LM6144

ACTIVE

Quad, 24-V, 17-MHz, low-power operational amplifier

A newer version of this product is available

open-in-new Compare alternates
Pin-for-pin with same functionality to the compared device
OPA4992 ACTIVE Quad, 40-V, 10.6-MHz, rail-to-rail input/output, low-offset-voltage, low-noise op amp Wider supply range (2.7 V to 40 V), faster slew rate (32 V/us), lower noise (7 nV/√Hz), higher output current (65 mA), wider temperature range (-40 to 125)

Product details

Number of channels 4 Total supply voltage (+5 V = 5, ±5 V = 10) (max) (V) 24 Total supply voltage (+5 V = 5, ±5 V = 10) (min) (V) 1.8 Rail-to-rail In, Out GBW (typ) (MHz) 17 Slew rate (typ) (V/µs) 25 Vos (offset voltage at 25°C) (max) (mV) 1 Iq per channel (typ) (mA) 0.65 Vn at 1 kHz (typ) (nV√Hz) 16 Rating Catalog Operating temperature range (°C) -40 to 85 Offset drift (typ) (µV/°C) 3 Input bias current (max) (pA) 280000 CMRR (typ) (dB) 107 Iout (typ) (A) 0.008 Architecture Bipolar Input common mode headroom (to negative supply) (typ) (V) -0.25 Input common mode headroom (to positive supply) (typ) (V) 0.25 Output swing headroom (to negative supply) (typ) (V) 0.005 Output swing headroom (to positive supply) (typ) (V) -0.005
Number of channels 4 Total supply voltage (+5 V = 5, ±5 V = 10) (max) (V) 24 Total supply voltage (+5 V = 5, ±5 V = 10) (min) (V) 1.8 Rail-to-rail In, Out GBW (typ) (MHz) 17 Slew rate (typ) (V/µs) 25 Vos (offset voltage at 25°C) (max) (mV) 1 Iq per channel (typ) (mA) 0.65 Vn at 1 kHz (typ) (nV√Hz) 16 Rating Catalog Operating temperature range (°C) -40 to 85 Offset drift (typ) (µV/°C) 3 Input bias current (max) (pA) 280000 CMRR (typ) (dB) 107 Iout (typ) (A) 0.008 Architecture Bipolar Input common mode headroom (to negative supply) (typ) (V) -0.25 Input common mode headroom (to positive supply) (typ) (V) 0.25 Output swing headroom (to negative supply) (typ) (V) 0.005 Output swing headroom (to positive supply) (typ) (V) -0.005
PDIP (N) 14 181.42 mm² 19.3 x 9.4 SOIC (D) 14 51.9 mm² 8.65 x 6

    At VS = 5V. Typ Unless Noted.

  • Rail-to-rail Input CMVR −0.25V to 5.25V
  • Rail-to-Rail Output Swing 0.005V to 4.995V
  • Wide Gain-Bandwidth: 17MHz at 50kHz (typ)
  • Slew Rate:
    •  Small Signal, 5V/μs
    •  Large Signal, 30V/μs
  • Low Supply Current 650μA/Amplifier
  • Wide Supply Range 1.8V to 24V
  • CMRR 107dB
  • Gain 108dB with RL = 10k
  • PSRR 87dB

All trademarks are the property of their respective owners.

    At VS = 5V. Typ Unless Noted.

  • Rail-to-rail Input CMVR −0.25V to 5.25V
  • Rail-to-Rail Output Swing 0.005V to 4.995V
  • Wide Gain-Bandwidth: 17MHz at 50kHz (typ)
  • Slew Rate:
    •  Small Signal, 5V/μs
    •  Large Signal, 30V/μs
  • Low Supply Current 650μA/Amplifier
  • Wide Supply Range 1.8V to 24V
  • CMRR 107dB
  • Gain 108dB with RL = 10k
  • PSRR 87dB

All trademarks are the property of their respective owners.

Using patent pending new circuit topologies, the LM6142/LM6144 provides new levels of performance in applications where low voltage supplies or power limitations previously made compromise necessary. Operating on supplies of 1.8V to over 24V, the LM6142/LM6144 is an excellent choice for battery operated systems, portable instrumentation and others.

The greater than rail-to-rail input voltage range eliminates concern over exceeding the common-mode voltage range. The rail-to-rail output swing provides the maximum possible dynamic range at the output. This is particularly important when operating on low supply voltages.

High gain-bandwidth with 650μA/Amplifier supply current opens new battery powered applications where previous higher power consumption reduced battery life to unacceptable levels. The ability to drive large capacitive loads without oscillating functionally removes this common problem.

Using patent pending new circuit topologies, the LM6142/LM6144 provides new levels of performance in applications where low voltage supplies or power limitations previously made compromise necessary. Operating on supplies of 1.8V to over 24V, the LM6142/LM6144 is an excellent choice for battery operated systems, portable instrumentation and others.

The greater than rail-to-rail input voltage range eliminates concern over exceeding the common-mode voltage range. The rail-to-rail output swing provides the maximum possible dynamic range at the output. This is particularly important when operating on low supply voltages.

High gain-bandwidth with 650μA/Amplifier supply current opens new battery powered applications where previous higher power consumption reduced battery life to unacceptable levels. The ability to drive large capacitive loads without oscillating functionally removes this common problem.

Download View video with transcript Video

Technical documentation

star =Top documentation for this product selected by TI
No results found. Please clear your search and try again.
View all 2
Type Title Date
* Data sheet LM6142/LM6144 17 MHz Rail-to-Rail Input-Output Operational Amplifiers datasheet (Rev. D) 13 Mar 2013
E-book The Signal e-book: A compendium of blog posts on op amp design topics 28 Mar 2017

Design & development

For additional terms or required resources, click any title below to view the detail page where available.

Evaluation board

AMP-PDK-EVM — Amplifier performance development kit evaluation module

The amplifier performance development kit (PDK) is an evaluation module (EVM) kit to test common operational amplifier (op amp) parameters and is compatible with most op amps and comparators. The EVM kit offers a main board with several socketed daughtercard options to fit package needs, allowing (...)

User guide: PDF | HTML
Simulation model

LM6142 PSPICE Model

SNOM224.ZIP (3 KB) - PSpice Model
Calculation tool

ANALOG-ENGINEER-CALC — Analog engineer's calculator

The analog engineer’s calculator is designed to speed up many of the repetitive calculations that analog circuit design engineers use on a regular basis. This PC-based tool provides a graphical interface with a list of various common calculations ranging from setting operational-amplifier (...)
Design tool

CIRCUIT060013 — Inverting amplifier with T-network feedback circuit

This design inverts the input signal, VIN, and applies a signal gain of 1000 V/V or 60 dB. The inverting amplifier with T-feedback network can be used to obtain a high gain without a small value for R4 or very large values for the feedback resistors.
Design tool

CIRCUIT060015 — Adjustable reference voltage circuit

This circuit combines an inverting and non-inverting amplifier to make a reference voltage adjustable from the negative of the input voltage up to the input voltage. Gain can be added to increase the maximum negative reference level.
Design tool

CIRCUIT060074 — High-side current sensing with comparator circuit

This high-side, current sensing solution uses one comparator with a rail-to-rail input common mode range to create an over-current alert (OC-Alert) signal at the comparator output (COMP OUT) if the load current rises above 1 A. The OC-Alert signal in this implementation is active low. So when the (...)
Simulation tool

PSPICE-FOR-TI — PSpice® for TI design and simulation tool

PSpice® for TI is a design and simulation environment that helps evaluate functionality of analog circuits. This full-featured, design and simulation suite uses an analog analysis engine from Cadence®. Available at no cost, PSpice for TI includes one of the largest model libraries in the (...)
Simulation tool

TINA-TI — SPICE-based analog simulation program

TINA-TI provides all the conventional DC, transient and frequency domain analysis of SPICE and much more. TINA has extensive post-processing capability that allows you to format results the way you want them. Virtual instruments allow you to select input waveforms and probe circuit nodes voltages (...)
User guide: PDF
Package Pins CAD symbols, footprints & 3D models
PDIP (N) 14 Ultra Librarian
SOIC (D) 14 Ultra Librarian

Ordering & quality

Information included:
  • RoHS
  • REACH
  • Device marking
  • Lead finish/Ball material
  • MSL rating/Peak reflow
  • MTBF/FIT estimates
  • Material content
  • Qualification summary
  • Ongoing reliability monitoring
Information included:
  • Fab location
  • Assembly location

Support & training

TI E2E™ forums with technical support from TI engineers

Content is provided "as is" by TI and community contributors and does not constitute TI specifications. See terms of use.

If you have questions about quality, packaging or ordering TI products, see TI support. ​​​​​​​​​​​​​​

Videos