additional terms or required resources, click any title below to view the detail page where available.
UCC27512 TINA-TI Transient Reference Design
PSPICE-FOR-TI — PSpice® for TI design and simulation tool
PMP22089 — Half-bridge point-of-load converter reference design with GaN technology
PMP4497 — LMG5200 48V to 1V/40A Single Stage Converter Reference Design
Package | Pins | CAD symbols, footprints & 3D models |
---|---|---|
WSON (DRS) | 6 | Ultra Librarian |
Ordering & quality
- RoHS
- REACH
- Device marking
- Lead finish/Ball material
- MSL rating/Peak reflow
- MTBF/FIT estimates
- Material content
- Qualification summary
- Ongoing reliability monitoring
- Fab location
- Assembly location
Recommended products may have parameters, evaluation modules or reference designs related to this TI product.
Support & training
TI E2E™ forums with technical support from TI engineers
Content is provided "as is" by TI and community contributors and does not constitute TI specifications. See terms of use.
If you have questions about quality, packaging or ordering TI products, see TI support.