

Linear Regulator Fundamentals

2.4 NMOS

Linear-Regulator Operation

- Voltage feedback samples the output R1 and R2 may be internal or external
- Feedback controls pass transistor's current to the load

Losses in the Standard NMOS

Simple Model of Losses in the NPN "Quasi-LDO"

🤴 Texas Instruments

Driving the Standard NMOS Pass Element

 The current flow through the NMOS pass element to the load is shown in this simplified schematic. The Gate to Source voltages (V_{GS}) used here are for illustrating the concept. Actual Gate to Source voltages will depend on the fabrication process used, as well as design considerations. A typical NMOS pass transistor will actually consist of several thousand individual transistors in parallel.

Drive Current vs. Low/High Load Current

The drive current for a load current requirement of 50mA

 $V_{|N} > (1.8V + 1.5V)$ $V_{|N} > 3.3V$ $V_{UN} > 3.3V$ $V_{UN} > 0.0T$ $V_{UN} = 1.80V$ R_{LOAD} R_{LOAD}

Increasing the load current requirement to 3A

N-FET LDO with Bias Rail

- Requires bias voltage to pull up N-FET
- Has characteristics similar to the NPN regulator

Advantages of N-FET LDO

- N-FET has lower ON resistance than P-FET
- Allows very low $V_{\rm IN}$ and $V_{\rm OUT}$ values
- Lower output impedance reduces the effect of load pole
- Stable with small external capacitors
- Low ground-pin current regardless of load
- High DC gain and good bandwidth

Summary

- The NMOS voltage regulator has the following Characteristics:
 - Requires the input voltage to be higher than the output voltage by the V_{GS} requirement of the pass transistor
 - This is not Low Drop Out
 - Ground pin current does not vary with the output load current
 - Does not require any output capacitor, (but use one anyway)

Thank you!

