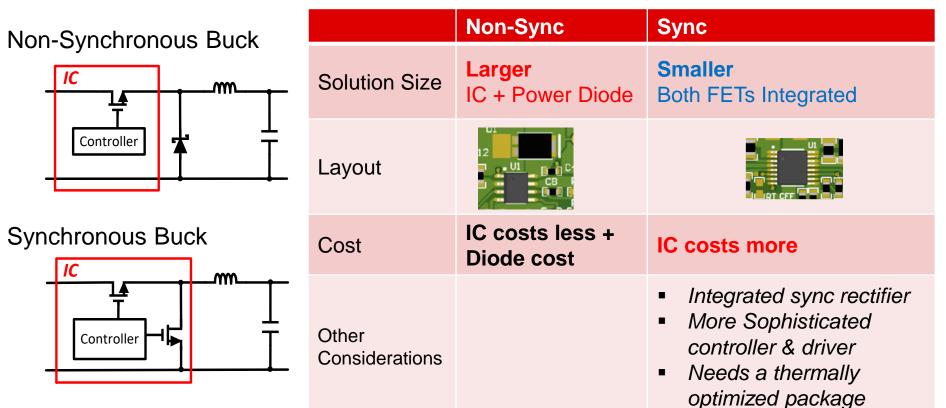
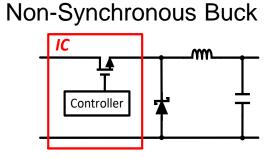

Comparing Synchronous to Non-Synchronous Converters Comparing Size, Cost, Efficiency, & More

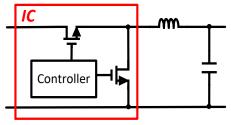

Anston Lobo Texas Instruments

🔱 Texas Instruments

Synchronous and non-synchronous buck

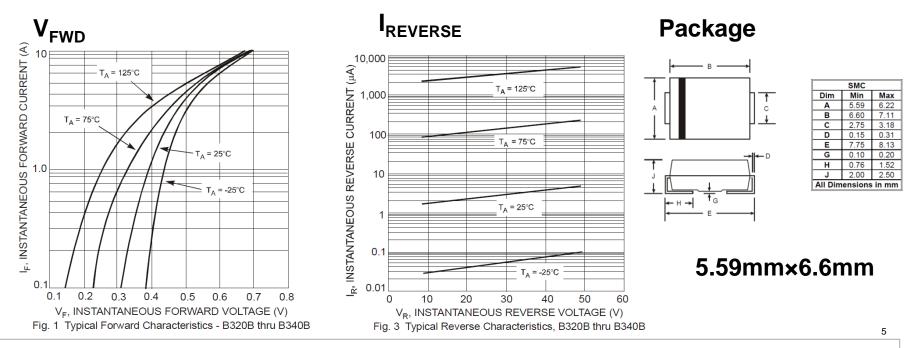


Comparison – Solution size & cost



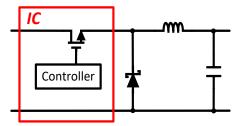
Comparison – Ease of use

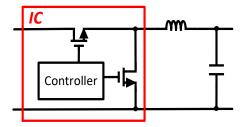
Synchronous Buck


	Sync	Non-Sync
Design	Easier	Need to select Schottky diode
External Diode	No need	 Selection Considerations Reverse voltage rating V_R V_{IN} max Forward current rating I_{FWD} Load max + Iripple/2 Forward voltage drop V_{FWD}, over current and temp Conduction loss = V_{FWD} * I_{FWD} Reverse leakage current over temp Loss = V_{IN}* Ileak Parasitic capacitance Switching loss Package for heat dissipation Size increase with V_R and I_F

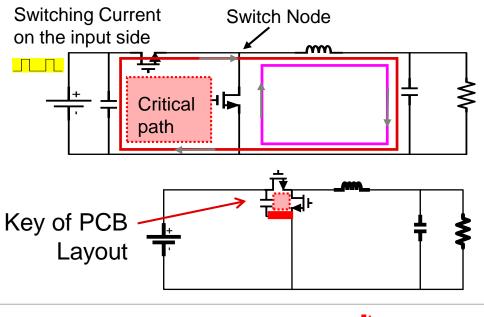
Power diode example – DIODES B340, 40V 3A

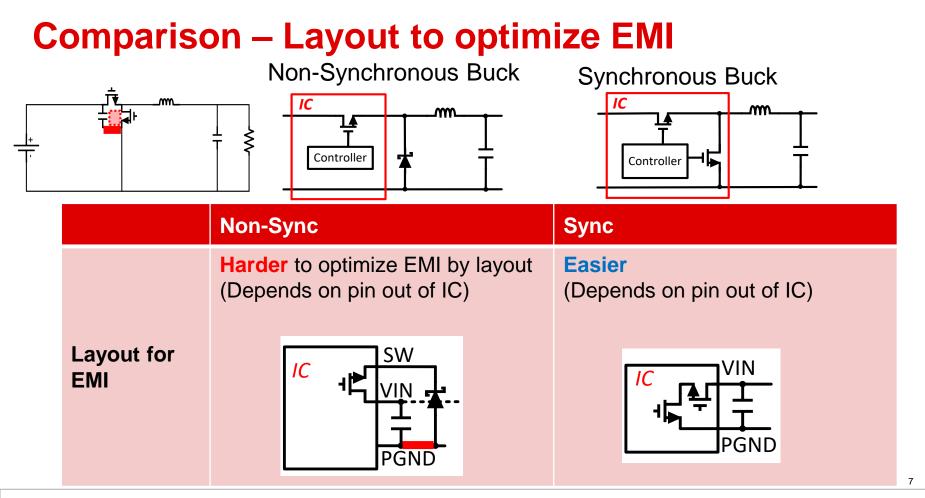
B320/B330/B340


V _{RRM} (V)	I _O (A)	V _F max (V)	I _{R max} (mA)
20/30/40	3.0	0.5	0.5

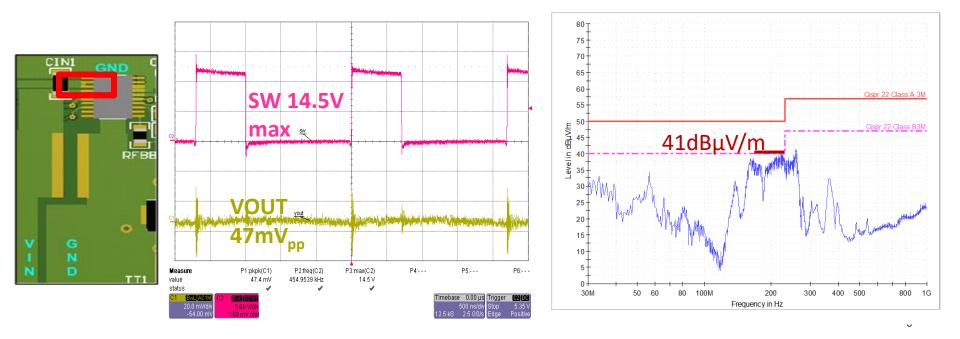


Comparison – Layout to optimize EMI

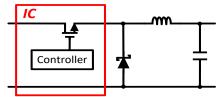

Non-Synchronous Buck

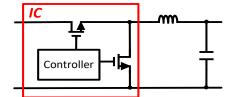

Synchronous Buck

For Any Buck Converter Reduce Critical Path Area → Reduce EMI

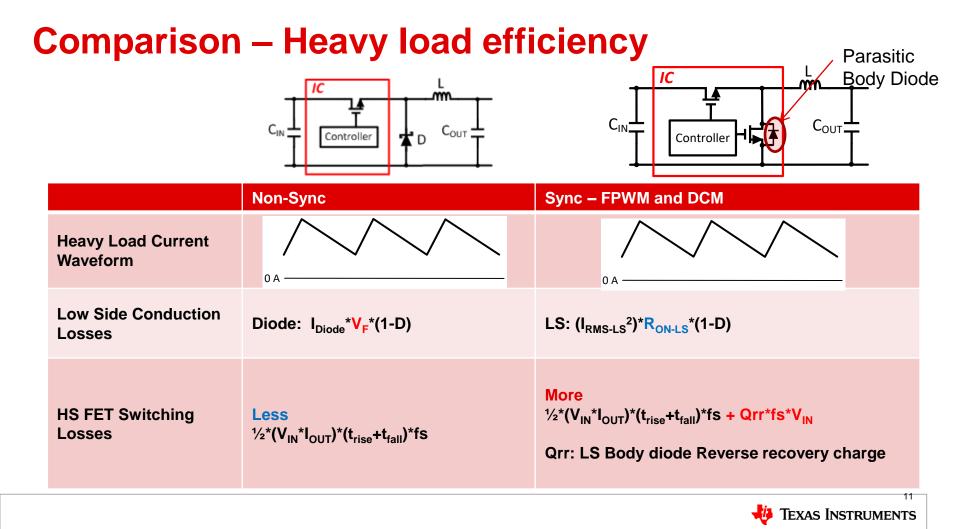


EMI mitigation by PCB layout *Critical Path Area Reduction*

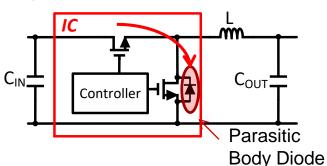

EMI mitigation by PCB layout Critical Path Area Reduction


GND	c		80 T 75 T 70 T		
	Comparison Results	SW max (V)	Vout p2p (mV)	EMI peak (dBµV/m)	<u>Ospr 22 Class A 3M</u> <u>Ospr 22 Class B3M</u>
	Smaller Area	14.5	47	41	
V G I N	Larger Area	18.1	75	44	V Julymundania
N D T	value 75.5 mV 455.5 status C1 1000 mV/dm 5.00 V/dm 20.0 mV/dm 5.00 V/dm 5.00 V/dm -39.00 mV 100 mV ofst 100 mV ofst	192 kHz 19.1 V Timebase 12.5 KS	0.00 us Trigger 6900 0 0 ns/dw Stop 5.351 5.050s Edge Positiv	50 60 80 100M 200 Frequency in Hz	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

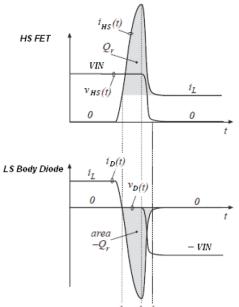
Now shown with single C_{IN} with 2.5 times larger area



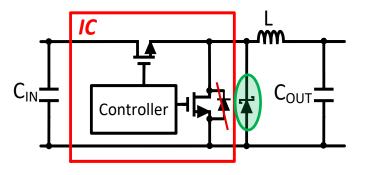
Comparison – Light load efficiency



	Non-Sync	Sync - FPWM	Sync - DCM
Light Load Current Waveform			
Negative Current?	Νο	Yes	Νο
HS Conduction Losses	Lower I _{RMS} HS: (I _{RMS-HS} ²)*R _{ON-HS} *D	Higher I _{RMS} HS: (I _{RMS-HS} ²)*R _{ON-HS} *D	Lower I _{RMS} HS: (I _{RMS-HS} ²)*R _{ON-HS} *D
LS Conduction Loss	Diode: I _{Diode} *V _F *t _{Diode} *f _S	LS: (I _{RMS-LS} ²)*R _{ON-LS} *(1-D)	LS: (I _{RMS-LS} ²)*R _{ON-LS} *t _{LS} *f _S
Switching Frequency	Reduced at very light load	Constant over load	Reduced at very light load
Switching Losses	Less	More	Less


Comparison – Efficiency

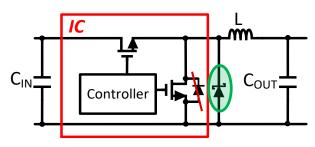
Synchronous Buck



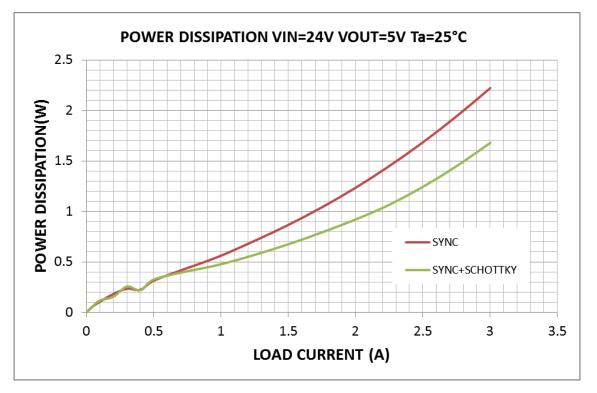
Parasitic Body Diode

- Conduct during dead-time
- Reverse Recover Charge increases switching loss
- Increase ringing in SW node

To have the best of both worlds

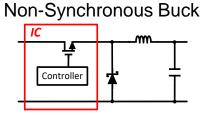


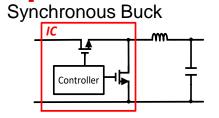
Parallel a SMALL Schottky diode


- Bypass body diode during dead-time
- No reverse recover charge
- Current rating can be a fraction of the power diode for a non-sync buck – only conducts during deadtime

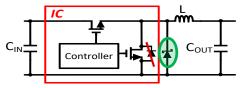
Efficiency improvement with small Schottky

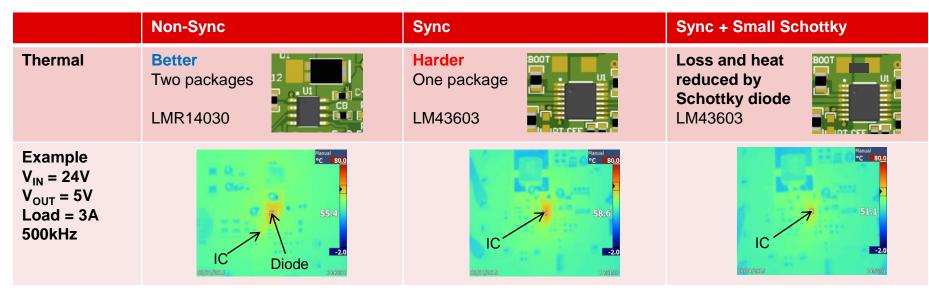
Improvement depends on switching loss from Qrr




Comparison – Efficiency summary

	Non-Sync	Sync-FPWM	Sync-DCM	Sync + Small Schottky
Light Load Efficiency	Better	Worse	Better	Better
Heavy Load Conduction Losses	More	Less	Less	Less
Heavy Load Switching Losses	Less	More	More	Less
Fixed Switching Frequency	Νο	Yes	No	Νο
Lower V _{OUT}	Worse (V _F)	Better	Better	Better




Comparison – Thermal performance

Synchronous + small Schottky

Comparison – Noise

	Sync	Non-Sync	Sync + Small Schottky
V _{OUT} Spike	More - Body diode reverse recovery	Less - Schottky diode	Less – small Schottky diode
SW Ringing Peak $V_{IN} = 24V$ $V_{OUT} = 5V$ Load = 3A 500kHz	8 V	4.5 V	2 V
V _{OUT} Spikes V _{IN} = 24V V _{OUT} = 5V Load = 3A 500kHz			

Comparison – Unloading transient

	Sync-FPWM	Sync-DCM	Non-Sync
Unloading Transient Overshoot	Good Allow neg current to discharge C _{OUT}	Worse Depend on load to discharge C _{OUT}	Worse Depend on load to discharge C _{OUT}
Example			
$V_{IN} = 8V$ $V_{OUT} = 5V$ Load = 3A $F_{S}=2.2MHz$			Same as Sync-DCM
LM53603 set at FPWM and DCM modes	(4) More Concestivi WD (ky2100) (K) (K)<	(1) (1) <td></td>	

Comparison – Controllability

	Non-Sync	Sync
Controllability	Limited Only controls one FET	Better Controls both FETs Info from both FETs
Current Limit	Peak current only	Peak current Valley current Average current (depends on controller)
OVP	Cannot actively pull down V _{out}	Can actively pull down V _{OUT} (depends on controller)
Control architecture		More options

Comparison – Current limit

	Sync	Non-Sync
DC current limiting	Control of Peak current and Valley current → more accurate DC current limiting	Only has control of Peak current DC current limit depends on ripple
Fast slew rate	Peak Limit 5A DC Max 4A Valley Limit 3A	Peak Limit DC 5A 0 A 0 0
Slow slew rate	Peak Limit 5A DC Max 4A Valley Limit 3A	Peak Limit 5A DC 0 A

Comparison – Summary

	Non-Synchronous	Synchronous
Size / Ease of use	Larger size	Smaller size, Easier to Use
Light Load Efficiency	Better	Worse with FPWM, better with DCM
Heavy Load Efficiency	More conduction loss Less switching loss	Less conduction loss More switching loss due to reverse recovery Adding small Schottky gives highest efficiency
Lower V _{out}	Lower Efficiency (V _F /V _{OUT})	Higher Efficiency
Thermal	Better with two packages	Harder with one package Adding small Schottky reduces power loss a lot
Fixed F _{sw}	No	Yes with FPWM, No with DCM
Noise	less	More, due to body diode reverse recover charge Adding small Schottky diode reduces noise a lot
Unloading Transient	Worse	Good with FPWM, worse with DCM
Controllability	No LS control	More control flexibility

For more information, visit www.simpleswitcher.com

TI Information – Selective Disclosure

