Product details

Resolution (Bits) 14 Sample rate (max) (ksps) 200 Number of input channels 4 Interface type SPI Architecture SAR Input type Pseudo-Differential, Single-ended Multichannel configuration Multiplexed Rating Catalog Reference mode External, Internal Input voltage range (max) (V) 5 Input voltage range (min) (V) 0 Features Oscillator Operating temperature range (°C) -40 to 85 Power consumption (typ) (mW) 20 Analog supply (min) (V) 4.5 Analog supply voltage (max) (V) 5.5 SNR (dB) 81 Digital supply (min) (V) 2.7 Digital supply (max) (V) 5.5
Resolution (Bits) 14 Sample rate (max) (ksps) 200 Number of input channels 4 Interface type SPI Architecture SAR Input type Pseudo-Differential, Single-ended Multichannel configuration Multiplexed Rating Catalog Reference mode External, Internal Input voltage range (max) (V) 5 Input voltage range (min) (V) 0 Features Oscillator Operating temperature range (°C) -40 to 85 Power consumption (typ) (mW) 20 Analog supply (min) (V) 4.5 Analog supply voltage (max) (V) 5.5 SNR (dB) 81 Digital supply (min) (V) 2.7 Digital supply (max) (V) 5.5
SOIC (DW) 20 131.84 mm² 12.8 x 10.3 TSSOP (PW) 20 41.6 mm² 6.5 x 6.4
  • 14-Bit Resolution
  • Maximum Throughput 200 KSPS
  • Analog Input Range 0-V to Reference Voltage
  • Multiple Analog Inputs:
    • 8 Channels for TLC3548
    • 4 Channels for TLC3544
  • Pseudodifferential Analog Inputs
  • SPI/DSP-Compatible Serial Interfaces With SCLK up to 25 MHz
  • Single 5-V Analog Supply; 3-/5-V Digital Supply
  • Low Power:
    • 4 mA (Internal Reference: 1.8 mA) for Normal Operation
    • 20 µA in Autopower-Down
  • Built-In 4-V Reference, Conversion Clock and 8x FIFO
  • Hardware-Controlled and Programmable Sampling Period
  • Programmable Autochannel Sweep and Repeat
  • Hardware Default Configuration
  • INL: ±1 LSB Max
  • DNL: ±1 LSB Max
  • SINAD: 80.8 dB
  • THD: –95 dB

  • 14-Bit Resolution
  • Maximum Throughput 200 KSPS
  • Analog Input Range 0-V to Reference Voltage
  • Multiple Analog Inputs:
    • 8 Channels for TLC3548
    • 4 Channels for TLC3544
  • Pseudodifferential Analog Inputs
  • SPI/DSP-Compatible Serial Interfaces With SCLK up to 25 MHz
  • Single 5-V Analog Supply; 3-/5-V Digital Supply
  • Low Power:
    • 4 mA (Internal Reference: 1.8 mA) for Normal Operation
    • 20 µA in Autopower-Down
  • Built-In 4-V Reference, Conversion Clock and 8x FIFO
  • Hardware-Controlled and Programmable Sampling Period
  • Programmable Autochannel Sweep and Repeat
  • Hardware Default Configuration
  • INL: ±1 LSB Max
  • DNL: ±1 LSB Max
  • SINAD: 80.8 dB
  • THD: –95 dB

The TLC3544 and TLC3548 are a family of 14-bit resolution high-performance, low-power, CMOS analog-to-digital converters (ADC). All devices operate from a single 5-V analog power supply and 3-V to 5-V digital supply. The serial interface consists of four digital inputs [chip select (CS\), frame sync (FS), serial input-output clock (SCLK), serial data input (SDI)], and a 3-state serial data output (SDO). CS\ (works as SS\, slave select), SDI, SDO, and SCLK form an SPI interface. FS, SDI, SDO, and SCLK form a DSP interface. The frame sync signal (FS) indicates the start of a serial data frame being transferred. When multiple converters connect to one serial port of a DSP, CS\ works as the chip select to allow the host DSP to access the individual converter. CS\ can be tied to ground if only one converter is used. FS must be tied to DVDD if it is not used (such as in an SPI interface). When SDI is tied to DVDD, the device is set in hardware default mode after power-on, and no software configuration is required. In the simplest case, only three wires (SDO, SCLK, and CS\ or FS) are needed to interface with the host.

In addition to being a high-speed ADC with versatile control capability, these devices have an on-chip analog multiplexer (MUX) that can select any analog input or one of three self-test voltages. The sample-and-hold function is automatically started after the fourth SCLK (normal sampling) or can be controlled by CSTART\ to extend the sampling period (extended sampling). The normal sampling period can also be programmed as short sampling (12 SCLKs) or long sampling (44 SCLKs) to accommodate the faster SCLK operation popular among high-performance signal processors. The TLC3544 and TLC3548 are designed to operate with low power consumption. The power saving feature is further enhanced with software power-down/ autopower-down modes and programmable conversion speeds. The conversion clock (internal OSC) is built in. The converter can also use an external SCLK as the conversion clock for maximum flexibility. The TLC3544 and TLC3548 have a 4-V internal reference. The converters are specified with unipolar input range of 0-V to 5-V when a 5-V external reference is used.

The TLC3544 and TLC3548 are a family of 14-bit resolution high-performance, low-power, CMOS analog-to-digital converters (ADC). All devices operate from a single 5-V analog power supply and 3-V to 5-V digital supply. The serial interface consists of four digital inputs [chip select (CS\), frame sync (FS), serial input-output clock (SCLK), serial data input (SDI)], and a 3-state serial data output (SDO). CS\ (works as SS\, slave select), SDI, SDO, and SCLK form an SPI interface. FS, SDI, SDO, and SCLK form a DSP interface. The frame sync signal (FS) indicates the start of a serial data frame being transferred. When multiple converters connect to one serial port of a DSP, CS\ works as the chip select to allow the host DSP to access the individual converter. CS\ can be tied to ground if only one converter is used. FS must be tied to DVDD if it is not used (such as in an SPI interface). When SDI is tied to DVDD, the device is set in hardware default mode after power-on, and no software configuration is required. In the simplest case, only three wires (SDO, SCLK, and CS\ or FS) are needed to interface with the host.

In addition to being a high-speed ADC with versatile control capability, these devices have an on-chip analog multiplexer (MUX) that can select any analog input or one of three self-test voltages. The sample-and-hold function is automatically started after the fourth SCLK (normal sampling) or can be controlled by CSTART\ to extend the sampling period (extended sampling). The normal sampling period can also be programmed as short sampling (12 SCLKs) or long sampling (44 SCLKs) to accommodate the faster SCLK operation popular among high-performance signal processors. The TLC3544 and TLC3548 are designed to operate with low power consumption. The power saving feature is further enhanced with software power-down/ autopower-down modes and programmable conversion speeds. The conversion clock (internal OSC) is built in. The converter can also use an external SCLK as the conversion clock for maximum flexibility. The TLC3544 and TLC3548 have a 4-V internal reference. The converters are specified with unipolar input range of 0-V to 5-V when a 5-V external reference is used.

Download

Similar products you might be interested in

open-in-new Compare alternates
Same functionality with different pin-out to the compared device
ADS7950 ACTIVE 12 bit, 1 MSPS, 4 ch, single ended, micro power, sr i/f, SAR ADC Higher sample rate (1 MSPS), lower resolution (12-bits)

Technical documentation

star =Top documentation for this product selected by TI
No results found. Please clear your search and try again.
View all 1
Type Title Date
* Data sheet 5-V Analog, 3-/5-V Digital, 14-Bit, 200-KSPS, 4-/8-Channels Serial Analog-to-Dig datasheet (Rev. C) 10 Apr 2003

Ordering & quality

Information included:
  • RoHS
  • REACH
  • Device marking
  • Lead finish/Ball material
  • MSL rating/Peak reflow
  • MTBF/FIT estimates
  • Material content
  • Qualification summary
  • Ongoing reliability monitoring
Information included:
  • Fab location
  • Assembly location

Support & training

TI E2E™ forums with technical support from TI engineers

Content is provided "as is" by TI and community contributors and does not constitute TI specifications. See terms of use.

If you have questions about quality, packaging or ordering TI products, see TI support. ​​​​​​​​​​​​​​