

Switching Power Supply Component Selection

7.1a Capacitor Selection – Overview

Capacitor Selection for DC/DC Converters

Design factors that are known before selecting capacitors:

Factor	Description
Switching frequency	Fsw : From 50KHz (High power) to 6MHz (Low power)
Input voltage range	V _{IN}
Output voltage	V _{OUT}
Switch duty factor	Duty Cycle (D) ~ V _{OUT} /V _{IN} (for Buck/Step Down)
Output current	I _{OUT}
Inductance	L is usually designed such that the ripple current is \sim 30-40% of I _{OUT} at the switching frequency
Тороlоду	Chosen in architectural stage

Selection Process Summary Electrical Specifications

Electrical Performance

- RMS Current in the capacitor
 - Look for RMS current equation in the chosen DC/DC topology
- Applied voltage at the capacitor
 - De-rate the capacitor based on the chemistry

Transient Requirements

- Size bulk capacitance based upon voltage deviation requirements
- Check that the selected capacitor meets stability requirements

Capacitor Impedance

Does this capacitor chemistry look inductive at the frequency of interest?

Selection Process Summary

- Most designs use a combinations of technologies
 - Tantalums or Aluminum Electrolytics for bulk Capacitance
 - Ceramics for decoupling and bypass
- Depends on Mechanical Challenges
 - Vibration
 - Temperature
 - Cooling
- Lifetime comes into play
 - For longer life, improve the quality of the components
 - Ceramics and polymer have improved lifetime over electrolytic and tantalum. Large ceramics can crack due to vibration.
- Costs Tradeoffs
 - Component cost vs. Total cost of ownership

Selection Process Summary

- Use Equations for selected topology
 - Calculate RMS Currents, Peak voltages, Minimum capacitance, Maximum ESR
- Select Chemistry based upon the designs needs
 - Remember to de-rate voltage by at least 20% for all chemistries
 - 50% for tantalum to improve reliability
 - 50% for class 2 ceramics to decrease capacitance lost to DC biasing
 - Note: Capacitor data sheet MUST include 100kHz data if the capacitor is to be applied in a switch mode power supply (SMPS). 120 Hz only versions are not suitable for SMPS
 - Consider NP0 (C0G), X7R, X5R and X7S ceramic dielectrics* in this order.
 - DO NOT USE Y5V

Selection Process Summary

- Place additional units in parallel if one is not enough
 - Combine chemistries to benefit from their various advantages
 - Use polymer, electrolytic and tantalum for bulk
 - Use Ceramics as your primary decoupling capacitor

Capacitor RMS Current

- RMS current of a capacitor is one of the most important specifications for capacitor reliability
- It also effects the converters performance, and varies by topology
 - Self-Heating: Proportional to RMS Current and Internal Losses
 - Voltage Ripple: Higher RMS Current leads to larger voltage ripple
- Let's calculate RMS current for different topologies

Common Topologies: BUCK

Common Topologies: BUCK

Common Topologies: BOOST

Common Topologies: BOOST

11

Common Topologies: BUCK BOOST

Common Topologies

🦆 Texas Instruments

Additional Topologies

Æ

TEXAS INSTRUMENTS

Thank you!

