Product details

Function Single-loop PLL Number of outputs 5 Output frequency (min) (MHz) 0 Output frequency (max) (MHz) 1500 Input type LVCMOS (REF_CLK), LVPECL (VCXO_CLK) Output type LVCMOS, LVPECL Supply voltage (min) (V) 3 Supply voltage (max) (V) 3.6 Features Programmable Delay Rating Catalog Operating temperature range (°C) -40 to 85 Number of input channels 2
Function Single-loop PLL Number of outputs 5 Output frequency (min) (MHz) 0 Output frequency (max) (MHz) 1500 Input type LVCMOS (REF_CLK), LVPECL (VCXO_CLK) Output type LVCMOS, LVPECL Supply voltage (min) (V) 3 Supply voltage (max) (V) 3.6 Features Programmable Delay Rating Catalog Operating temperature range (°C) -40 to 85 Number of input channels 2
BGA (ZVA) 64 64 mm² 8 x 8 VQFN (RGZ) 48 49 mm² 7 x 7
  • High Performance LVPECL and LVCMOS PLL Clock Synchronizer
  • Two Reference Clock Inputs (Primary and Secondary Clock) for Redundancy Support With Manual or Automatic Selection
  • Accepts LVCMOS Input Frequencies up to 200 MHz
  • VCXO_IN Clock is Synchronized to One of the Two Reference Clocks
  • VCXO_IN Frequencies Up to 2.2 GHz (LVPECL)
  • Outputs Can Be a Combination of LVPECL and LVCMOS (Up to Five Differential LVPECL Outputs or up to 10 LVCMOS Outputs)
  • Output Frequency is Selectable by ×1, /2, /3, /4, /6, /8, /16 on Each Output Individually
  • Efficient Jitter Cleaning From Low PLL Loop Bandwidth
  • Low Phase Noise PLL Core
  • Programmable Phase Offset (PRI_REF and SEC_REF to Outputs)
  • Wide Charge Pump Current Range From
    200 µA to 3 mA
  • Dedicated Charge Pump Supply (VCC_CP) for Wide Tuning Voltage Range VCOs
  • Presets Charge Pump to VCC_CP/2 for Fast Center-Frequency Setting of VC(X)O
  • Analog and Digital PLL Lock Indication
  • Provides VBB Bias Voltage Output for Single-Ended Input Signals (VCXO_IN)
  • Frequency Hold-Over Mode Improves Fail-Safe Operation
  • Power-up Control Forces LVPECL Outputs to 3-State at VCC < 1.5 V
  • SPI Controllable Device Setting
  • 3.3-V Power Supply
  • Packaged in 64-Pin BGA (0.8 mm Pitch – ZVA) or 48-Pin QFN (RGZ)
  • Industrial Temperature Range –40°C to 85°C
  • High Performance LVPECL and LVCMOS PLL Clock Synchronizer
  • Two Reference Clock Inputs (Primary and Secondary Clock) for Redundancy Support With Manual or Automatic Selection
  • Accepts LVCMOS Input Frequencies up to 200 MHz
  • VCXO_IN Clock is Synchronized to One of the Two Reference Clocks
  • VCXO_IN Frequencies Up to 2.2 GHz (LVPECL)
  • Outputs Can Be a Combination of LVPECL and LVCMOS (Up to Five Differential LVPECL Outputs or up to 10 LVCMOS Outputs)
  • Output Frequency is Selectable by ×1, /2, /3, /4, /6, /8, /16 on Each Output Individually
  • Efficient Jitter Cleaning From Low PLL Loop Bandwidth
  • Low Phase Noise PLL Core
  • Programmable Phase Offset (PRI_REF and SEC_REF to Outputs)
  • Wide Charge Pump Current Range From
    200 µA to 3 mA
  • Dedicated Charge Pump Supply (VCC_CP) for Wide Tuning Voltage Range VCOs
  • Presets Charge Pump to VCC_CP/2 for Fast Center-Frequency Setting of VC(X)O
  • Analog and Digital PLL Lock Indication
  • Provides VBB Bias Voltage Output for Single-Ended Input Signals (VCXO_IN)
  • Frequency Hold-Over Mode Improves Fail-Safe Operation
  • Power-up Control Forces LVPECL Outputs to 3-State at VCC < 1.5 V
  • SPI Controllable Device Setting
  • 3.3-V Power Supply
  • Packaged in 64-Pin BGA (0.8 mm Pitch – ZVA) or 48-Pin QFN (RGZ)
  • Industrial Temperature Range –40°C to 85°C

The CDCM7005 is a high-performance, low phase noise and low skew clock synchronizer that synchronizes a VCXO (voltage controlled crystal oscillator) or VCO (voltage controlled oscillator) frequency to one of the two reference clocks. The programmable pre-divider M and the feedback-dividers N and P give a high flexibility to the frequency ratio of the reference clock to VC(X)O

VC(X)O_IN clock operates up to 2.2 GHz. Through the selection of external VC(X)O and loop filter components, the PLL loop bandwidth and damping factor can be adjust to meet different system requirements.

The CDCM7005 can lock to one of two reference clock inputs (PRI_REF and SEC_REF), supports frequency hold-over mode and fast-frequency-locking for fail-safe and increased system redundancy. The outputs of the CDCM7005 are user definable and can be any combination of up to five LVPECL outputs or up to 10 LVCMOS outputs. The built in synchronization latches ensure that all outputs are synchronized for low output skew.

All device settings, like outputs signaling, divider value, and input selection are programmable by SPI (3-wire serial peripheral interface). SPI allows individually control of the device settings.

The device operates in 3.3-V environment and is characterized for operation from –40°C to 85°C.

The CDCM7005 is a high-performance, low phase noise and low skew clock synchronizer that synchronizes a VCXO (voltage controlled crystal oscillator) or VCO (voltage controlled oscillator) frequency to one of the two reference clocks. The programmable pre-divider M and the feedback-dividers N and P give a high flexibility to the frequency ratio of the reference clock to VC(X)O

VC(X)O_IN clock operates up to 2.2 GHz. Through the selection of external VC(X)O and loop filter components, the PLL loop bandwidth and damping factor can be adjust to meet different system requirements.

The CDCM7005 can lock to one of two reference clock inputs (PRI_REF and SEC_REF), supports frequency hold-over mode and fast-frequency-locking for fail-safe and increased system redundancy. The outputs of the CDCM7005 are user definable and can be any combination of up to five LVPECL outputs or up to 10 LVCMOS outputs. The built in synchronization latches ensure that all outputs are synchronized for low output skew.

All device settings, like outputs signaling, divider value, and input selection are programmable by SPI (3-wire serial peripheral interface). SPI allows individually control of the device settings.

The device operates in 3.3-V environment and is characterized for operation from –40°C to 85°C.

Download View video with transcript Video

Technical documentation

star =Top documentation for this product selected by TI
No results found. Please clear your search and try again.
View all 12
Type Title Date
* Data sheet CDCM7005 3.3-V High Performance Clock Synchronizer and Jitter Cleaner datasheet (Rev. G) PDF | HTML 16 Aug 2017
* Radiation & reliability report CDCM7005MHFG-V Radiation Test Report 12 Nov 2014
EVM User's guide TSW3070EVM: Amplifier Interface to Current Sink DAC - (Rev. A) 23 May 2016
User guide GC5325 System Evaluation Kit (Rev. F) 20 Apr 2011
Application note TLK313x/CDCM7005 Multi-hop Performance 01 Nov 2009
EVM User's guide TSW4100EVM User's Guide (Rev. A) 16 Sep 2008
Product overview TSW3003: RF Transmit Signal Chain Demonstration Kit Bulletin 28 Sep 2006
User guide CDCM7005 (BGA Package) Evaluation Module Manual (Rev. A) 19 Dec 2005
EVM User's guide CDCM7005 (QFN Package) EVM Users Guide (Rev. A) 19 Dec 2005
Application note Phase Noise/Phase Jitter Performance of CDCM7005 26 Jul 2005
EVM User's guide CDCM7005 (QFN Package) EVM Manual 14 Jul 2005
User guide CDCM7005 (BGA Package) Evaluation Module Manual 27 Jun 2005

Design & development

For additional terms or required resources, click any title below to view the detail page where available.

Evaluation board

ADS5474EVM — ADS5474 14-bit 400-MSPS ADC evaluation module

The ADS5474EVM is a circuit board which allows the designer to run an evaluation of Texas Instruments ADS5474 device, a 14-bit 400 MSPS ADC. With the supplied Logic analyzer breakout board, the ADC LVDS output can be directly captured using either an Agilent E5405A or Tektronix P6980 touchless (...)

User guide: PDF
Not available on TI.com
Evaluation board

DAC5688EVM — DAC5688 Evaluation Module

The DAC5688EVM is a circuit board that allows designers to evaluate the performance of Texas Instruments' dual-channel 16-bit 800 MSPS digital-to-analog converter (DAC) with wideband LVDS data input, integrated 2x/4x/8x interpolation filters, on-board clock multiplier and PLL, 32-bit NCO and (...)

User guide: PDF
Not available on TI.com
Simulation model

CDCM7005 IBIS Model RGZ PKG With PKG Parasitics at 1kHz

SCAC062.ZIP (37 KB) - IBIS Model
Simulation model

CDCM7005 IBIS Model RGZ PKG With PKG Parasitics at 2GHz (Rev. B)

SCAC061B.ZIP (43 KB) - IBIS Model
Simulation model

CDCM7005 IBIS Model ZVA PKG With PKG Parasitics at 2GHz

SCAC060.ZIP (37 KB) - IBIS Model
Calculation tool

CDC-CDCM7005-CALC — CDC7005 and CDCM7005 PLL Loop Bandwidth Calculator

This tool helps to determine the right divider values (M, N & P) and to choose the filter type and components. This calculator will help to find out the appropriate loop bandwidth, phase margin, jitter peaking, etc. just varying the loop parameters like PFD frequency, filter components, Charge pump (...)
Design tool

CLOCK-TREE-ARCHITECT — Clock tree architect programming software

Clock tree architect is a clock tree synthesis tool that streamlines your design process by generating clock tree solutions based on your system requirements. The tool pulls data from an extensive database of clocking products to generate a system-level multi-chip clocking solution.
Gerber file

CDCM7005BGA EVM Gerber Files

SCAC064.ZIP (669 KB)
Gerber file

CDCM7005QFN EVM Gerber Files

SCAC065.ZIP (567 KB)
Simulation tool

PSPICE-FOR-TI — PSpice® for TI design and simulation tool

PSpice® for TI is a design and simulation environment that helps evaluate functionality of analog circuits. This full-featured, design and simulation suite uses an analog analysis engine from Cadence®. Available at no cost, PSpice for TI includes one of the largest model libraries in the (...)
Reference designs

TIDA-01187 — LIDAR-Pulsed Time-of-Flight Reference Design Using High-Speed Data Converters

Time-of-flight (ToF) optical methods for measuring distance with high precision are utilized in a variety of applications, such as laser safety scanners, range finders, drones, and guidance systems. This design details the advantages of a high-speed data-converter-based solution, including target (...)
Design guide: PDF
Schematic: PDF
Reference designs

TIDA-00075 — Wide-Bandwidth and High-Voltage Arbitrary Waveform Generator Front End

This design shows how to use an active interface with the current sink output of the DAC5682Z - typical applications for this include front ends for arbitrary waveform generators. The EVM includes the DAC5682Z for digital-to-analog conversion, an OPA695 to demonstrate an active interface (...)
Design guide: PDF
Schematic: PDF
Package Pins CAD symbols, footprints & 3D models
BGA (ZVA) 64 Ultra Librarian
VQFN (RGZ) 48 Ultra Librarian

Ordering & quality

Information included:
  • RoHS
  • REACH
  • Device marking
  • Lead finish/Ball material
  • MSL rating/Peak reflow
  • MTBF/FIT estimates
  • Material content
  • Qualification summary
  • Ongoing reliability monitoring
Information included:
  • Fab location
  • Assembly location

Recommended products may have parameters, evaluation modules or reference designs related to this TI product.

Support & training

TI E2E™ forums with technical support from TI engineers

Content is provided "as is" by TI and community contributors and does not constitute TI specifications. See terms of use.

If you have questions about quality, packaging or ordering TI products, see TI support. ​​​​​​​​​​​​​​

Videos