

TMUX6234 ZHCSNI4C - JULY 2020 - REVISED JULY 2024

TMUX6234 具有 1.8V 逻辑器件的 36V、低导通电阻、2:1、4 通道精密开关

1 特性

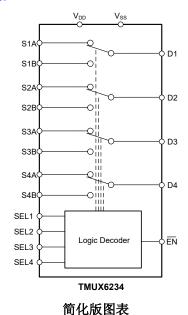
双电源电压范围: ±4.5V 至 ±18V 单电源电压范围: 4.5V 至 36V

低导通电阻: 3.6 Ω 低串扰:-105dB 低传播延迟: 450ps

大电流支持:400mA(最大值) 工作温度范围:-40°C 至+125°C

1.8V 逻辑兼容输入

失效防护逻辑


• 轨到轨运行

双向信号路径

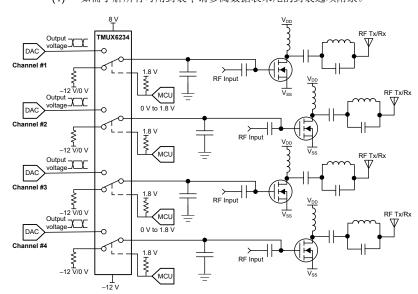
先断后合开关

2 应用

- 远程射频单元 (RRU)
- 有源天线系统 mMIMO (AAS)
- 可编程逻辑控制器 (PLC)
- 模拟输入模块
- 半导体测试设备
- 电池测试设备
- 数据采集系统 (DAQ)
- 超声波扫描仪
- 患者监护和诊断
- 光纤网络
- 光学测试设备
- 有线网络

3 说明

TMUX6234 是具有低导通电阻的多通道 CMOS 开关。 TMUX6234 包含四个独立控制的 SPDT 开关和一个用 于启用或禁用全部四个通道的 EN 引脚。该器件支持单 电源(4.5V至 36V)、双电源(±4.5V至 ±18V)或非 对称电源 (例如, $V_{DD} = 18V$, $V_{SS} = -5V$)。 TMUX6234 可在源极 (Sx) 和漏极 (D) 引脚上支持从 V_{SS} 到 V_{DD} 范围的双向模拟和数字信号。


所有逻辑控制输入引脚均支持 1.8V 到 V_{DD} 的逻辑电 平, 当器件在宽逻辑电压范围内运行时, 可确保逻辑兼 容性。失效防护逻辑电路允许先在控制引脚上施加电 压,然后在电源引脚上施加电压,从而保护器件免受潜 在的损害。

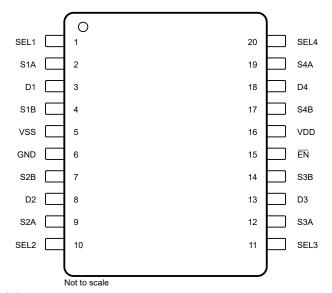
TMUX6234 是精密开关和多路复用器系列器件。这些 器件具有非常低的导通和关断漏电流以及低电荷注入, 因此可用于高精度测量应用。

封装信息

-4-F41B-0-						
器件型号	封装 ⁽¹⁾	本体尺寸(标称值)				
TMUX6234	PW (TSSOP , 20)	6.50 mm × 4.40 mm				
	RRQ (WQFN , 20)	4.00 mm × 4.00 mm				

如需了解所有可用封装,请参阅数据表末尾的封装选项附录。

典型应用


Table of Contents

1	特性	1
2	! 应用	1
3	;说明	1
4	Pin Configuration and Functions	3
5	Specifications	<u>5</u>
	5.1 Absolute Maximum Ratings	
	5.2 ESD Ratings	
	5.3 Thermal Information	
	5.4 Recommended Operating Conditions	
	5.5 Source or Drain Continuous Current	
	5.6 36 V Single Supply: Electrical Characteristics	
	5.7 36 V Single Supply: Switching Characteristics	
	5.8 ±15 V Dual Supply: Electrical Characteristics	
	5.9 ±15 V Dual Supply: Switching Characteristics	
	5.10 12 V Single Supply: Electrical Characteristics	
	5.11 12 V Single Supply: Switching Characteristics	
	5.12 ±5 V Dual Supply: Electrical Characteristics	
	5.13 ±5 V Dual Supply: Switching Characteristics 5.14 Typical Characteristics	
6	Parameter Measurement Information	
u	6.1 On-Resistance	
	6.2 Off-Leakage Current	
	6.3 On-Leakage Current	
	6.4 Transition Time	
	6.5 t _{ON(EN)} and t _{OFF(EN)}	
	6.6 Break-Before-Make	21
	6.7 t _{ON (VDD)} Time	
	6.8 Propagation Delay	22

6.9 Charge Injection	23
6.10 Off Isolation	23
6.11 Crosstalk	24
6.12 Bandwidth	24
6.13 THD + Noise	25
6.14 Power Supply Rejection Ratio (PSRR)	25
7 Detailed Description	26
7.1 Overview	26
7.2 Functional Block Diagram	26
7.3 Feature Description	.26
7.4 Device Functional Modes	.28
7.5 Truth Tables	28
8 Application and Implementation	29
8.1 Application Information	29
8.2 Typical Application	
8.3 Power Supply Recommendations	31
8.4 Layout	31
9 Device and Documentation Support	33
9.1 Documentation Support	33
9.2 Receiving Notification of Documentation Updates	33
9.3 支持资源	
9.4 Trademarks	33
9.5 静电放电警告	33
9.6 术语表	
10 Revision History	
11 Mechanical, Packaging, and Orderable	-
Information	34

4 Pin Configuration and Functions

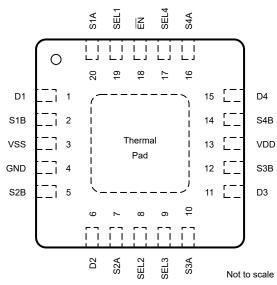


图 4-1. TMUX6234 PW Package, 20-Pin TSSOP (Top View)

图 4-2. TMUX6234 RRQ Package, 20-Pin WQFN (Top View)

表 4-1. Pin Functions TMUX6234

	PIN		TYPE ⁽¹⁾	DESCRIPTION (2)	
NAME	PW NO.	RRQ NO.	I TPE(")	DESCRIPTION (*)	
D1	3	1	I/O	Drain pin 1. Can be an input or output.	
D2	8	6	I/O	Drain pin 2. Can be an input or output.	
D3	13	11	I/O	Drain pin 3. Can be an input or output.	
D4	18	15	I/O	Drain pin 4. Can be input or output	
EN	15	18	I	Active low logic enable; has internal pull-down resistor. The SELx logic inputs determine switch connections when this pin is low (see † 7.5).	
GND	6	4	Р	Ground (0 V) reference.	
S1A	2	20	I/O	Source pin 1A. Can be an input or output.	
S1B	4	2	I/O	Source pin 1B. Can be an input or output.	
S2A	9	7	I/O	Source pin 2A. Can be an input or output.	
S2B	7	5	I/O	Source pin 2B. Can be an input or output.	
S3A	12	10	I/O	Source pin 3A. Can be an input or output.	
S3B	14	12	I/O	Source pin 3B. Can be an input or output.	
S4A	19	16	I/O	Source pin 4A. Can be an input or output.	
S4B	17	14	I/O	Source pin 4B. Can be an input or output.	
SEL1	1	19	1	Logic control input 1; has internal pull-down resistor. Controls switch 1 (see # 7.5).	
SEL2	10	8	I	Logic control input 2; has internal pull-down resistor. Controls switch 2 (see 节 7.5).	
SEL3	11	9	1	Logic control input 3; has internal pull-down resistor. Controls switch 3 (see 节 7.5).	
SEL4	20	17	I	Logic control input 4, has internal pull-down resistor. Controls switch 4 (see 节 7.5).	
VDD	16	13	Р	Positive power supply. This pin has the most positive power-supply potential. For reliable operation, connect a decoupling capacitor ranging from 0.1 μ F to 10 μ F between VDD and GND.	
VSS	5	3	Р	Negative power supply. This pin has the most negative power-supply potential. This pin can be connected to ground in single supply applications. Connect a decoupling capacitor ranging from 0.1 μ F to 10 μ F between VSS and GND for reliable operation.	

Product Folder Links: TMUX6234

表 4-1. Pin Functions TMUX6234 (续)

PIN		TYPE (1)	DESCRIPTION (2)		
NAME	NAME PW NO. RRQ NO.		IIFE'	DESCRIPTION ()	
Thermal Pa	Thermal Pad		_	The thermal pad is not connected internally. There is no requirement to solder this pad. If connected, it is recommended to leave the pad floating or tied to GND.	

Product Folder Links: TMUX6234

- (1) I = input, O = output, I/O = input and output, P = power.
- Refer to 节 7.4 for what to do with unused pins.

English Data Sheet: SCDS442

5 Specifications

5.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1) (2)

		MIN	MAX	UNIT
V _{DD} - V _{SS}			38	V
V _{DD}	Supply voltage	- 0.5	38	V
V _{SS}		- 38	0.5	V
V _{SEL} or V _{EN}	Logic control input pin voltage (SELx, EN)	- 0.5	38	V
I _{SEL} or I _{EN}	Logic control input pin current (SELx, EN)	- 30	30	mA
V _S or V _D	Source or drain voltage (SxA, SxB, Dx)	V _{SS} - 0.5	V _{DD} +0.5	V
I _{IK}	Diode clamp current ⁽³⁾	- 30	30	mA
I _S or I _{D (CONT)}	Source or drain continuous current (SxA, SxB, Dx)		I _{DC} ± 10 % ⁽⁴⁾	mA
T _A	Ambient temperature	- 55	150	°C
T _{stg}	Storage temperature	- 65	150	°C
T _J	Junction temperature		150	°C
P _{tot}	Total power dissipation (QFN package) ⁽⁵⁾		1680	mW

- (1) Stresses beyond those listed under Absolute Maximum Rating may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Condition. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
- (2) All voltages are with respect to ground, unless otherwise specified.
- (3) Pins are diode-clamped to the power-supply rails. Over voltage signals must be voltage and current limited to maximum ratings.
- (4) Refer to Source or Drain Continuous Current table for I_{DC} specifications.
- (5) For QFN package: P_{tot} derates linearly above $T_A = 70^{\circ}\text{C}$ by 24.8mW/°C.

5.2 ESD Ratings

			VALUE	UNIT
V	Electrostatic discharge	Human body model (HBM), per ANSI/ESDA/ JEDEC JS-001, all pins ⁽¹⁾	±2000	\/
V _(ESD)	Electrostatic discrarge	Charged device model (CDM), per JEDEC specification JESD22-C101, all pins ⁽²⁾	±500	V

- (1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
- (2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

5.3 Thermal Information

		TMU		
	THERMAL METRIC ⁽¹⁾	PW (TSSOP)	RRQ (WQFN)	UNIT
		20 PINS	20 PINS	
R ₀ JA	Junction-to-ambient thermal resistance	74.7	40.5	°C/W
R _{θ JC(top)}	Junction-to-case (top) thermal resistance	19.9	24.2	°C/W
R ₀ JB	Junction-to-board thermal resistance	32.3	16.4	°C/W
Ψ_{JT}	Junction-to-top characterization parameter	0.7	0.2	°C/W
Ψ_{JB}	Junction-to-board characterization parameter	31.7	16.4	°C/W
R _{θ JC(bot)}	Junction-to-case (bottom) thermal resistance	N/A	2.8	°C/W

For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

Product Folder Links: TMUX6234

5.4 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

		MIN	NOM MAX	UNIT
V _{DD} - V _{SS} (1)	Power supply voltage differential	4.5	36	V
V _{DD}	Positive power supply voltage	4.5	36	V
V _S or V _D	Signal path input/output voltage (source or drain pin) (SxA, SxB, Dx)	V _{SS}	V_{DD}	V
V _{SEL} or V _{EN}	Address or enable pin voltage	0	36	V
I _S or I _{D (CONT)}	Source or drain continuous current (SxA, SxB, Dx)		I _{DC} ⁽²⁾	mA
T _A	Ambient temperature	- 40	125	°C

 V_{DD} and V_{SS} can be any value as long as 4.5 V \leq (V_{DD} - V_{SS}) \leq 36 V, and the minimum V_{DD} is met. Refer to *Source or Drain Continuous Current* table for I_{DC} specifications.

5.5 Source or Drain Continuous Current

at supply voltage of V_{DD} ± 10%, V_{SS} ± 10 % (unless otherwise noted)

CONT	TINUOUS CURRENT PER CHANNEL	T _A = 25°C	T _A = 85°C	T _A = 125°C	UNIT
PACKAGE	TEST CONDITIONS	1A - 25 C	1A - 85 C	1A - 125 C	ONII
	±15 V Dual Supply ⁽¹⁾	360	235	130	mA
	+36 V Single Supply	345	225	128	mA
PW (TSSOP)	+12 V Single Supply	260	177	108	mA
	±5 V Dual Supply	255	175	105	mA
	+5 V Single Supply	170	129	80	mA
	±15 V Dual Supply ⁽¹⁾	400	230	120	mA
	+36 V Single Supply	300	190	110	mA
RRQ (WQFN)	+12 V Single Supply	300	180	100	mA
	±5 V Dual Supply	300	180	100	mA
	+5 V Single Supply	240	150	85	mA

⁽¹⁾ Specified for nominal supply voltage only.

Product Folder Links: TMUX6234

提交文档反馈

5.6 36 V Single Supply: Electrical Characteristics

 V_{DD} = +36 V, V_{SS} = 0 V, GND = 0 V (unless otherwise noted)

Typical at V_{DD} = +36 V, V_{SS} = 0 V, T_A = 25 $^{\circ}$ C (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	T _A	MIN	TYP	MAX	UNIT
ANALOG	SWITCH						
		V ₀ = 0 V to 30 V	25°C		3.6	6.2	Ω
R _{ON}	On-resistance	$I_D = -10 \text{ mA}$	- 40°C to +85°C			7.9	Ω
		Refer to On-Resistance	- 40°C to +125°C			3.6 6.2 7.9 9.4 0.2 0.7 0.8 0.9 1.6 1.8 2.5 3.1 015 0.02 0.4 2 15 0.04 0.5 8 30 0.04 0.5 4 30 0.6 0.8 0.8	Ω
		$V_{c} = 0 \text{ V to } 30 \text{ V}$	25°C		0.2	0.7	Ω
ΔR_{ON}	On-resistance mismatch between channels	I _D = - 10 mA	- 40°C to +85°C			8.0	Ω
	ond mois	Refer to On-Resistance	- 40°C to +125°C			3.6 6.2 7.9 9.4 0.2 0.7 0.8 0.9 1.6 1.8 2.5 3.1 0.015 0.02 0.4 2 15 0.04 0.5 8 30 0.04 0.5 4 30 36 0.8 0.6 2 0.005 3	Ω
		$V_{c} = 0 \text{ V to } 30 \text{ V}$	25°C		1.6	1.8	Ω
R _{ON FLAT}	On-resistance flatness	I _S = - 10 mA	- 40°C to +85°C			2.5	Ω
		$\begin{array}{c} V_S = 0 \ V \ to \ 30 \ V \\ I_D = -10 \ mA \\ Refer \ to \ On-Resistance \\ \end{array} \begin{array}{c} 25^{\circ}C \\ -40^{\circ}C \ to +85^{\circ}C \\ \end{array} \\ -40^{\circ}C \ to +125^{\circ}C \\ \end{array} \\ \begin{array}{c} -40^{\circ}C \ to +85^{\circ}C \\ \end{array} \\ -40^{\circ}C \ to +125^{\circ}C \\ \end{array} \\ \begin{array}{c} 0.2 \\ -40^{\circ}C \ to +125^{\circ}C \\ \end{array} \\ \begin{array}{c} 0.2 \\ -40^{\circ}C \ to +125^{\circ}C \\ \end{array} \\ \begin{array}{c} 0.2 \\ -40^{\circ}C \ to +125^{\circ}C \\ \end{array} \\ \begin{array}{c} 0.2 \\ -40^{\circ}C \ to +125^{\circ}C \\ \end{array} \\ \begin{array}{c} 0.2 \\ -40^{\circ}C \ to +125^{\circ}C \\ \end{array} \\ \begin{array}{c} 0.2 \\ -40^{\circ}C \ to +125^{\circ}C \\ \end{array} \\ \begin{array}{c} 0.2 \\ -40^{\circ}C \ to +125^{\circ}C \\ \end{array} \\ \begin{array}{c} 0.2 \\ -40^{\circ}C \ to +125^{\circ}C \\ \end{array} \\ \begin{array}{c} 0.2 \\ -40^{\circ}C \ to +125^{\circ}C \\ \end{array} \\ \begin{array}{c} 0.015 $	3.1	Ω			
R _{ON DRIFT}	On-resistance drift		- 40°C to +125°C		0.015		Ω/°C
			25°C	- 0.4	0.02	0.4	nA
I _{S(OFF)}	Source off leakage current ⁽¹⁾		- 40°C to +85°C	- 2		2	nA
			- 40°C to +125°C	- 15		0.7 0.8 0.9 1.8 2.5 3.1 0.4 2 15 0.5 8 30 0.5 4 30 36 0.8	nA
			25°C	- 0.5	0.04	0.5	nA
$I_{D(OFF)}$	Drain off leakage current ⁽¹⁾		- 40°C to +85°C	- 8		8	nA
			- 40°C to +125°C	5°C 7.9 25°C 9.4 0.2 0.7 5°C 0.8 25°C 0.9 1.6 1.8 5°C 2.5 25°C 3.1 25°C 3.1 25°C 0.015 0.04 5°C -2 2 2 25°C -15 15 -0.5 0.04 0.5 5°C -8 8 25°C -30 30 -0.5 0.04 0.5 5°C -4 4 25°C -4 4 25°C -30 30 25°C 0.8 25°C 0.8 25°C 0.8 25°C 1.3 36 25°C 0.8 25°C 0.8 25°C 1.3 36 25°C 0.8 25°C 0.8 25°C 1.3 36 25°C 0.8 25°C 1.3 36 25°C 0.8 25°C 1.3 36 25°C 1.3 36 25°C 0.8 25°C 1.3 36 25°C 1.3 36	nA		
		Switch state is on	25°C	- 0.5	0.04	0.5	nA
$I_{S(ON)}$ $I_{D(ON)}$	Channel on leakage current ⁽²⁾	$V_S = V_D = 30 \text{ V or } 1 \text{ V}$	- 40°C to +85°C	- 4		4	nA
·D(ON)		Refer to 节 6.3	- 40°C to +125°C	- 30		30	nA
LOGIC IN	PUTS (SEL / EN pins)						
V _{IH}	Logic voltage high		- 40°C to +125°C	1.3		36	V
V _{IL}	Logic voltage low		- 40°C to +125°C	0		8.0	V
I _{IH}	Input leakage current		- 40°C to +125°C		0.6	2	μA
I _{IL}	Input leakage current		- 40°C to +125°C	- 0.1	- 0.005		μΑ
C _{IN}	Logic input capacitance		- 40°C to +125°C		3		pF
POWER S	SUPPLY		•				
		.,	25°C		65	100	μA
I_{DD}	V _{DD} supply current	V_{DD} = 36 V, V_{SS} = 0 V Logic inputs = 0 V, 5 V, or V_{DD}	- 40°C to +85°C			110	μA
			- 40°C to +125°C			130	μA

⁽¹⁾ When V_S is 30 V, V_D is 1 V. Or when V_S is 1 V, V_D is 30 V.
(2) When V_S is at a voltage potential, V_D is floating. Or when V_D is at a voltage potential, V_S is floating.

5.7 36 V Single Supply: Switching Characteristics

 $V_{DD} = +36 \text{ V}, V_{SS} = 0 \text{ V}, \text{GND} = 0 \text{ V} \text{ (unless otherwise noted)}$ Typical at $V_{DD} = +36 \text{ V}, V_{SS} = 0 \text{ V}, T_A = 25 ^{\circ}\text{C} \text{ (unless otherwise noted)}$

	PARAMETER	TEST CONDITIONS	T _A	MIN	TYP	MAX	UNIT
		V _S = 18 V	25°C		90	170	ns
t _{TRAN}	Transition time from control input	$R_L = 300 \Omega$, $C_L = 35 pF$	- 40°C to +85°C			190	ns
		Refer to Transition Time	- 40°C to +125°C			200	ns
		V _S = 18 V	25°C		95	190	ns
t _{ON (EN)}	Turn-on time from enable	$R_L = 300 \Omega$, $C_L = 35 pF$	- 40°C to +85°C			200	ns
		Refer to 节 6.5	- 40°C to +125°C			170 190 200 180 200 210 150	ns
		V _S = 18 V	25°C		85	190 200 180 200 210 150	ns
t _{OFF (EN)}	Turn-off time from enable	$R_L = 300 \Omega$, $C_L = 35 pF$	- 40°C to +85°C			160	ns
		Refer to 节 6.5	- 40°C to +125°C		190 200 95 180 200 210 85 150 160 170 40 1 1 0.15 0.15 0.15 560 3 -82 -62	ns	
		V _S = 18 V,	25°C		40		ns
t _{BBM}	Break-before-make time delay	$R_L = 300 \Omega$, $C_L = 35 pF$	- 40°C to +85°C	1			ns
		Refer to Break-Before-Make	- 40°C to +125°C	1			ns
		V _{DD} rise time = 1µs	25°C		0.15		ms
T _{ON (VDD)}	Device turn on time (V _{DD} to output)	$R_L = 300 \Omega$, $C_L = 35pF$	- 40°C to +85°C		0.15	90 170 190 200 95 180 200 210 85 150 160 170 40 0.15 0.	ms
, ,	(VDD to output)	Refer to Turn-on (VDD) Time	- 40°C to +125°C		0.15		ms
t _{PD}	Propagation delay	R_L = 50 Ω , C_L = 5 pF Refer to \dagger 6.8	25°C		560		ps
Q _{INJ}	Charge injection	V _D = 18 V, C _L = 100 pF Refer to 节 6.9	25°C		3		pC
O _{ISO}	Off-isolation	$R_L = 50 \Omega$, $C_L = 5 pF$ $V_S = 6 V$, $f = 100 kHz$ Refer to Off Isolation	25°C		- 82		dB
O _{ISO}	Off-isolation	$R_L = 50 \Omega$, $C_L = 5 pF$ $V_S = 6 V$, $f = 1 MHz$ Refer to Off Isolation	25°C		- 62		dB
X _{TALK}	Crosstalk	R_L = 50 Ω , C_L = 5 pF V_S = 6 V, f = 1MHz Refer to Crosstalk	25°C		- 105		dB
BW	- 3dB Bandwidth	R_L = 50 Ω , C_L = 5 pF V_S = 6 V Refer to Bandwidth	25°C		95		MHz
IL	Insertion loss	R_L = 50 Ω , C_L = 5 pF V_S = 6 V, f = 1 MHz	25°C		- 0.35		dB
ACPSRR	AC Power Supply Rejection Ratio	V_{PP} = 0.62 V on V_{DD} and V_{SS} R_L = 10 M Ω , C_L = 5 pF, f = 1 MHz Refer to \dagger 6.14	25°C		- 46		dB
THD+N	Total Harmonic Distortion + Noise	V_{PP} =18 V, V_{BIAS} = 18 V R_L = 10 k Ω , C_L = 5 pF, f = 20 Hz to 20 kHz Refer to \dagger 6.13	25°C		0.0006		%
C _{S(OFF)}	Source off capacitance	V _S = 18 V, f = 1 MHz	25°C		17		pF
C _{D(OFF)}	Drain off capacitance	V _S = 18 V, f = 1 MHz	25°C		28		pF
C _{S(ON),} C _{D(ON)}	On capacitance	V _S = 18 V, f = 1 MHz	25°C		77		pF

Product Folder Links: TMUX6234 English Data Sheet: SCDS442

5.8 ±15 V Dual Supply: Electrical Characteristics

 V_{DD} = +15 V ± 10%, V_{SS} = - 15 V ±10%, GND = 0 V (unless otherwise noted) Typical at V_{DD} = +15 V, V_{SS} = - 15 V, T_A = 25°C (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	T _A	MIN	TYP	MAX	UNIT
ANALOG	SWITCH						
		V _S = -10 V to +10 V	25°C		3.6	5.5	Ω
R _{ON}	On-resistance	I _D = - 10 mA	- 40°C to +85°C			7.1	Ω
		Refer to On-Resistance	- 40°C to +125°C			8.4	Ω
		V _S = -10 V to +10 V	25°C		0.3	0.7	Ω
ΔR_{ON}	On-resistance mismatch between channels	$I_D = -10 \text{ mA}$	- 40°C to +85°C			0.8	Ω
	onamicis	Refer to On-Resistance	- 40°C to +125°C			1	Ω
		V _S = -10 V to +10 V	25°C		0.4	1.5	Ω
R _{ON FLAT}	On-resistance flatness	I _S = -10 mA	- 40°C to +85°C			1.7	Ω
		Refer to On-Resistance	- 40°C to +125°C			1.9	Ω
R _{ON DRIFT}	On-resistance drift	V _S = 0 V, I _S = -10 mA Refer to On-Resistance	- 40°C to +125°C		0.015		Ω/°C
	Source off leakage current ⁽¹⁾	V _{DD} = 16.5 V, V _{SS} = -16.5 V	25°C	- 0.6	0.01	0.6	nA
l		Switch state is off $V_S = +10 \text{ V} / -10 \text{ V}$	- 40°C to +85°C	- 2		2	nA
I _{S(OFF)}		V _D = -10 V / + 10 V Refer to 节 6.2	- 40°C to +125°C	- 10		10	nA
		V _{DD} = 16.5 V, V _{SS} = -16.5 V	25°C	- 0.8	0.02	0.8	nA
I _{D(OFF)}	Due in affiliations assume wt(1)	Switch state is off	- 40°C to +85°C	- 6		6	nA
	Drain off leakage current ⁽¹⁾	V _S = +10 V / - 10 V V _D = - 10 V / + 10 V Refer to 节 6.2	- 40°C to +125°C	- 30		30	nA
		V _{DD} = 16.5 V, V _{SS} = -16.5 V	25°C	- 0.8	0.02	0.8	nA
I _{S(ON)}	Channel on leakage current ⁽²⁾	Switch state is on	- 40°C to +85°C	- 6		6	nA
I _{D(ON)}		$V_S = V_D = \pm 10 \text{ V}$ Refer to \dagger 6.3	- 40°C to +125°C	- 30		30	nA
LOGIC IN	PUTS (SEL / EN pins)						
V _{IH}	Logic voltage high		- 40°C to +125°C	1.3		36	V
V _{IL}	Logic voltage low		- 40°C to +125°C	0		0.8	V
I _{IH}	Input leakage current		- 40°C to +125°C		0.6	2	μA
I _{IL}	Input leakage current		- 40°C to +125°C	- 0.1	- 0.005		μA
C _{IN}	Logic input capacitance		- 40°C to +125°C		3		pF
POWER S	SUPPLY						
			25°C		42	70	μA
I _{DD}	V _{DD} supply current	V_{DD} = 16.5 V, V_{SS} = -16.5 V Logic inputs = 0 V, 5 V, or V_{DD}	- 40°C to +85°C			80	μA
		Logic ilipuis – U V, O V, OI VDD	- 40°C to +125°C			95	μA
			25°C		8	25	μA
I _{SS}	V _{SS} supply current	$V_{DD} = 16.5 \text{ V}, V_{SS} = -16.5 \text{ V}$ Logic inputs = 0 V, 5 V, or V_{DD}	- 40°C to +85°C			30	μA
		Logic iriputs – U V, 5 V, or V _{DD}	- 40°C to +125°C			40	μA

Product Folder Links: TMUX6234

When V_{S} is positive, V_{D} is negative. Or when V_{S} is negative, V_{D} is positive.

When V_S is at a voltage potential, V_D is floating. Or when V_D is at a voltage potential, V_S is floating.

5.9 ±15 V Dual Supply: Switching Characteristics

 $V_{DD} = +15 \text{ V} \pm 10\%, V_{SS} = -15 \text{ V} \pm 10\%, \text{ GND} = 0 \text{ V (unless otherwise noted)}$ Typical at $V_{DD} = +15 \text{ V}, V_{SS} = -15 \text{ V}, T_A = 25 ^{\circ}\text{C}$ (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	T _A	MIN	TYP	MAX	UNIT
		V _S = 10 V	25°C		105	190	ns
t _{TRAN}	Transition time from control input	$R_L = 300 \Omega$, $C_L = 35 pF$	- 40°C to +85°C			200	ns
		Refer to Transition Time	- 40°C to +125°C			210	ns
		V _S = 10 V	25°C		105	190	ns
t _{ON (EN)}	Turn-on time from enable	$R_L = 300 \Omega$, $C_L = 35 pF$	- 40°C to +85°C			200	ns
		Refer to 节 6.5	- 40°C to +125°C			210	ns
		V _S = 10 V	25°C		80	150	ns
t _{OFF (EN)}	Turn-off time from enable	$R_L = 300 \Omega$, $C_L = 35 pF$	- 40°C to +85°C			160	ns
		Refer to 节 6.5	- 40°C to +125°C			170	ns
		V _S = 10 V,	25°C		50		ns
t _{BBM}	Break-before-make time delay	$R_L = 300 \Omega$, $C_L = 35 pF$	- 40°C to +85°C	1			ns
		Refer to Break-Before-Make	- 40°C to +125°C	1			ns
		V _{DD} rise time = 1µs	25°C		0.16		ms
T _{ON (VDD)}	Device turn on time (V _{DD} to output)	$R_L = 300 \Omega$, $C_L = 35 pF$	- 40°C to +85°C		0.16		ms
	(VDD to output)	Refer to Turn-on (VDD) Time	- 40°C to +125°C		0.16		ms
t _{PD}	Propagation delay	R_L = 50 Ω , C_L = 5 pF Refer to \dagger 6.8	25°C		450		ps
Q _{INJ}	Charge injection	V _D = 0 V, C _L = 100 pF Refer to 节 6.9	25°C		3		pC
O _{ISO}	Off-isolation	$R_L = 50 \Omega$, $C_L = 5 pF$ $V_S = 0 V$, $f = 100 kHz$ Refer to Off Isolation	25°C		- 82		dB
O _{ISO}	Off-isolation	$R_L = 50 \Omega$, $C_L = 5 pF$ $V_S = 0 V$, $f = 1 MHz$ Refer to Off Isolation	25°C		- 62		dB
X _{TALK}	Crosstalk	$R_L = 50 \Omega$, $C_L = 5 pF$ $V_S = 0 V$, $f = 1MHz$ Refer to Crosstalk	25°C		- 105		dB
BW	- 3dB Bandwidth	$R_L = 50 \Omega$, $C_L = 5 pF$ $V_S = 0 V$ Refer to Bandwidth	25°C		100		MHz
IL	Insertion loss	R_L = 50 Ω , C_L = 5 pF V_S = 0 V, f = 1 MHz	25°C		- 0.3		dB
ACPSRR	AC Power Supply Rejection Ratio	V_{PP} = 0.62 V on V_{DD} and V_{SS} R_L = 10 M Ω , C_L = 5 pF, f = 1 MHz Refer to \ddagger 6.14	25°C	- 48			dB
THD+N	Total Harmonic Distortion + Noise	$V_{PP} = 15 \text{ V}, V_{BIAS} = 0 \text{ V}$ $R_L = 10 \text{ k}\Omega$, $C_L = 5 \text{ pF}$, $f = 20 \text{ Hz}$ to 20 kHz Refer to $\ddagger 6.13$	25°C		0.0004		%
C _{S(OFF)}	Source off capacitance	V _S = 0 V, f = 1 MHz	25°C		16		pF
C _{D(OFF)}	Drain off capacitance	V _S = 0 V, f = 1 MHz	25°C		28		pF
C _{S(ON),} C _{D(ON)}	On capacitance	V _S = 0 V, f = 1 MHz	25°C		77		pF

Product Folder Links: TMUX6234

5.10 12 V Single Supply: Electrical Characteristics

 V_{DD} = +12 V ± 10%, V_{SS} = 0 V, GND = 0 V (unless otherwise noted)

Typical at V_{DD} = +12 V, V_{SS} = 0 V, T_A = 25 °C (unless otherwise noted)

PARAMETER		TEST CONDITIONS	T _A	MIN	TYP	MAX	UNIT
ANALOG	SWITCH						
		V _S = 0 V to 10 V	25°C		6.2	12	Ω
R _{ON}	On-resistance	I _D = -10 mA	- 40°C to +85°C			15	Ω
		Refer to On-Resistance	- 40°C to +125°C			18	Ω
		V _S = 0 V to 10 V	25°C		0.3	0.7	Ω
ΔR_{ON}	On-resistance mismatch between channels	I _D = -10 mA	- 40°C to +85°C			0.8	Ω
		Refer to On-Resistance	- 40°C to +125°C			1	Ω
		V _S = 0 V to 10 V	25°C		2.4	3.6	Ω
R _{ON FLAT}	On-resistance flatness	I _S = -10 mA	- 40°C to +85°C			3.9	Ω
		Refer to On-Resistance	- 40°C to +125°C			4.8	Ω
R _{ON DRIFT}	On-resistance drift	V _S = 6 V, I _S = - 10 mA Refer to On-Resistance	- 40°C to +125°C		0.025		Ω/°C
		V _{DD} = 13.2 V, V _{SS} = 0 V	25°C	- 0.4	0.01	0.4	nΑ
I _{S(OFF)}	Source off leakage current ⁽¹⁾	Switch state is off V _S = 10 V / 1 V	- 40°C to +85°C	- 1		1	nA
3(011)	Ç	V _D = 1 V / 10 V Refer to 节 6.2	- 40°C to +125°C	- 8		8	nA
		$V_{DD} = 13.2 \text{ V}, V_{SS} = 0 \text{ V}$	25°C	- 0.5	0.02	0.5	nΑ
I _{D(OFF)}	Drain off leakage current ⁽¹⁾	Switch state is off V _S = 10 V / 1 V	- 40°C to +85°C	- 6		6	nA
Б(біт)		V _D = 1 V / 10 V Refer to 节 6.2	- 40°C to +125°C	- 30		30	nA
		$V_{DD} = 13.2 \text{ V}, V_{SS} = 0 \text{ V}$	25°C	- 0.5	0.02	0.5	nΑ
I _{S(ON)} I _{D(ON)}	Channel on leakage current ⁽²⁾	Switch state is on $V_S = V_D = 10 \text{ V}$ or 1 V	- 40°C to +85°C	- 6		6	nA
D(ON)		Refer to 节 6.3	- 40°C to +125°C	- 30		30	nA
LOGIC IN	PUTS (SEL / EN pins)						
V_{IH}	Logic voltage high		- 40°C to +125°C	1.3		36	V
V_{IL}	Logic voltage low		- 40°C to +125°C	0		0.8	V
I _{IH}	Input leakage current		- 40°C to +125°C		0.6	2	μA
I _{IL}	Input leakage current		- 40°C to +125°C	- 0.1	- 0.005		μΑ
C _{IN}	Logic input capacitance		- 40°C to +125°C		3		pF
POWER S	SUPPLY						
			25°C		33	60	μΑ
I_{DD}	V _{DD} supply current	V_{DD} = 13.2 V, V_{SS} = 0 V Logic inputs = 0 V, 5 V, or V_{DD}	- 40°C to +85°C			70	μΑ
		, , , , , , , ,	- 40°C to +125°C		·	80	μA

11

⁽¹⁾ When V_S is 10 V, V_D is 1 V. Or when V_S is 1 V, V_D is 10 V.
(2) When V_S is at a voltage potential, V_D is floating. Or when V_D is at a voltage potential, V_S is floating.

5.11 12 V Single Supply: Switching Characteristics

 V_{DD} = +12 V ± 10%, V_{SS} = 0 V, GND = 0 V (unless otherwise noted) Typical at V_{DD} = +12 V, V_{SS} = 0 V, T_A = 25°C (unless otherwise noted)

•	PARAMETER	TEST CONDITIONS	T _A	MIN	TYP	MAX	UNIT
		V _S = 8 V	25°C		105	210	ns
t _{TRAN}	Transition time from control input	$R_L = 300 \Omega$, $C_L = 35 pF$	- 40°C to +85°C			230	ns
		Refer to Transition Time	- 40°C to +125°C			260	ns
		V _S = 8 V	25°C		110	210	ns
t _{ON (EN)}	Turn-on time from enable	$R_L = 300 \Omega$, $C_L = 35 pF$	- 40°C to +85°C			230	ns
		Refer to 节 6.5	- 40°C to +125°C			260	ns
		V _S = 8 V	25°C		105	200	ns
t _{OFF (EN)}	Turn-off time from enable	$R_L = 300 \Omega$, $C_L = 35 pF$	- 40°C to +85°C			220	ns
		Refer to 节 6.5	- 40°C to +125°C			250	ns
		V _S = 8 V,	25°C		60		ns
t _{BBM}	Break-before-make time delay	$R_L = 300 \Omega$, $C_L = 35 pF$	- 40°C to +85°C	1			ns
		Refer to Break-Before-Make	- 40°C to +125°C	1			ns
		V _{DD} rise time = 1μs	25°C		0.16		ms
T _{ON (VDD)}	Device turn on time (V _{DD} to output)	$R_L = 300 \Omega$, $C_L = 35 pF$	- 40°C to +85°C		0.16		ms
	(Վըը to output)	Refer to Turn-on (VDD) Time	- 40°C to +125°C		0.16		ms
t _{PD}	Propagation delay	R_L = 50 Ω , C_L = 5 pF Refer to \dagger 6.8	25°C		500		ps
Q _{INJ}	Charge injection	V _D = 6 V, C _L = 100 pF Refer to 节 6.9	25°C		3		рС
O _{ISO}	Off-isolation	R_L = 50 Ω , C_L = 5 pF V_S = 6 V, f = 100 kHz	25°C		- 82		dB
O _{ISO}	Off-isolation	R_L = 50 Ω , C_L = 5 pF V_S = 6 V, f = 1 MHz Refer to Off Isolation	25°C	25°C - 62			dB
X _{TALK}	Crosstalk	$R_L = 50 \Omega$, $C_L = 5 pF$ $V_S = 6 V$, $f = 1 MHz$ Refer to Crosstalk	25°C		- 105		dB
BW	- 3dB Bandwidth	$R_L = 50 \Omega$, $C_L = 5 pF$ $V_S = 6 V$ Refer to Bandwidth	25°C		130		MHz
IL	Insertion loss	R_L = 50 Ω , C_L = 5 pF V_S = 6 V, f = 1 MHz	25°C		- 0.5		dB
ACPSRR	AC Power Supply Rejection Ratio	V_{PP} = 0.62 V on V_{DD} and V_{SS} R_L = 10 M Ω , C_L = 5 pF, f = 1 MHz Refer to \dagger 6.14	25°C	- 48			dB
THD+N	Total Harmonic Distortion + Noise	V_{PP} = 6 V, V_{BIAS} = 6 V R_L = 10 k Ω , C_L = 5 pF, f = 20 Hz to 20 kHz Refer to \dagger 6.13	25°C 0.0016			%	
C _{S(OFF)}	Source off capacitance	V _S = 6 V, f = 1 MHz	25°C		19		pF
C _{D(OFF)}	Drain off capacitance	V _S = 6 V, f = 1 MHz	25°C		33		pF
C _{S(ON),} C _{D(ON)}	On capacitance	V _S = 6 V, f = 1 MHz	25°C		78		pF

English Data Sheet: SCDS442

提交文档反馈

12

5.12 ±5 V Dual Supply: Electrical Characteristics

 V_{DD} = +5 V ± 10%, V_{SS} = - 5 V ±10%, GND = 0 V (unless otherwise noted) Typical at V_{DD} = +5 V, V_{SS} = - 5 V, T_A = 25°C (unless otherwise noted)

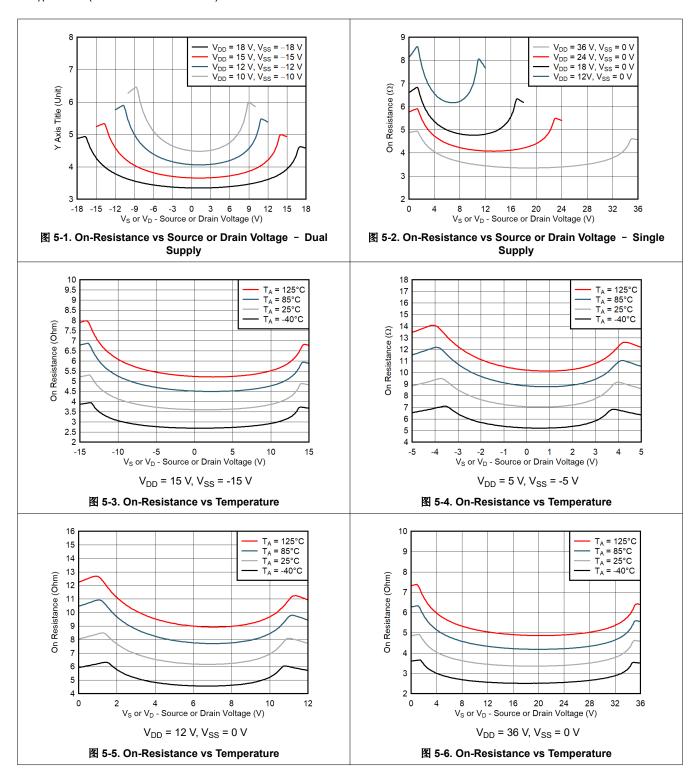
	$t V_{DD} = +5 V, V_{SS} = -5 V, T_A = 2$ PARAMETER	TEST CONDITIONS	T _A	MIN	TYP	MAX	UNIT
ANALOG	SWITCH						
		V _S = -4.5 V to +4.5 V	25°C		7	13.5	Ω
R _{ON}	On-resistance	$I_D = -10 \text{ mA}$	- 40°C to +85°C			16.2	Ω
		Refer to On-Resistance	- 40°C to +125°C			18.5	Ω
		V _S = -4.5 V to +4.5 V	25°C		0.2	0.7	Ω
ΔR_{ON}	On-resistance mismatch between channels	$I_D = -10 \text{ mA}$	- 40°C to +85°C			0.8	Ω
	ond mois	Refer to On-Resistance	- 40°C to +125°C			0.9	Ω
		V _S = -4.5 V to +4.5 V	25°C		2.6	3.8	Ω
R _{ON FLAT}	On-resistance flatness	I _D = - 10 mA	- 40°C to +85°C			4.2	Ω
		Refer to On-Resistance	- 40°C to +125°C			4.9	Ω
R _{ON DRIFT}	On-resistance drift	V _S = 0 V, I _S = -10 mA Refer to On-Resistance	- 40°C to +125°C		0.03		Ω/°C
		V _{DD} = +5.5 V, V _{SS} = -5.5 V	25°C	- 0.5	0.01	0.5	nA
lovers	Source off leakage current ⁽¹⁾	Switch state is off $V_S = +4.5 \text{ V} / -4.5 \text{ V}$	- 40°C to +85°C	- 1		1	nA
I _{S(OFF)}		V _D = -4.5 V / +4.5 V Refer to 节 6.2	- 40°C to +125°C	- 5		5	nA
		V _{DD} = +5.5 V, V _{SS} = -5.5 V	25°C	- 0.5	0.01	0.5	nA
I _{D(OFF)}	Drain off leakage current ⁽¹⁾	Switch state is off $V_S = +4.5 \text{ V} / -4.5 \text{ V}$	- 40°C to +85°C	- 3		3	nA
	Diain on leakage current	V _D = -4.5 V / +4.5 V Refer to 节 6.2	- 40°C to +125°C	- 8		8	nA
		V _{DD} = +5.5 V, V _{SS} = -5.5 V	25°C	- 0.5	0.01	0.5	nA
I _{S(ON)}	Channel on leakage current ⁽²⁾	Switch state is on $V_S = V_D = \pm 4.5 \text{ V}$	- 40°C to +85°C	- 3		3	nA
I _{D(ON)}		Refer to 节 6.3	- 40°C to +125°C	- 8		8	nA
LOGIC IN	PUTS (SEL / EN pins)						
V _{IH}	Logic voltage high		- 40°C to +125°C	1.3		36	V
V _{IL}	Logic voltage low		- 40°C to +125°C	0		0.8	V
I _{IH}	Input leakage current		- 40°C to +125°C		0.6	2	μA
I _{IL}	Input leakage current		- 40°C to +125°C	- 0.1	- 0.005		μA
C _{IN}	Logic input capacitance		- 40°C to +125°C		3		pF
POWER S	SUPPLY	ı	1			l	
			25°C		28	45	μA
I_{DD}	V _{DD} supply current	V_{DD} = +5.5 V, V_{SS} = -5.5 V Logic inputs = 0 V, 5 V, or V_{DD}	- 40°C to +85°C			55	μA
		223.5 pare 0 4, 0 4, 51 4 00	- 40°C to +125°C			85	μA
			25°C		4	10	μΑ
I _{SS}	V _{SS} supply current	V_{DD} = +5.5 V, V_{SS} = -5.5 V Logic inputs = 0 V, 5 V, or V_{DD}	- 40°C to +85°C			15	μΑ
			- 40°C to +125°C			25	μA

Product Folder Links: TMUX6234

When V_{S} is positive, V_{D} is negative. Or when V_{S} is negative, V_{D} is positive.

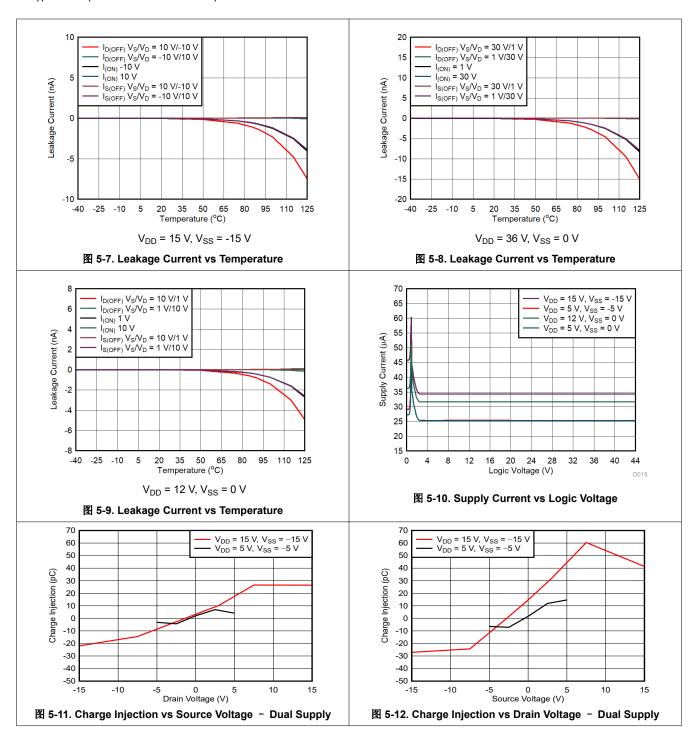
When V_S is at a voltage potential, V_D is floating. Or when V_D is at a voltage potential, V_S is floating.

5.13 ±5 V Dual Supply: Switching Characteristics

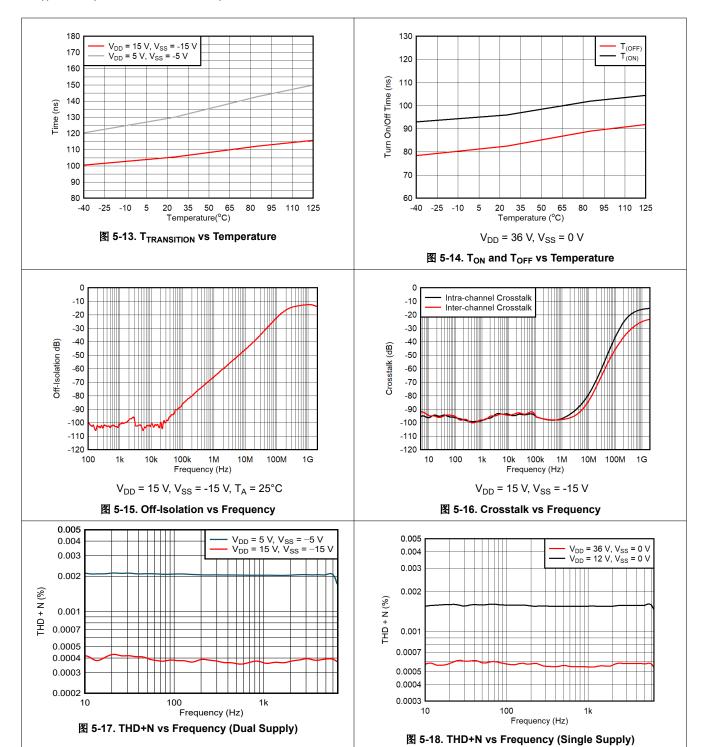

 $V_{DD} = +5~V \pm 10\%,~V_{SS} = -5~V \pm 10\%,~GND = 0~V~(unless~otherwise~noted)$ Typical at $V_{DD} = +5~V,~V_{SS} = -5~V,~T_A = 25\%$ (unless~otherwise~noted)

	PARAMETER	TEST CONDITIONS	T _A	MIN	TYP	MAX	UNIT
		V _S = 3 V	25°C		120	210	ns
t _{TRAN}	Transition time from control input	$R_L = 300 \Omega$, $C_L = 35 pF$	- 40°C to +85°C			230	ns
		Refer to Transition Time	- 40°C to +125°C			250	ns
		V _S = 3 V	25°C		130	220	ns
t _{ON (EN)}	Turn-on time from enable	$R_L = 300 \Omega$, $C_L = 35 pF$	- 40°C to +85°C			240	ns
		Refer to 节 6.5	- 40°C to +125°C			260	ns
		V _S = 3 V	25°C		120	210	ns
t _{OFF (EN)}	Turn-off time from enable	$R_L = 300 \Omega$, $C_L = 35 pF$	- 40°C to +85°C			230	ns
		Refer to 节 6.5	- 40°C to +125°C			250	ns
		V _S = 3 V,	25°C		65		ns
t _{BBM}	Break-before-make time delay	$R_L = 300 \Omega$, $C_L = 35 pF$	- 40°C to +85°C	1			ns
		Refer to Break-Before-Make	- 40°C to +125°C	1			ns
		V _{DD} rise time = 1µs	25°C		0.16		ms
T _{ON (VDD)}	Device turn on time (V _{DD} to output)	$R_L = 300 \Omega$, $C_L = 35pF$	- 40°C to +85°C		0.16		ms
	(VDD to output)	Refer to Turn-on (VDD) Time	- 40°C to +125°C		0.16		ms
t _{PD}	Propagation delay	R_L = 50 Ω , C_L = 5 pF Refer to \dagger 6.8	25°C		400		ps
Q _{INJ}	Charge injection	V_D = 0 V, C_L = 100 pF Refer to \ddagger 6.9	25°C		1		pC
O _{ISO}	Off-isolation	$R_L = 50 \Omega$, $C_L = 5 pF$ $V_S = 0 V$, $f = 100 kHz$ Refer to Off Isolation	25°C		- 82		dB
O _{ISO}	Off-isolation	$R_L = 50 \Omega$, $C_L = 5 pF$ $V_S = 0 V$, $f = 1 MHz$ Refer to Off Isolation	25°C		- 62		dB
X _{TALK}	Crosstalk	$R_L = 50 \Omega$, $C_L = 5 pF$ $V_S = 0 V$, $f = 1 MHz$ Refer to Crosstalk	25°C		- 105		dB
BW	- 3dB Bandwidth	$R_L = 50 \Omega$, $C_L = 5 pF$ $V_S = 0 V$ Refer to Bandwidth	25°C		130		MHz
IL	Insertion loss	$R_L = 50 \Omega$, $C_L = 5 pF$ $V_S = 0 V$, $f = 1 MHz$	25°C		- 0.6		dB
ACPSRR	AC Power Supply Rejection Ratio	V_{PP} = 0.62 V on V_{DD} and V_{SS} R_L = 10 M Ω , C_L = 5 pF, f = 1 MHz Refer to \dagger 6.14	25°C		- 53		dB
THD+N	Total Harmonic Distortion + Noise	V_{PP} = 5 V, V_{BIAS} = 0 V R_L = 10 kΩ , C_L = 5 pF, f = 20 Hz to 20 kHz Refer to \ddagger 6.13	25°C		0.002		%
C _{S(OFF)}	Source off capacitance	V _S = 0 V, f = 1 MHz	25°C		20		pF
C _{D(OFF)}	Drain off capacitance	V _S = 0 V, f = 1 MHz	25°C		34		pF
C _{S(ON),} C _{D(ON)}	On capacitance	V _S = 0 V, f = 1 MHz	25°C		80		pF

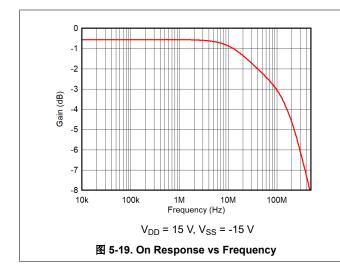
Product Folder Links: TMUX6234 English Data Sheet: SCDS442

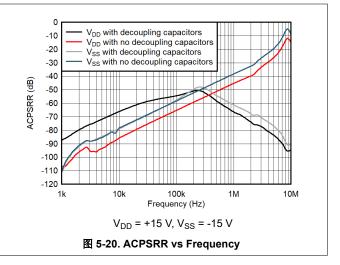


5.14 Typical Characteristics



5.14 Typical Characteristics (continued)




5.14 Typical Characteristics (continued)

5.14 Typical Characteristics (continued)

6 Parameter Measurement Information

6.1 On-Resistance

The on-resistance of a device is the ohmic resistance between the source (Sx) and drain (D) pins of the device. The on-resistance varies with input voltage and supply voltage. The symbol R_{ON} is used to denote onresistance. 🛭 6-1 shows the measurement setup used to measure R_{ON}. Voltage (V) and current (I_{SD}) are measured using this setup, and R_{ON} is computed with $R_{ON} = V / I_{SD}$.

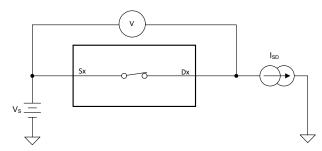


图 6-1. On-Resistance Measurement Setup

6.2 Off-Leakage Current

There are two types of leakage currents associated with a switch during the off state:

- Source off-leakage current
- Drain off-leakage current

Source leakage current is defined as the leakage current flowing into or out of the source pin when the switch is off. This current is denoted by the symbol I_{S(OFF)}.

Drain leakage current is defined as the leakage current flowing into or out of the drain pin when the switch is off. This current is denoted by the symbol I_{D(OFF)}.

8 6-2 shows the setup used to measure both off-leakage currents.

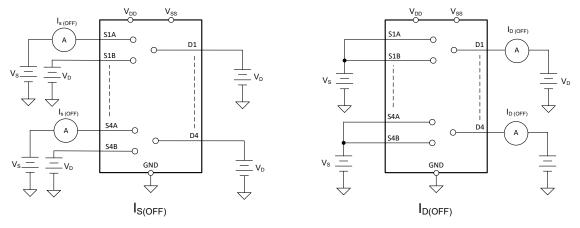


图 6-2. Off-Leakage Measurement Setup

Product Folder Links: TMUX6234

19

6.3 On-Leakage Current

Source on-leakage current is defined as the leakage current flowing into or out of the source pin when the switch is on. This current is denoted by the symbol $I_{S(ON)}$.

Drain on-leakage current is defined as the leakage current flowing into or out of the drain pin when the switch is on. This current is denoted by the symbol $I_{D(ON)}$.

Either the source pin or drain pin is left floating during the measurement. \boxtimes 6-3 shows the circuit used for measuring the on-leakage current, denoted by $I_{S(ON)}$ or $I_{D(ON)}$.

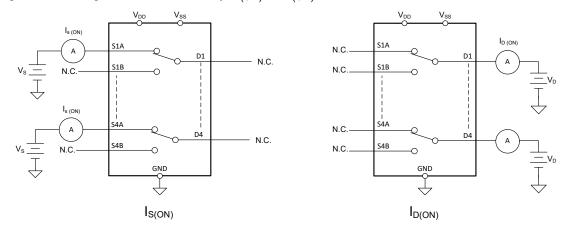


图 6-3. On-Leakage Measurement Setup

6.4 Transition Time

Transition time is defined as the time taken by the output of the device to rise or fall 90% after the address signal has risen or fallen past the logic threshold. The 90% transition measurement is utilized to provide the timing of the device. System level timing can then account for the time constant added from the load resistance and load capacitance. 8 6-4 shows the setup used to measure transition time, denoted by the symbol treatment.

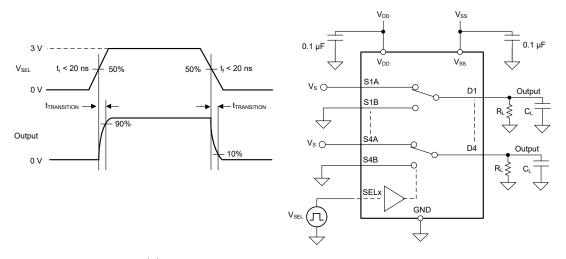


图 6-4. Transition-Time Measurement Setup

Product Folder Links: TMUX6234

Copyright © 2024 Texas Instruments Incorporated

6.5 t_{ON(EN)} and t_{OFF(EN)}

Turn-on time is defined as the time taken by the output of the device to rise to 90% after the enable has risen past the logic threshold. The 90% measurement is utilized to provide the timing of the device. System level timing can then account for the time constant added from the load resistance and load capacitance. 86-5 shows the setup used to measure turn-on time, denoted by the symbol $t_{ON(EN)}$.

Turn-off time is defined as the time taken by the output of the device to fall to 10% after the enable has fallen past the logic threshold. The 10% measurement is utilized to provide the timing of the device. System level timing can then account for the time constant added from the load resistance and load capacitance. 46-5 shows the setup used to measure turn-off time, denoted by the symbol 40-5 to 40-5 shows the setup used to measure turn-off time, denoted by the symbol 40-5 shows the setup used to measure turn-off time, denoted by the symbol 40-5 shows the setup used to measure turn-off time, denoted by the symbol 40-5 shows the setup used to measure turn-off time, denoted by the symbol 40-5 shows the setup used to measure turn-off time, denoted by the symbol 40-5 shows the setup used to measure turn-off time, denoted by the symbol 40-5 shows the setup used to measure turn-off time, denoted by the symbol 40-5 shows the setup used to measure turn-off time, denoted by the symbol 40-5 shows the setup used to measure turn-off time, denoted by the symbol 40-5 shows the setup used to measure turn-off time, denoted by the symbol 40-5 shows the setup used to measure turn-off time.

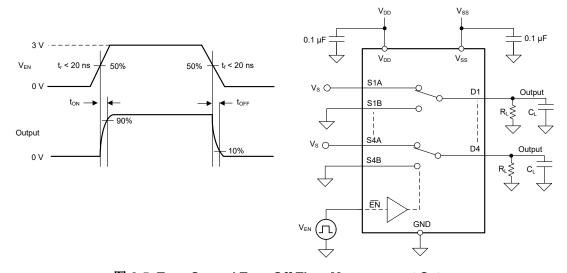


图 6-5. Turn-On and Turn-Off Time Measurement Setup

6.6 Break-Before-Make

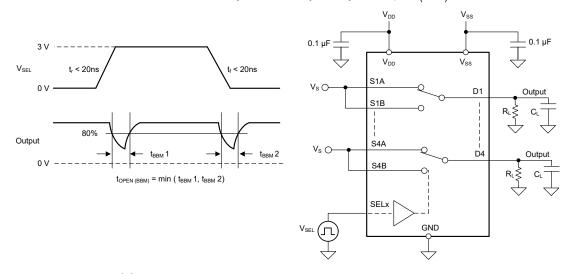


图 6-6. Break-Before-Make Delay Measurement Setup

Product Folder Links: TMUX6234

6.7 t_{ON (VDD)} Time

The $t_{ON\ (VDD)}$ time is defined as the time taken by the output of the device to rise to 90% after the supply has risen past the supply threshold. The 90% measurement is used to provide the timing of the device turning on in the system. \boxtimes 6-7 shows the setup used to measure turn on time, denoted by the symbol $t_{ON\ (VDD)}$.

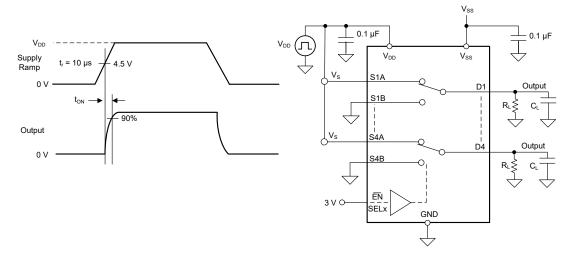


图 6-7. t_{ON (VDD)} Time Measurement Setup

6.8 Propagation Delay

Propagation delay is defined as the time taken by the output of the device to rise or fall 50% after the input signal has risen or fallen past the 50% threshold. 86-8 shows the setup used to measure propagation delay, denoted by the symbol t_{PD} .

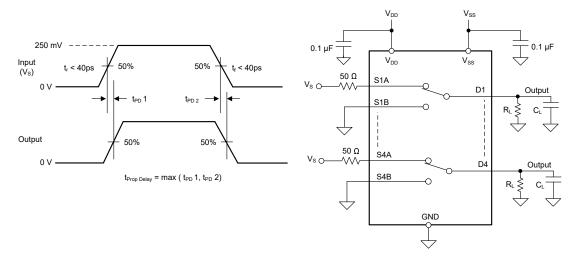


图 6-8. Propagation Delay Measurement Setup

Copyright © 2024 Texas Instruments Incorporated

6.9 Charge Injection

The TMUX6234 has a transmission-gate topology. Any mismatch in capacitance between the NMOS and PMOS transistors results in a charge injected into the drain or source during the falling or rising edge of the gate signal. The amount of charge injected into the source or drain of the device is known as charge injection, and is denoted by the symbol Q_{INJ}. 🛭 6-9 shows the setup used to measure charge injection from source (Sx) to drain (D).

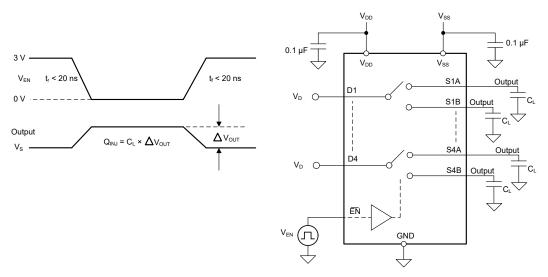


图 6-9. Charge-Injection Measurement Setup

6.10 Off Isolation

Off isolation is defined as the ratio of the signal at the drain pin (D) of the device when a signal is applied to the source pin (Sx) of an off-channel. 🛭 6-10 shows the setup used to measure, and the equation used to calculate off isolation.

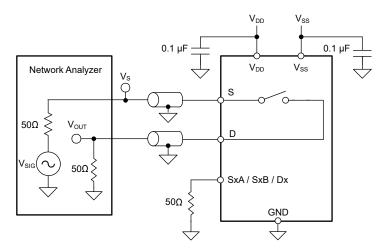


图 6-10. Off Isolation Measurement Setup

Product Folder Links: TMUX6234

23

6.11 Crosstalk

Crosstalk is defined as the ratio of the signal at the drain pin (D) of a different channel, when a signal is applied at the source pin (Sx) of an on-channel. 3 6-11 shows the setup used to measure and the equation used to calculate crosstalk.

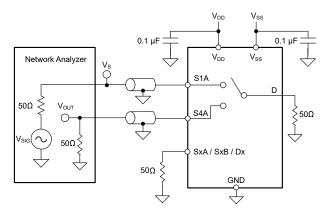


图 6-11. Crosstalk Measurement Setup

6.12 Bandwidth

Bandwidth is defined as the range of frequencies that are attenuated by less than 3 dB when the input is applied to the source pin (Sx) of an on-channel, and the output is measured at the drain pin (D) of the device.

6-12 shows the setup used to measure bandwidth.

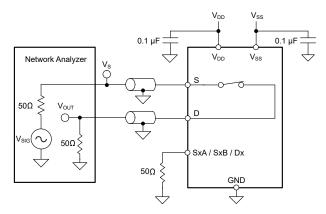


图 6-12. Bandwidth Measurement Setup

Product Folder Links: TMUX6234

6.13 THD + Noise

The total harmonic distortion (THD) of a signal is a measurement of the harmonic distortion, and is defined as the ratio of the sum of the powers of all harmonic components to the power of the fundamental frequency at the mux output. The on-resistance of the device varies with the amplitude of the input signal and results in distortion when the drain pin is connected to a low-impedance load. Total harmonic distortion plus noise is denoted as THD.

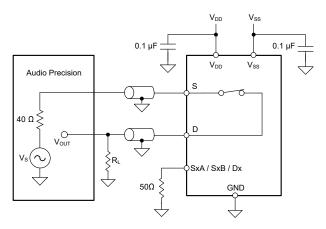


图 6-13. THD Measurement Setup

6.14 Power Supply Rejection Ratio (PSRR)

PSRR measures the ability of a device to prevent noise and spurious signals that appear on the supply voltage pin from coupling to the output of the switch. The DC voltage on the device supply is modulated by a sine wave of 620mVPP. The ratio of the amplitude of signal on the output to the amplitude of the modulated signal is the ACPSRR. A high ratio represents a high degree of tolerance to supply rail variation.

The below shows how the decoupling capacitors reduce high frequency noise on the supply pins. This helps stabilize the supply and immediately filter as much of the supply noise as possible.

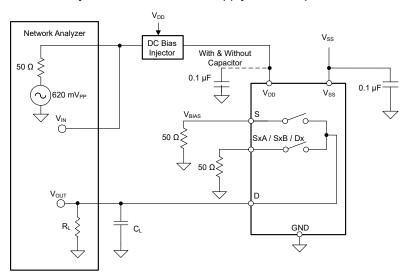
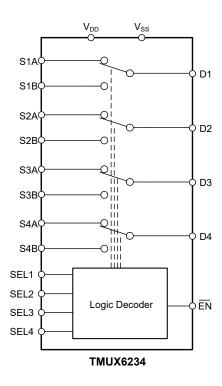


图 6-14. ACPSRR Measurement Setup


25

7 Detailed Description

7.1 Overview

The TMUX6234 contains four independently controlled SPDT switches with an EN pin to enable or disable all four switches.

7.2 Functional Block Diagram

7.3 Feature Description

7.3.1 Bidirectional Operation

The TMUX6234 conducts equally well from source (Sx) to drain (Dx) or from drain (Dx) to source (Sx). Each channel has very similar characteristics in both directions and supports both analog and digital signals.

7.3.2 Rail-to-Rail Operation

The valid signal path input or output voltage for the TMUX6234 ranges from V_{SS} to V_{DD}.

7.3.3 1.8 V Logic Compatible Inputs

The TMUX6234 has 1.8-V logic compatible control for all logic control inputs. 1.8-V logic level inputs allows the switch to interface with processors that have lower logic I/O rails and eliminates the need for an external translator, which saves both space and BOM cost. Refer to Simplifying Design with 1.8 V logic Muxes and Switches for more information on 1.8 V logic implementations.

> Copyright © 2024 Texas Instruments Incorporated Product Folder Links: TMUX6234

7.3.4 Fail-Safe Logic

TMUX6234 supports Fail-Safe Logic on the control input pins ($\overline{\text{EN}}$ and SELx) allowing it to operate up to 36 V, regardless of the state of the supply pins. This feature allows voltages on the control pins to be applied before the supply pin, protecting the device from potential damage. Fail-Safe Logic minimizes system complexity by removing the need for power supply sequencing on the logic control pins. For example, the Fail-Safe Logic feature allows the TMUX6234 logic input pins to ramp up to +36 V while V_{DD} and $V_{SS}=0$ V. The logic control inputs are protected against positive faults of up to +36 V in powered-off condition, but do not offer protection against negative overvoltage conditions.

7.3.5 Latch-Up Immune

Latch-Up is a condition where a low impedance path is created between a supply pin and ground. This condition is caused by a trigger (current injection or overvoltage), but once activated, the low impedance path remains even after the trigger is no longer present. This low impedance path may cause system upset or catastrophic damage due to excessive current levels. The Latch-Up condition typically requires a power cycle to eliminate the low impedance path.

The TMUX62xx family of devices are constructed on Silicon on Insulator (SOI) based process where an oxide layer is added between the PMOS and NMOS transistor of each CMOS switch to prevent parasitic structures from forming. The oxide layer is also known as an insulating trench and prevents triggering of latch up events due to overvoltage or current injections. The latch-up immunity feature allows the TMUX62xx family of switches and multiplexers to be used in harsh environments. Refer to *Using Latch Up Immune Multiplexers to Help Improve System Reliability* for more information on latch-up immunity.

7.3.6 Ultra-Low Charge Injection

▼ 7-1 shows how the TMUX6234 has a transmission gate topology. Any mismatch in the stray capacitance associated with the NMOS and PMOS causes an output level change whenever the switch is opened or closed.

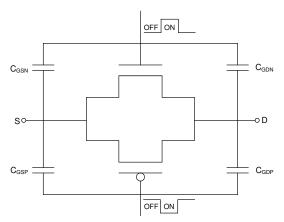


图 7-1. Transmission Gate Topology

The TMUX6234 contains specialized architecture to reduce charge injection on the source (Sx). To further reduce charge injection in a sensitive application, a compensation capacitor (Cp) can be added on the drain (D). This will ensure that excess charge from the switch transition will be pushed into the compensation capacitor on the drain (D) instead of the source (Sx). As a general rule of thumb, Cp should be 20x larger than the equivalent load capacitance on the source (Sx).

Product Folder Links: TMUX6234

Copyright © 2024 Texas Instruments Incorporated

提交文档反馈

27

7.4 Device Functional Modes

The enable \overline{EN} pin is an active-low logic pin that controls the connection between the source (SxA and SxB) and drain (Dx) pins of the device. The TMUX6234 SELx logic control inputs determine which source pin is connected to the drain pin for each channel. When the \overline{EN} pin of the TMUX6234 is pulled low, the SELx logic control inputs determine which source input is selected. When the \overline{EN} pin is pulled high, all of the switches are in an open state regardless of the state of the SELx logic control inputs. The control pins can be as high as 36V.

The $\overline{\text{TMUX}}6234$ can be operated without any external components except for the supply decoupling capacitors. The $\overline{\text{EN}}$ and SELx pins have internal pull-down resistors of $4M\,\Omega$. If unused, $\overline{\text{EN}}$ and SELx pins should be tied to GND to ensure the device does not consume additional current as highlighted in Implications of Slow or Floating CMOS Inputs. Unused signal path inputs (Sx or Dx) should be connected to GND.

7.5 Truth Tables

表 7-1 shows the truth tables for the TMUX6234.

表 7-1. TMUX6234 Truth Table

EN	SEL1	SEL2	SEL2 SEL3 SEL4		Selected Source Pins Connected to Drain Pins
0	0	X ⁽¹⁾	X	Х	S1B to D1
0	1	X	Х	Х	S1A to D1
0	Х	0	X	Х	S2B to D2
0	Х	1	X	Х	S2A to D2
0	Х	Х	0	Х	S3B to D3
0	Х	Х	1	Х	S3A to D3
0	Х	X	Х	0	S4B to D4
0	Х	Х	X	1	S4A to D4
1	Х	X	X	Х	Hi-Z (OFF)

X means do not care.

Copyright © 2024 Texas Instruments Incorporated Product Folder Links: *TMUX*6234

8 Application and Implementation

备注

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes, as well as validating and testing their design implementation to confirm system functionality.

8.1 Application Information

The TMUX6234 is part of the precision switches and multiplexers family of devices. The TMUX6234 offers low R_{ON}, low on and off leakage currents and low charge injection performance. These features makes the TMUX6234 a precision, robust, high-performance analog multiplexer for high-voltage, industrial applications.

8.2 Typical Application

One application of the TMUX6234 is for input control of a power amplifier gate driver. Utilizing a switch allows a system to control when the DAC is connected to the power amplifier, and can stop biasing the power amplifier by switching the gate voltage. The wide dual supply range of ±4.5 V to ±18 V allows the switch to work with GaN power amplifiers and the wide single supply range 4.5 V to 36 V works well with LDMOS power amplifiers.

⊗ 8-1 shows the TMUX6234 configured for control of a multi-channel power amplifier application.

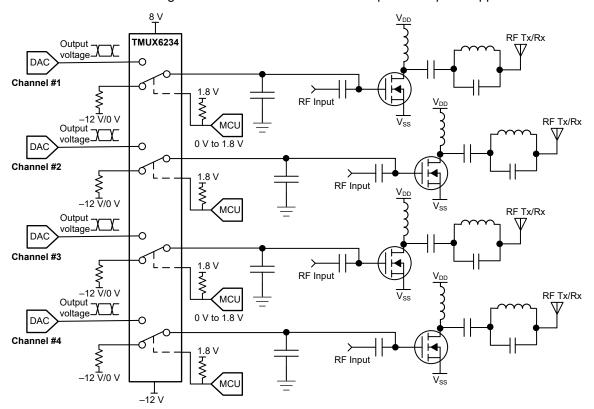


图 8-1. Power Amplifier Gate Driver

Product Folder Links: TMUX6234

29

8.2.1 Design Requirements

Use the parameters listed in $\frac{1}{8}$ 8-1 for this design example.

表 8-1. Design Parameters

PARAMETERS	VALUES						
PARAINETERS	GAN application	LDMOS application					
Supply (V _{DD})	8 V						
Supply (V _{SS})	-12 V						
Signal range	-12 V to 0 V	0 V to 5 V					
Control logic	1.8 V compatiable (up to 36 V)						
SEL1 - SEL4	Controlled independently for each power amplifier channel						

8.2.2 Detailed Design Procedure

The application shown in <a>\bar{\text{8}}\$ 8-1 demonstrates how to toggle between the DAC output and a low signal voltage for control of a power amplifier. A device such as the TMUX6234 that supports multiple supply voltage combinations allows the system designer to use a single switch across platforms with different power amplifier topologies such as GaN or LDMOS implementations. Using a multi-channel switch like the TMUX6234 allows the system to improve density by implementing a smaller solution size. Multiple channels of the TMUX6234 can be utilized to switch additional stages of a single power amplifier channel. Or multiple channel switches can be used on different power amplifier stages in high channel count communications equipment such as a 32 transmist (TX), 32 receive (RX) active antenna system mMIMIO (AAS). Each channel of the TMUX6234 has independent control signals allowing for overal system flexibility. The DAC output is utilized to bias the gate of the power amplifier and can be disconnected from the circuit using the select pins of the switch or the golbal enable pin. The TMUX6234 can support 1.8 V logic signals on the control input, allowing the device to interface with low logic controls of an FPGA or MCU. All inputs to the switch must fall within the recommend operating conditions of the TMUX6234 including signal range and continuous current. For this design with a positive supply of 8 V on V_{DD}, and negative supply of -12 V on V_{SS}, the signal range can be 8 V to -12 V. The maximum continuous current (IDC) is captured in the Recommended Operating Conditions table for a range of supply voltage cases.

8.2.3 Application Curve

The low on-resistance and fast switching times of TMUX6234 make this device ideal for implementing high channel count switching applications.

8-2 shows the plot for transition time vs temperature for the TMUX6234.

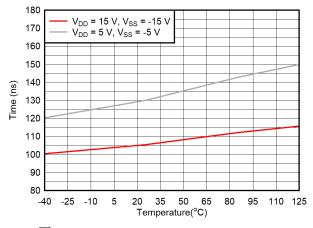


图 8-2. Transition Time vs Temperature

Copyright © 2024 Texas Instruments Incorporated Product Folder Links: *TMUX*6234

8.3 Power Supply Recommendations

The TMUX6234 operates across a wide supply range of ±4.5 V to ±18 V (4.5 V to 36 V in single-supply mode). The TMUX6234 also performs well with asymmetrical supplies such as V_{DD} = 18 V and V_{SS} = -5 V.

Power-supply bypassing improves noise margin and prevents switching noise propagation from the supply rails to other components. Good power-supply decoupling is important to achieve optimum performance. Use a supply decoupling capacitor ranging from 0.1 μ F to 10 μ F at the V_{DD} and V_{SS} pins to ground for an improved supply noise immunity. Place the bypass capacitors as close to the power supply pins of the device as possible using low-impedance connections. TI recommends using multi-layer ceramic chip capacitors (MLCCs) that offer low equivalent series resistance (ESR) and inductance (ESL) characteristics for power-supply decoupling purposes. For very sensitive systems or systems in harsh noise environments, avoiding the use of vias for connecting the capacitors to the device pins may offer superior noise immunity. The use of multiple vias in parallel lowers the overall inductance and is beneficial for connections to ground and power planes. Always ensure the ground (GND) connection is established before supplies are ramped.

8.4 Layout

8.4.1 Layout Guidelines

A reflection can occur when a PCB trace turns a corner at a 90° angle. A reflection occurs primarily because of the change of width of the trace. The trace width increases to 1.414 times the width at the apex of the turn. This increase upsets the transmission-line characteristics, especially the distributed capacitance and self - inductance of the trace which results in the reflection. Not all PCB traces can be straight and therefore some traces must turn corners. 8-3 shows progressively better techniques of rounding corners. Only the last example (BEST) maintains constant trace width and minimizes reflections.

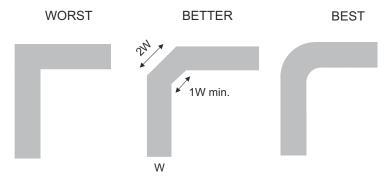


图 8-3. Trace Example

Route high-speed signals using a minimum of vias and corners which reduces signal reflections and impedance changes. When a via must be used, increase the clearance size around it to minimize its capacitance. Each via introduces discontinuities in the signal's transmission line and increases the chance of picking up interference from the other layers of the board. Be careful when designing test points, through-hole pins are not recommended at high frequencies.

⊠ 8-4 illustrates an example of a PCB layout with the TMUX6234. Some key considerations are:

- Decouple the supply pins with a 0.1 µF and 1 µF capacitor, placed lowest value capacitor as close to the pin as possible. Make sure that the capacitor voltage rating is sufficient for the supply voltage.
- Keep the input lines as short as possible.
- Use a solid ground plane to help reduce electromagnetic interference (EMI) noise pickup.
- Do not run sensitive analog traces in parallel with digital traces. Avoid crossing digital and analog traces if possible, and only make perpendicular crossings when necessary.

Product Folder Links: TMUX6234

 Using multiple vias in parallel will lower the overall inductance and is beneficial for connection to ground planes.

Copyright © 2024 Texas Instruments Incorporated

31

8.4.2 Layout Example

8-4 shows an example board layout for the TMUX6234.

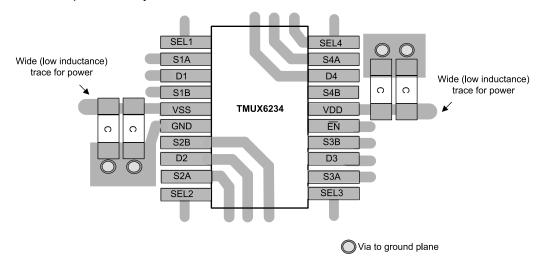


图 8-4. TMUX6234PW Layout Example

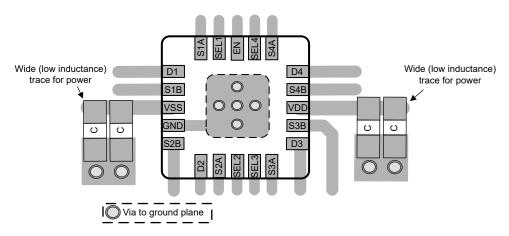


图 8-5. TMUX6234RRQ Layout Example

Product Folder Links: TMUX6234

Copyright © 2024 Texas Instruments Incorporated

9 Device and Documentation Support

9.1 Documentation Support

9.1.1 Related Documentation

- Texas Instruments, Improve Stability Issues with Low CON Multiplexers application brief.
- Texas Instruments, Improving Signal Measurement Accuracy in Automated Test Equipment application brief.
- Texas Intruments, Implications of Slow or Floating CMOS Inputs application note.
- Texas Instruments, Sample & Hold Glitch Reduction for Precision Outputs Reference Design reference guide.
- Texas Instruments, Simplifying Design with 1.8 V logic Muxes and Switches application brief.
- Texas Instruments, System-Level Protection for High-Voltage Analog Multiplexers application report.
- Texas Instruments, *True Differential, 4 x 2 MUX, Analog Front End, Simultaneous-Sampling ADC Circuit* application report.
- Texas Instruments, Using Latch Up Immune Multiplexers to Help Improve System Reliability application report.
- Texas Instruments, QFN/SON PCB Attachment application report.
- Texas Instruments, Quad Flatpack No-Lead Logic Packages application report.

9.2 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper right corner, click on *Alert me* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

9.3 支持资源

TI E2E™中文支持论坛是工程师的重要参考资料,可直接从专家处获得快速、经过验证的解答和设计帮助。搜索现有解答或提出自己的问题,获得所需的快速设计帮助。

链接的内容由各个贡献者"按原样"提供。这些内容并不构成 TI 技术规范,并且不一定反映 TI 的观点;请参阅 TI 的使用条款。

9.4 Trademarks

TI E2E[™] is a trademark of Texas Instruments.

所有商标均为其各自所有者的财产。

9.5 静申放申警告

静电放电 (ESD) 会损坏这个集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理和安装程序,可能会损坏集成电路。

ESD 的损坏小至导致微小的性能降级,大至整个器件故障。精密的集成电路可能更容易受到损坏,这是因为非常细微的参数更改都可能会导致器件与其发布的规格不相符。

9.6 术语表

TI术语表本术语表列出并解释了术语、首字母缩略词和定义。

10 Revision History

注:以前版本的页码可能与当前版本的页码不同

Copyright © 2024 Texas Instruments Incorporated

Product Folder Links: *TMUX6234*

提交文档反馈

Changes from Revision A (August 2021) to Revision B (December 2022)								
• 将 PW 封装状态从 预发布 更改为 正在供货	1							
Changes from Revision * (June 2021) to Revision A (August 2021)	Page							
• 将文档状态从: 预告信息 更改为量产数据	1							

11 Mechanical, Packaging, and Orderable Information

The following pages include mechanical packaging and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

Copyright © 2024 Texas Instruments Incorporated Product Folder Links: *TMUX6234*

www.ti.com 11-Jul-2024

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
TMUX6234PWR	ACTIVE	TSSOP	PW	20	3000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	T234	Samples
TMUX6234RRQR	ACTIVE	WQFN	RRQ	20	3000	RoHS & Green	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	TMUX X234	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

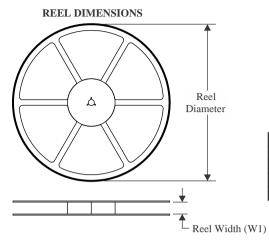
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

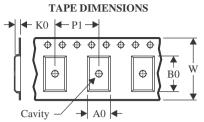
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead finish/Ball material Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

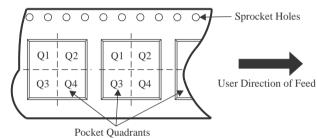
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.


PACKAGE OPTION ADDENDUM


www.ti.com 11-Jul-2024

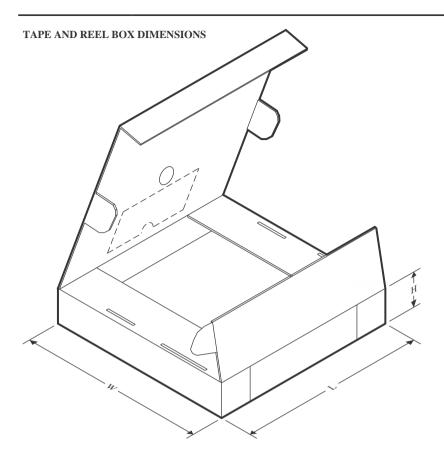
PACKAGE MATERIALS INFORMATION

www.ti.com 25-Sep-2024


TAPE AND REEL INFORMATION

A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

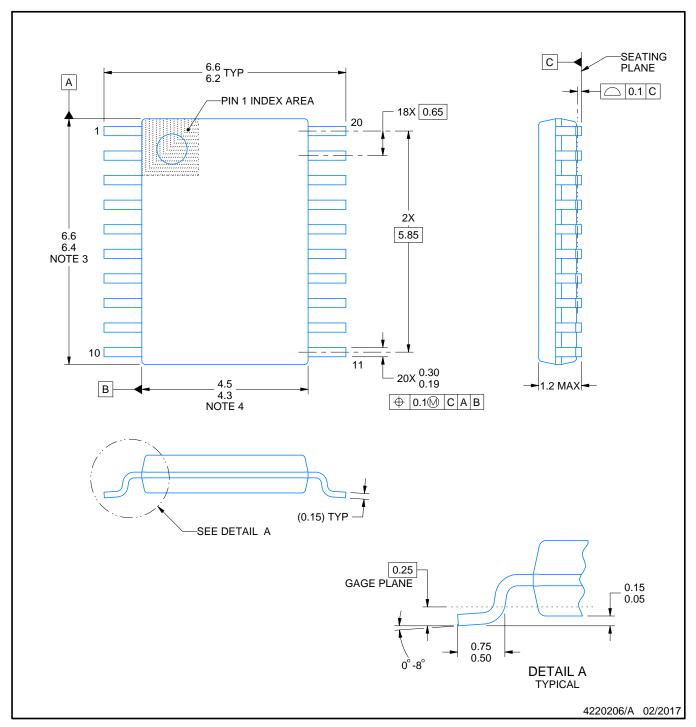
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE



*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TMUX6234PWR	TSSOP	PW	20	3000	330.0	16.4	6.95	7.1	1.6	8.0	16.0	Q1
TMUX6234RRQR	WQFN	RRQ	20	3000	330.0	12.4	4.25	4.25	1.15	8.0	12.0	Q2

www.ti.com 25-Sep-2024

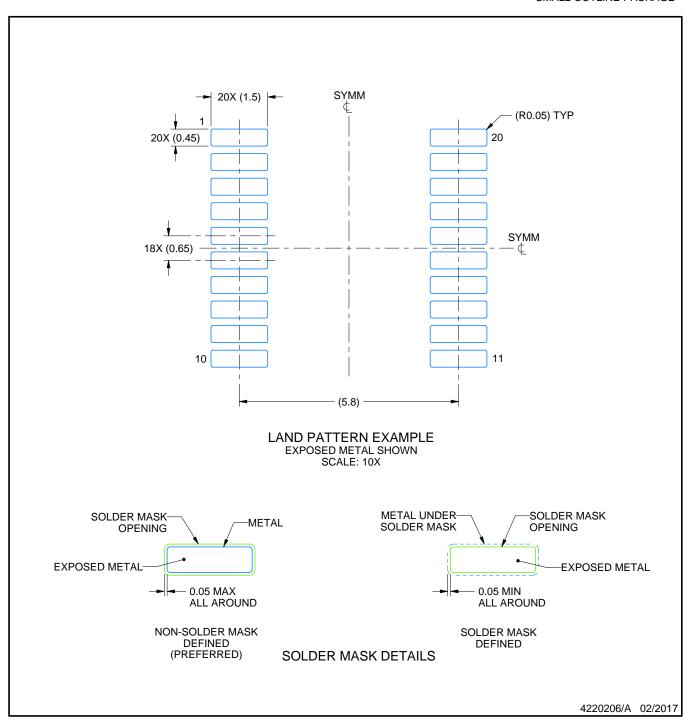


*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TMUX6234PWR	TSSOP	PW	20	3000	356.0	356.0	35.0
TMUX6234RRQR	WQFN	RRQ	20	3000	367.0	367.0	35.0

SMALL OUTLINE PACKAGE

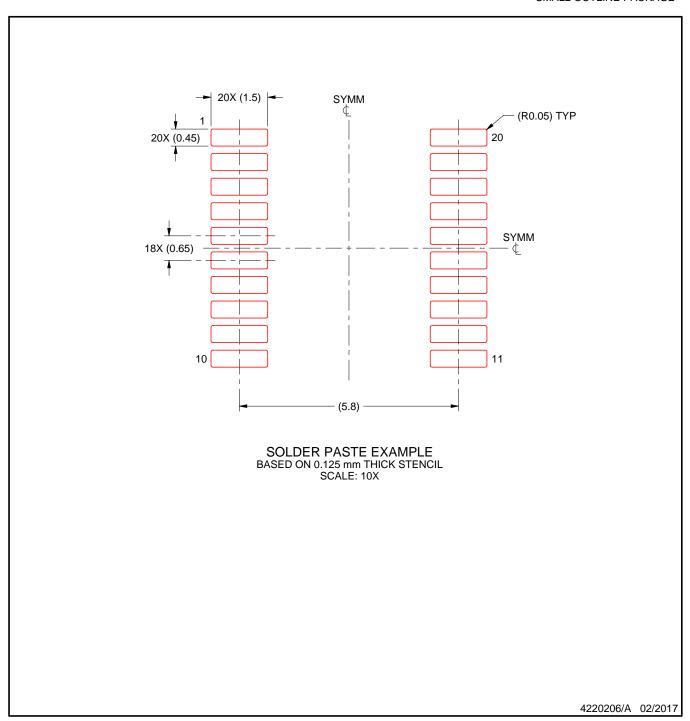
NOTES:


- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MO-153.

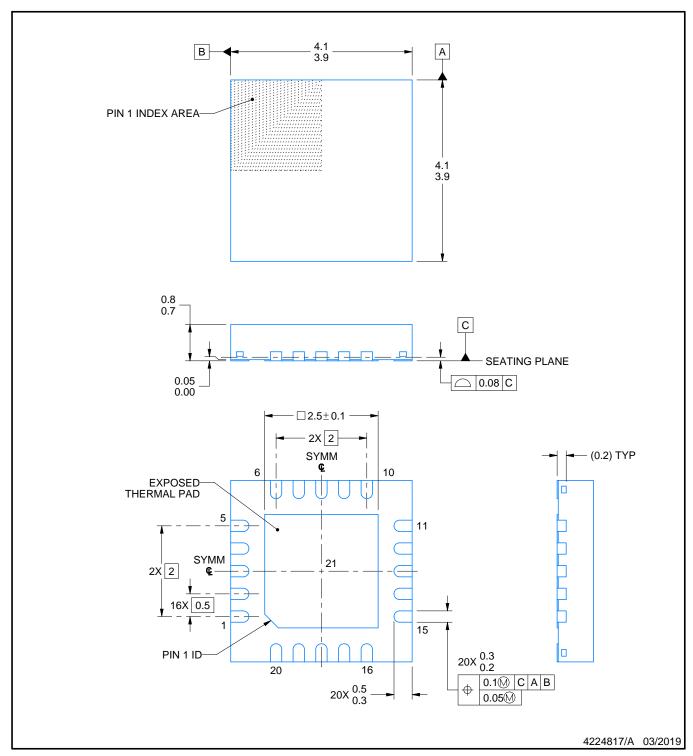
SMALL OUTLINE PACKAGE


NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

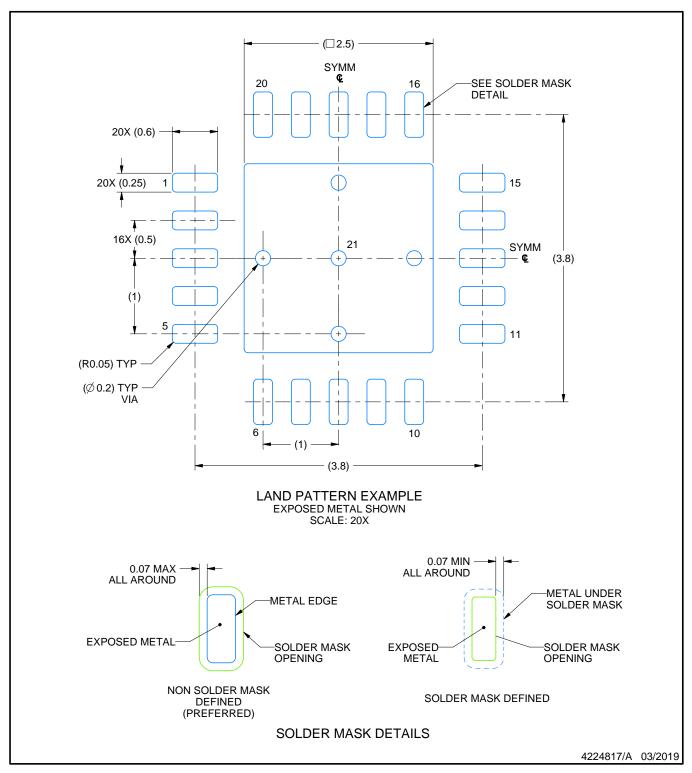
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SMALL OUTLINE PACKAGE


NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

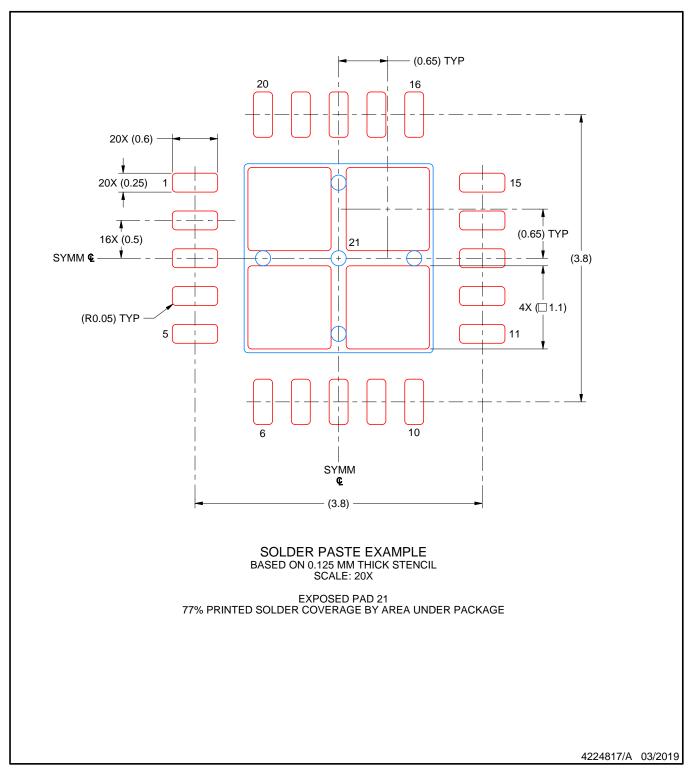
PLASTIC QUAD FLATPACK - NO LEAD



NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
 2. This drawing is subject to change without notice.
- 3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.

PLASTIC QUAD FLATPACK - NO LEAD



NOTES: (continued)

- 4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).
- 5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented.

PLASTIC QUAD FLATPACK - NO LEAD

NOTES: (continued)

6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

重要声明和免责声明

TI"按原样"提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。

这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。

这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,TI 对此概不负责。

TI 提供的产品受 TI 的销售条款或 ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。

TI 反对并拒绝您可能提出的任何其他或不同的条款。

邮寄地址: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2024,德州仪器 (TI) 公司