Topics

G Floating Point Formats G-3
G. 1 Single Precision Format G-3
G. 2 Double Precision Format G-4

26 Floating Point Formats

All MSP430 floating-point formats consist of three fields: an exponent field (e), a single-bit sign field (s), and a fraction field (f). The sign field and fraction field may be considered as one unit and referred to as the mantissa field. The fraction contains an implied mostsignificant bit, which is always 1 for a correctly represented floating-point constant. This provides an additional bit of precision. The exponent is bias 128; that is, subtract 128 from the unsigned value of the 8 exponent bits to arrive at an actual value for the exponent. A sign, exponent and fraction of zero is used as a special representation of value zero.

26.1 Single Precision Format

In the single precision format, the floating-point number is represented by an 8-bit exponent, a sign bit and a 23 -bit fraction.

The format is as follows:

The fraction contains 23 actual bits plus an implied bit f_{0}, always representing a 1. The value of each f; is arrived at through this formula:

$$
f_{i}=\frac{1}{2^{i}} \quad \Rightarrow \quad f=\sum_{i=0}^{23} f_{i}=\sum_{i=0}^{23} \frac{1}{2^{i}}
$$

Therefore, the layout in terms of values is
$1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \frac{1}{32}, \frac{1}{64}, \frac{1}{128}, \frac{1}{256}, \frac{1}{512}, \ldots$.
Example: Calculating the fraction (80 in those examples is the exponent)

Floating Point Value $\quad f_{i}$
80100000
80310000
i
1, $\frac{1}{8}$
$1, \frac{1}{4}, \frac{1}{8}, \frac{1}{128} \quad 1+\frac{1}{4}+\frac{1}{8}+\frac{1}{128}=1.3828125$

Given the above format, some examples of acceptable floating-point values are shown in the following examples.

Example: Calculating Floating-Point Values

81d00000

The encoded exponent equals 129; the real exponent equals 129-128 $=1$.
The fraction equals 1 (implied f_{0}) $+\frac{1}{2}+\frac{1}{8}=1.625$.
The following formula expresses the actual value of the floating-point number:

$$
s \times f \times 2^{e-128}
$$

where s is the sign of the number (either 1 or -1), f is the value of the fraction ($1.0 \leq \mathrm{f}<$ 2.0) and e is the represented value of the exponent.

Therefore, the floating-point value is

$$
-1 \times 1.625 \times 2^{129-128}=-3.25
$$

The following list gives other examples of proper floating-point values derived from the above formulas.

80000000 h	$=>$	1.0	81500000 h	\Rightarrow
80800000 h	$=>$	-1.0	$8 f 3 \mathrm{~b} 8000 \mathrm{~h}$	\Rightarrow

26.2 Double Precision Format

The only difference to the single precision format is the length of the fraction:

Here it contains 39 actual bits plus an implied bit fo; so the summation formation for the fraction changes to:

$$
f=\sum_{i=0}^{39} f_{i}=\sum_{i=0}^{39} \frac{1}{2^{i}}
$$

