Debugging Applications that use TI-RTOS Technical Overview

Todd Mullanix
TI-RTOS Apps Manager

1

Wip TEXAS INSTRUMENTS

Agenda

* 30 Second Advertisement

Stack Overflow

Device Exception

Memory Mismanagement

Debugging Lab (separate PPT)

Pre-work: Please familiarize yourself with the following information prior to this training:
- CCS
- TI-RTOS

3

Wip TEXAS INSTRUMENTS

30 Second Advertisement

Since we know there a number of customers that will not want to use an RTOS for various
reasons. Here’'s some key point to remember:

TI-RTOS is developed and supported by TI: If you write your own little scheduler, you have to write it, maintain it, port
it if you move to a new device, etc. Is your job to deliver a smaller scheduler or a real product on time?

Includes Power Management: For the low power devices, Tl has power management included in TI-RTOS. Look at
the device’s power management...it is hard. Do you really want to deliver a power manager (and power aware drivers)
or a real product on time?

Portable: Want to move to another device? Hope you factored this in when you wrote their own little scheduler and
drivers.

Scalable: Want to add system-level functionality into the application? Hope you factored this in when you wrote their
own little scheduler and drivers.

Don’t want to learn an RTOS: TI-RTOS’s kernel has “standard” OS components: Tasks, interrupts, semaphore,
gueues, etc. It also supports POSIX (also called Pthreads).

Overhead: Yes, TI-RTOS takes space. So does your little scheduler. What is the threshold (other than “smaller”)? For
the smallest CC1310 device (32KB flash), TI-RTOS can be set-up to only use ~3KB (~6KB with full Power
Management) of the flash and this still includes almost all the kernel’s functionality. Note: CC13xx/CC26xx has the
kernel’s .text in ROM.

Debugging Facilities: Hey this is a good lead-in...

4

Wip TEXAS INSTRUMENTS

Stacks Overflow

Stacks are used to place information like local data storage, return state, paramete
grow as more subroutines are called. Finding a “good” value for the stack size is i

too large, you waste memory. Worse though is if you make it too small...

Here's code executing and let’s see what the stack might look

like before the calling writeBlock () IN updateDisplay() .

void getInput(int foo, int bar)

{

Return Address

Parameters for
writeBlock()

Stack Pointer
retVal = updateDisplay (buffer, BASE X, BASE Y);

int updateDisplay (char *bitmap, int x, int vy)

{
writeBlock (¢bitmap[i], xoffset, yoffset);

int writeBlock (char *block int x, int y)

{
char tempBuf[256];

What's going to happen when tempBuf is placed onto the stack?

Locals of
updateDisplay ()

Return Address

Parameters for
updateDisplay()

Locals of getinput()

Return Address

Parameters for
getinput()

Stacks
make it

Stack Size
—512 bytes

5

Wip TEXAS INSTRUMENTS

Stacks in TI-RTOS

With TI-RTOS there are two different types of stacks

System Stack: Hardware Interrupts (Hwi) and Software Interrupts (Swi) use a single system stack. The
size of this stack is configurable via the .cfg file (with IAR, you set it in the linker file).

Program.stack

Or graphically

Welcome System Overview

= 768;

» | TI-RTOS * Products » SYSBIOS » BIOS - Basic Runtime Options

Error Handling Device Support Advanced

~ Library Selection Options

SYS/BIOS library type
() Instrumented (Asserts and Logs enabled)
() Mon-instrumented (Asserts and Logs disabled)
@ Custom (Fully configurable)
() Debug (Fully configurable)

The library options above allow you to select between several variations of SY5/BIOS libraries depending on

your application's requirements. All options except Debug are aggressively optimized with minimal debug
content.

[T Enable Asserts

~ Dynamic Instance Creation Support

Enable Dynamic Instance Creation

A savings in code and data size can be achieved by disabling dynamic
instance creation.

~ Runtime Memory Options

—
ISystem (Hwi and Swi) stack size 768 I
Heap size 2048
Heap section null

Task Stack: Each Task has it's own stack. The size of this stack is specified when you create a task.

6

Wip TEXAS INSTRUMENTS

Peak Usage of Stacks in TI-RTOS

The kernel will initialize the stacks with OxBE values if the initStackFlags are set to true in the .cfg file

(the default is true).

var Task = xdc.useModule('ti.sysbios.knl.Task');

var halHwi = xdc.useModule ('ti.sysbios.hal.Hwi');

Task.initStackFlag = true;

halHwi.initStackFlag = true;
If you set these to false, you save ~140 bytes of code and booting is slightly faster.
If you use true, you can get the peak usage in RTOS Object Viewer (ROV) in CCS and IAR.

BB RTOS Object View (ROV) 2

® HeapMem
® Hwi
@ Idle

® Queue

BH RTOS Object View (ROV) 22

@® Semaphore

@ Startup

@ Swi

@ System

& Task

@ Timer (ti.syshios.family.arm.m3)

& Tirner (i cuchine famihe arm rend 3N

address options activelnterrupt pendinglnterrupt

» | Basic | Detailed | Module | Exception | Raw

g.,. v = F

exception | hwiStackPeak hwiStackSize | hwiStackBase

0x2000160¢ ... 0 none 540 768 0x20001764
mE s -
a | Basic | Detailed |CaIIStack; | ReadyQs | Meodule | Raw ‘
address label pricrity mode fxn arg0 argl | stackPeak stackSize [tackBase curCoreld
020001644 ti.syshiosknl.TaskIdleTask 0 Running ti_sysbios_knl Idle loop_E 0x0 00 124 512 2000090 n/a
0x20000fc0 console 1 Blocked consoleFxn oo o0 || EEEEE 120 2000030 n/a

Caveat: when opened, these ROV tabs slow down single stepping in the debugger.

Overrun!

7

Wip TEXAS INSTRUMENTS

Runtime Checking of Stacks in TI-RTOS

The kernel will perform runtime checks if desired.

var Task = xdc.useModule('ti.sysbios.knl.Task"');

var halHwi = xdc.useModule('ti.sysbios.hal.Hwi');
Task.checkStackFlag = true;
halHwi.checkStackFlag = true;

If you set these to false, you save ~290 bytes of code.
If you use true:

- Whenever there a task context switch, the kernel will check the stack peaks of the
new and old tasks to make sure it is still OXBE. If it is not, an error* is raised.

- If the Idle task executes, it will call the “ti_sysbios hal Hwi_checkStack” function to
make sure the system stack is ok. If the stack is blown, an error* is raised.

* Refer to the xdc.runtime.Error module for details on how to plug in an Error handler.

8

Wip TEXAS INSTRUMENTS

Stacks: Recommendations

For new development, it's recommended you enable both the initialization of the stack and
the runtime checking.

Task.initStackFlag = true;
halHwi.initStackFlag = true;

Task.checkStackFlag = true;
halHwi.checkStackFlag = true;

Once you have the application to a stable point, you can then turn them off if you are tight
on space or need to squeeze out a tiny bit more performance. If these are not a concern,
you can leave them enabled and plug in an Error* handler that can act accordingly if the
stacks are blown (e.g. dump memory to be analyzed later and restart the device).

* Refer to the xdc.runtime.Error module for details on how to plug in an Error handler.

9

Wip TEXAS INSTRUMENTS

Additional Techniques to Size Stacks

Hardware Watchpoints: HW watchpoints in CCS are great for seeing what caused the stack
peak. You can run the application and determine the stack peak with ROV.

| Basic | Detailed |Ca||5tacks| ReadyQs | Module | Raw |

address label pricrity mode fxn argD argl stackPeak stackSize stackBase
(:200019¢4 tisysbios.knl TaskldleTask 0 Running ti_sysbios_knl_Idle_loop_E 0x0 0350 336 1024 020000940
(020001340 console 1 Blocked consoleFxn 040 0D f424 512 0:20000d40 |
@ Memory Browser 52 # v fo] - @~ 0P f‘%&l i)
If you look at the memory, you can see the peak . wrmmmm

0000d40 - 020000040 + 512 - 424(-0:58) <Memory Rendering 1> &2

[32-BRHe-CStyle ~|

Then simply set a HW Watchpoint for a write to Nk

T) Bx20020048 EBEBEBE @xBEBEBEBE @xBEBEBERE @xBEBEBERE @xBEBEBEBE @xBEBEBEBE AxBEBEBERE

th at address e a‘i‘”’"l @x20000D5C @xBEDEREBE @xBEBEBEBE @xBEBEBEBE OxBEBEBEBE @xBEBEBERE @xBEBEBEBE @xBEBEBEBE
Locationt | 0x20000095 @x20028D78 @xBEREGERE @xBERERERE @xBEBEBEBE @xBEBEBEGE @xBEREBERE AxBEBEBEBE AxBEBEBEBE

Mermory: [8 @x200@8094 @xBEBEBERE [N l@x1 1 @ 2 BuBEBBEEE20 BXFFFFFFFF

@x200280B@ @xFFFFFFFF @xFFFFFFFF @xFFFFFI FF @xFFFFFFFF @xFFFFFFFF @xFFFFFFFF @xFFFFFFFE

(@) Additional properties can be set in Breakpoints
View through Breakpoint Properties.

Restart the application. It will be hit quickly (since you have stack initialization turned on). The
next time you hit the breakpoint, you can look at the call stack to see what caused the peak.
Please note: the quality of the call task trace is dependent on the device, the symbols compiler
options you have enabled/disabled, and compiler toolchain.

10

Wip TEXAS INSTRUMENTS

Additional Techniques to Size Stacks

Call_graph: Call_graph analyzes stacks based on a .out file (i.e. statically determined as
opposed to runtime). This can be useful in trying to find places that use a large amount of stack
space. Here is a write-up: http://processors.wiki.ti.com/index.php/Code_Generation _Tools XML _Processing_Scripts

The call_graph tool does not work through function pointers and assembly that is not
instrumented for it. For example, below shows UART _write being 8 bytes, where in reality it is
more since it calls UARTMSP432_write via a function pointer.

consoleFxn : wes = 320
malloc : wcs = 120 .
write : wcs =
| < . . ULRTMSP432 - t 208
repeat ...]]
: e o | HwiP disable : wcs = 0
ree : wcs = _
| <repeat > | | <repeat ...>
. HwiP t
simpleConsole : wes = 256 I ! vl _re? ore . .
| UARTUtils getHandle : wcs = 8 ti_sysbios_family arm m3_Hwli_restoreFxn E) : wes = 0
UART read_- wes = 8 Power_ setConstraint : wes = 1€
UART write : wcs = 8 | <repeat ...>

ti sysbios heaps HeapTrack printTask E : wos = 256 SemaphoreP pend : wcs = 184
| ti_sysbios_knl Semaphore pend E : wcs = 176

| ti_sysbios_knl Clock addI__E : wcs = 16

| ti_sysbios heaps HeapTrack Cbject first 5 : wes = 0
ti sysbios heaps HeapTrack Cbject get 5 : wes = 0
| | ti_sysbios_knl Queue put_ E : wcs = 0

- [
ti sysbios heaps HeapTrack Cbject next 5 : wes = 0
| | ti_sysbios_knl Task blockI_E : wcs = 32
|

| ti_sysbios_knl Task restore_E : wcs = BO
| | =xde runtime Core_ assignlabel I : wcs = 8 | | | <repeat ...>
| | | =xde runtime Text cordText E : wes = 0 UART clearInterruptFlag : wcs = 0

|
|
|
| | ti_sysbios _knl Task Handle label 5 : wcs = 16
|
|
|

| =xde runtime System printf E : wcs = 168 UART disableInterrupt : wcs = 8

I
I
|
I
|
I
ti sysbios heaps HeapTrack printTrack I : wes = 216
|
I
I
I
| UART_enableInterrupt : wcs = 0

| | | <repeat ...>

11

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| ti sysbios _knl Task self E : wes = 0
|

ti sysbios _knl Task sleep E : wcs = 168

Wip TEXAS INSTRUMENTS

http://processors.wiki.ti.com/index.php/Code_Generation_Tools_XML_Processing_Scripts
http://processors.wiki.ti.com/index.php/Code_Generation_Tools_XML_Processing_Scripts

Additional Techniques to Catch Stack Overflow

Memory Protection Unit (MPU) Module
There is a MPU module in the TI-RTOS kernel for selected ARM Cortex-A and Cortex-M devices.

You can have a small region (e.g. 32 bytes) at the top of the stack where its attributes are no-
access. If the stack grows into the protected region an exception occurs.

MPU protected block
“no access”

Task Stack

Stack Grows

12

Wip TEXAS INSTRUMENTS

Exceptions
What is an exception?
Really short-story...not a good thing!

Short-story...a condition that the device cannot handle. For example, bus
error, executing an unknown instruction, etc.

TI-RTOS supports exception handling for the ARM and C64+ devices.

For this presentation, we are going to focus on the exception handling for
the MCU (M3, M4, M4F) devices.

13

Wip TEXAS INSTRUMENTS

Exceptions

We are going to look at what happens when the following code is executed on the EK-
TM4C1294XL board. Note: line 68 in the heartBeatFxn () IS going to cause an exception!

53 Void [heartBeatFxn(UArg arg@, UArg argl) |
64 {

while (1) {
Task_sleep((unsigned int)arge);
& GPIO toggle(Board LEDO):
|£E asm(" .word ©@x4567f123 "); /* undefined instruction 'I

¥

o

When an exception occurs, the device jumps to the exception handler. TI-RTOS allows
different types of handlers for exceptions to be plugged in:

* User supplied Handler

 TI-RTOS Spin loop Handler

 TI-RTOS “Minimal” Exception Decoding Handler
« TI-RTOS Enhanced Exception Decoding Handler

The next slides will show how to select which exception handler to use and its benefits.

14

Wip TEXAS INSTRUMENTS

Exceptions: User Supplied Handler

User Supplied: If you want to be master of your domain and supply the exception handler yourself, you

can set the following and your handler is called (instead of going into the spin-loop).
var m3Hwi = xdc.useModule('ti.sysbios.family.arm.m3.Hwi');
m3Hwi.excHandlerFunc = "&myExceptionHandler";

Here is some pseudo-code for the user supplied handler
Void myExceptionHandler (UInt *excStack, UInt 1r)

{
// do stuff like write RAM to flash, flash LEDS, phone home, etc.
// reset device

Benefits
- You're in charge.
- You still know you have an exception from ROV but no reliable decoding

B RTOS Object View (ROV) 52

4 £ empty EK_TM4C1294X1_TI_TivaTM4C1294NCPDT.out | » \ Basic | Detm\ed| Madule \E,(ceptiun | Raw |
4 [Viewable Modules | _
@ BI0S
® foot 0:2000... .. E 5 R 56 768 0x200038€0
@ Clock
@® Diags
@ Event
@ GPIO
@ GateHwi

address options activelnterrupt pendinglnterrupt exception hwiStackPeak hwiStackSize hwiStackBase

m

@ GateMutex
& HeapMem
& Hwi

15

Wip TEXAS INSTRUMENTS

Exceptions: TI-RTOS Spin Loop Handler

TI-RTOS Spin Loop Handler: You can configure TI-RTOS to use a spin-loop handler instead
var m3Hwi = xdc.useModule('ti.sysbios.family.arm.m3.Hwi');
m3Hwi.excHandlerFunc = null;

Benefits
« Smallest footprint for the handlers
* You still know you have an exception from ROV but no reliable decoding.

FH RTOS Object View (ROV) &2

4 &3 empty_EK TM4C1204XL_TI TivaTMACI294NCPDT.out |~ | [Basic | Detailed| Module | Exception | Raw |

View: -
“ EQEV;:S‘SEMO(IUIE' ||| address options activelnterrupt pendinglnterrupt exception hwiStackPeak hwiStackSize hwiStackBase
® boot 0:2000... ... 3 35 N 56 768 0x200038¢0

@® Clock

@ Diags

@& Event

@ GPIO

@ GateHwi
@ GateMutex
& HeapMem .
® Hui T Hwic £
853 */

854 Voild Hwi_excHandler(UInt *excStack, UInt 1lr)

m,

* If you halt the target, you will be in the spin-loop

Hwi_module->excActive[@] = TRUE;

/* spin here if no exception handler is plugged */
while (Hwi_excHandlerFunc E== MULL} {

}
Hwi_excHandlerFunc{excsStack, 1r); 16

Wip TEXAS INSTRUMENTS

Exceptions: TI-RTOS Minimal Exception Decoding Handler

TI-RTOS Minimal Exception Decoding Handler: If you disable the enhanced exception handling and use the TI-RTOS
minimal handler instead.

var m3Hwi = xdc.useModule ('ti.sysbios.family.arm.m3.Hwi'");
m3Hwi.enableException = false; //true for enhanced
Benefits

* ROV decodes the exception and give a back trace. Note the “heartBeatFxn” name, file name and line number!

B RTOS Object View (ROV) 52

4 [Viewsble Modules || Basic [Detailed | Module| Exception |Raw |
@ BIOS b
roperty Value

@ Boot
@ Clock 4 Decoded exception
@ Dia '-V Decoded Hard Fault: FORCED: USAGE: UNDEFINSTR

o > Exception context
@ Event
@ GPIO a Exception call stack
@ GateHwi 0 heartBeatFxn(unsigned int, unsigned int) at empty.c:68 PC = 0x000062AC FP = 020001558

1 ti_syshios_knl_Task_exit_E() at Task.c411 PC = 000004498 FP = 0x20001568
@ GateMutex
@ HeapMem
& Hwi
X i . & Console 32 5'_E|=‘E'L=j'='ﬁ
* The CCS Console will have some information empty_EK_ TM4C1284XL T TivaTMACL294NCPDT:CIO

-

Starting the example

System provider is set to SysMin. Halt the target to wview any SysMin contents in ROV.
¢ E_exception: 1 s pC = c.

To see more exception detall set ti.sysbios.family.arm.m3.Hwi.enableException = true or,

examine the Exception view for the ti.sysbios.family.arm.m3.Hwi module using ROV.

xdc.runtime.Error.ra_:i.se: ter‘minatinﬁ execution
* However, slightly larger footprint when compared to the spin-loop (~400 bytes more).

(if application is configured to output to CCS Console).
* You can set excHookFunc to execute before decoding.

Please note, the quality of the back trace is dependent on the device, the
symbols compiler options you have enabled/disabled, and compiler toolchain.

17

Wip TEXAS INSTRUMENTS

Exceptions: TI-RTOS Enhanced Exception Decoding Handler

TI-RTOS Enhanced Exception Decoding Handler: If you accept the default configuration (shown

below), you get the TI-RTOS enhanced exception decoder.
var m3Hwi = xdc.useModule('ti.sysbios.family.arm.m3.Hwi');

m3Hwi.enableException

Benefits

* ROV decodes the exception and gives a back trace.

BB RTOS Object View (ROV) 52

4 [Viewable Modules

@® BIOS

@® Boot

@ Clock

@ Diags

@ Event

@ GPIO

@ GateHwi
@ GateMutex
& HeapMem
® Hwi

* The CCS Console will have the decoded exception

= true;

+ || Basic |Deta\\ad | Module‘ Exception | Raw

Property

Value
—

4 Decoded exception
Decoded

» Exception context

4 Exception call stack

1 ti_sysbios_knl_Task_exit_E() at Task.c:d1l

Hard Fault: FORCED: USAGE: UNDEFINSTR

0 heartBeatFxn{unsigned int, unsigned int) at empty.:68 PC = 0x000062AC FP = 020001558

PC = 0x00004498 FP = 0x20001568

B Consele 52

empty_EK_TMA4C1294X

Etarting the exa
" ”

mple
e

L_TI_TivaTW4C1294NCPDT:CIO

S| ME-H-= 5

(if application is configured to output to CCS Console).

* You can set excHookFunc to execute before decoding.
(refer to the Additional Details slide at the end for more details)

* However, ~3K larger footprint when compared to the “minimal”

sta

stack size
RE = BxG0820000
Rl = Bx208838a4
R2 = BxG0020000
R3 = Bx400864000
R4 = BxfTfffff
RS = BxffTfffff
R6 = BxfTFffff
R7 = BxffFfffff
PSR = 8x41860808
ICSR = 8xB@423883
MMFSR = @x88
BFSR = @x88

UFSR = @xB881

TS PR PR
ine 1087: E_hardFault: FORCED

nd thread at PC = @x@00@62ac.
re ThreadType_Task.
-instance-name}, handle: 8x2000344c.
20081330.

T Bx208.

R = Oxffffffff
RI = oufFFfffff
R1@ = oxfFfffff
R1l = oxfFfffff
R12 = @xee2f1d
SP(R13) = @x20001553
LR(R14) = BxBAGB5169
PC(R15) = BxBBB62ac

HFSR = @x48000000

DFSR = @xeepeeach

MMAR = Oxed@fed34

BFAR = Oxe@@ded3d

AFSR = Gw00000000

Terminating execu

tion...

ine 1199: E_usageFault: UNDEFINSTR: Undefined instruction

Exceptions: Handlers Summary

You have several options with TI-RTOS for handling exceptions
» User supplied Handler
* TI-RTOS Spin loop Handler
* TI-RTOS “Minimal” Exception Decoding Handler
TI-RTOS Enhanced Exception Decoding Handler

M_ CCS Console | excHookFunc _

User Supplied Exception is flagged Up to user code Not Available

Spin-loop Exception is flagged Nothing Not Available

Minimal Decoder Decoded & Notification Available
Back Trace

Enhanced Decoder Decoded & Decoded & Available
Back Trace Registers

19

Wip TEXAS INSTRUMENTS

More Exception Information...

excHookFunc: For the enhanced and minimal TI-RTOS decoding exception handlers, you
can plug in a function that will be called during the handling of the exception. This gives you

an opportunity to perform any needed actions. Refer to the ti.sysbios.family.arm.M3.Hwi
module for more details.

More Exception Details: There is more information about exceptions here:

http://processors.wiki.ti.com/index.php/SYS/BIOS FAQs#4 Exception Dump Decoding U
sing the CCS Reqister View

20

Wip TEXAS INSTRUMENTS

http://processors.wiki.ti.com/index.php/SYS/BIOS_FAQs#4_Exception_Dump_Decoding_Using_the_CCS_Register_View
http://processors.wiki.ti.com/index.php/SYS/BIOS_FAQs#4_Exception_Dump_Decoding_Using_the_CCS_Register_View

Memory Allocation

Doing dynamic memory allocation in an embedded device has its risks. TI-RTOS offers a
way to easily add a smart heap on top of the system/default heap. This heap is called
HeapTrack. It helps with the following areas

- Over-writing the end of allocated buffers
- Freeing the same block twice

- Memory leaks

- Sizing the heap

& usbmousedevice.cfg 3 =
To enable HeapTrack, simply set the > TI-RTOS » Products > SYSBIOS » BIOS - Basic Runtime Options S
fo I IOWI ng I n the Cfg fl I e . Welcome System Owerview Error Handling Device Support Advanced
' ' ~ Library Selection Options ~ Dynamic Instance Creation Support
BIOS . heapTrackEnabled = true ’ SYS/BIOS library type [¥] Enable Dynamic Instance Creation

(@) Instrumented (Asserts and Logs enabled) A savings in code and data size can be achieved by disabling

Or graphlca”y () Nen-instrumented (Asserts and Logs disabled) dynamic instance creation.

@ Custom (Fully configurable)
() Debug (Fully configurable)

+ Runtime Memory Options

ibrary options above allow you to select between several variations of SY5/BIOS libraries
depending on ication's requirements. All options except Debug are aggressively
optimized with minimal debug con

Systemn (Hwi and Swi) stack size 768
Heap size 1024

H Heap section null
Enable Asserts

Use HeapTrack
] Enable Logs P X .

The heap configured above is used for the standard C malloc()
Custom Compiler Options r_speed=2 --program_level_compile -03 -g --optimize_with_debug and free() functions or when the 'heap’ argument to

Memory alloc(l is NULL.

Wip TEXAS INSTRUMENTS

Memory Allocation: HeapTrack Detalils

For every memory allocation from the system heap, HeapTrack adds this small
structure at the end of the allocated block.

struct Tracker {
UInt32 scribble; // = Oxab5a5a5a5 when in use
Queue Elem queElem; // next and prev pointers
SizeT size;
UInt32 tick;
Task Handle taskHandle;

}

Note: this may require you to slightly increase the size of your system heap since
a little extra memory is used for every allocated block.

This structure is analyzed both during via ROV and runtime execution...

22

Wip TEXAS INSTRUMENTS

Memory Allocation: HeapTrack ROV

HeapTrack in ROV displays all the allocated blocks by the task that allocated the blocks and by the heap.
Here are the things that HeapTrack in ROV helps find

Writing past the block: If the block has a corrupted scribble word, it is denoted with red. Note: the
runtime check only happens when freeing the block. ROV shows it when it is still allocated.

E Console | [RTOS Object View (ROV) 32 I S
@ GateHwi o | Basic | HeapAIIocList| TaskallocList |Raw |
® GateMutex 4 Task List block heapHandle blockAddr requestedSize clockTick overflow
@ HeapMem . Boot
® HeapTrack i svebios knl Task IdleTask 1 0:200030F4 (:200013b0 (:d0 0 NO

i.sysbios.knl.TaskIdleTas
; 2 0:200030f4 020001408 0x20 0

o o e
@ Idle . task?

Memory Leak: Bg/ ’Iooking at the timestamp and Task owner, you generally can spot memory leaks

pretty easily.

Peaks: You can see the high-watermark for the heap also (both with and without the Tracker struct).

E Console [RTOS Object View (ROV) 52 mE s == 8

@® ClockFregs
@® Diags

@ GateHwi
@ GateMutex
@ HeapMem
@ HeapTrack
@ Hwi

@ Idle

~

m

Basic | HeapAllocList | TaskAllocList | Raw |

address heapHandle inlUse inUsePeak inUseWithoutTracker inUsePeakWithoutTracker
0x20003274 0x20003254 0x113c 0x113c 0:10c4 Oxl0cd

23

Wip TEXAS INSTRUMENTS

Memory Allocation: HeapTrack Runtime

When the allocated block is freed, the following two checks are done if kernel asserts are enabled.
- Double free: In free, an assert checks to see that you are not trying to free a free block.

- Writing past the block: In the free, an assert check makes sure the scribble word is valid. If you
accidently write past the end of the block, the scribble gets corrupted.

HeapTrack has a two APIs that can be called by the application to output (via System_printf) the
allocated blocks.

Void HeapTrack printHeap (HeapTrack Object *obj);
Void HeapTrack printTask (Task Handle task);

Here is an example of the HeapTrack_printTask output. The task has allocated two blocks of size 64 and
32. The application has overwritten the scribble word (on purpose®©). This is shown in the output.

B Console 2 B RTOS Object View (ROV) =k =B | = B~ = 8
task_MSP432P401R:CIO

HeapTrack: HeapTrack Obj: 8x28883114, addr = 8x280813b8, taskHandle: 8x28088188, taskName: myTask, size
HeapTrack: HeapTrack Obj: 8x28883114, addr = @x28081483, taskHandle: @x28@88188, taskName: myTask, size
Memory at @x28881488 has a corrupted scribble (BxaS5a588as)

B4 -
32

24

Wip TEXAS INSTRUMENTS

Memory Allocation: Recommendations

You can quickly enable HeapTrack and run your application. Then using ROV and/or
runtime checks you can quickly find

- Over-writing the end of allocated buffers
- Freeing the same block twice

- Memory leaks

- Sizing the heap properly

After the problem is fixed, simply turn HeapTrack off to minimize the slight performance and
size impact.

25

Wip TEXAS INSTRUMENTS

Recommendation Summary

So...something weird is going on with your application. Here are some easy steps to do...

1. Check System and Task stack peaks in ROV or “Scan for Errors...”: A quick and
easy way to see if there are any issues detected is select “BIOS->Scan for errors...” in
ROV. Stack overflows will show up here as well as Hwi and Task.

B RTOS Object View (ROV) 32 mEsy =

.0 Favorites + || Module | Scan for errors... | Raw
4 5 mutex CC2650_LAUNCHXL_TI_CC2
4 [Viewable Modules
@& BIOS
@ Clock

mod tab inst field message

BIOS Scan forerrors.. N/A N/A - AILROV views have been run and no errors were encountered. In BIOS, this includes a check of the System stack usage and all Task stacks.

Turn on TI-RTOS “Minimal” or “Enhanced” Exception Handling.
Enable HeapTrack if you have a dynamic allocation.

26

Wip TEXAS INSTRUMENTS

Resources

« www.ti.com Web Page:
— www.ti.com/tool/ti-rtos

e2e Forum - TI-RTOS Forum:
— http://e2e.ti.com/support/embedded/tirtos/default.aspx

Additional Training & Support Resources
— Main Product Page: http://processors.wiki.ti.com/index.php/TI-RTOS
— TI-RTOS online training: https://training.ti.com/ti-rtos-workshop-series

— Support direct link (includes Apps projects, extended release notes, FAQ, training,
etc.) http://processors.wiki.ti.com/index.php/TI-RTOS Support

Download page:
— http://software-dl.ti.com/dsps/dsps public sw/sdo sb/targetcontent/tirtos/index.htmi

27

Wip TEXAS INSTRUMENTS

http://www.ti.com/
http://www.ti.com/tool/ti-rtos
http://www.ti.com/tool/ti-rtos
http://www.ti.com/tool/ti-rtos
http://e2e.ti.com/support/embedded/tirtos/default.aspx
http://e2e.ti.com/support/embedded/tirtos/default.aspx
http://processors.wiki.ti.com/index.php/TI-RTOS
http://processors.wiki.ti.com/index.php/TI-RTOS
http://processors.wiki.ti.com/index.php/TI-RTOS
http://processors.wiki.ti.com/index.php/TI-RTOS
https://training.ti.com/ti-rtos-workshop-series
https://training.ti.com/ti-rtos-workshop-series
https://training.ti.com/ti-rtos-workshop-series
https://training.ti.com/ti-rtos-workshop-series
https://training.ti.com/ti-rtos-workshop-series
https://training.ti.com/ti-rtos-workshop-series
https://training.ti.com/ti-rtos-workshop-series
https://training.ti.com/ti-rtos-workshop-series
https://training.ti.com/ti-rtos-workshop-series
http://processors.wiki.ti.com/index.php/TI-RTOS_Support
http://processors.wiki.ti.com/index.php/TI-RTOS_Support
http://processors.wiki.ti.com/index.php/TI-RTOS_Support
http://processors.wiki.ti.com/index.php/TI-RTOS_Support
http://processors.wiki.ti.com/index.php/TI-RTOS_Support
http://software-dl.ti.com/dsps/dsps_public_sw/sdo_sb/targetcontent/tirtos/index.html
http://software-dl.ti.com/dsps/dsps_public_sw/sdo_sb/targetcontent/tirtos/index.html
http://software-dl.ti.com/dsps/dsps_public_sw/sdo_sb/targetcontent/tirtos/index.html
http://software-dl.ti.com/dsps/dsps_public_sw/sdo_sb/targetcontent/tirtos/index.html

Thank you

Wip TEXAS INSTRUMENTS

Debugging Applications that use TI-RTOS Technical Lab

Todd Mullanix
TI-RTOS Apps Manager

1

W3 TEXAS INSTRUMENTS

Lab Introduction

Goal

Use the techniques learned in the Debugging Applications that use TI-RTOS Technical Overview to solve
common programming errors in an application.

Reminder: we learned about
- Stack overflows
- Exceptions
- Memory Mismanagement

Setup
The lab is based on the MSP-EXP432P401R Launchpad.

You need the following software which is included on the thumb drives (or zip file). Please copy to pieces
that you need into c:\FAESummit.
* CCS 6.1.2 (make sure you installed support for MSP432)
* TI-RTOS for MSP43x v2.16.00.08 (http://software-dl.ti.com/dsps/dsps public sw/sdo_sb/targetcontent/tirtos/index.html)
+ Exported CCS Console Projects

Tl Information — Selective Disclosure 2

Wip TEXAS INSTRUMENTS

http://software-dl.ti.com/dsps/dsps_public_sw/sdo_sb/targetcontent/tirtos/index.html
http://software-dl.ti.com/dsps/dsps_public_sw/sdo_sb/targetcontent/tirtos/index.html
http://software-dl.ti.com/dsps/dsps_public_sw/sdo_sb/targetcontent/tirtos/index.html
http://software-dl.ti.com/dsps/dsps_public_sw/sdo_sb/targetcontent/tirtos/index.html

Application

The application is more of a starter project. It has a simple gk
console via the UART and has support for the two buttons.

Here’s the console options

Walid Commands

h: help

c: clear the screen

m: Display memory stats
p: print HeapTrack stats
r: restart conscle

*

ButtonO: increments a counter

Buttonl: prints out how many time ButtonO
was pushed.

Note: System_printf and printf output is routed
to the UART.

g Micro-B USB for
- AV power, emulation,

and UART examples

Loy

Board_BUTTON1
(MSP_EXP432P401RLP_S2)

Board_BUTTONO
(MSP_EXP432P401RLP_S1)

Board LEDO Board_LED1 (MSP_EXP432P401RLP_LED_RED)
(MSP_EXP432P401RLP_LEDA) Board_LED2 (MSP_EXP432P401RLP_LED_GREEN)
- = Board_LED3 (MSP_EXP432P401RLP_LED_BLUE)

3

Wip TEXAS INSTRUMENTS

Lab 1: Terminal Session
la. Open Window's “Device Manager” and find which port is the UART.

"';‘f Ports (CGM B LPT)

#D5110 Class Application,/User UART I[CGME?]I
------ #D5110 Class Auxiliary Data Port (COM2E)

1b. Open your favorlte terminal window. “Terminal” is in CCS. Open “View->Other...” and
find “Terminal”.

type filter text

» (= Profiling
s (= Profiling
» (= Remote Systems
. = RTSC

» = Team

4 (= Terminal

8 Terminal
> == lracing
= ULA

Cancel

4

Wip TEXAS INSTRUMENTS

Lab 1: Terminal Session

1c. Select “Settings”_in the Terminal Session (if using Terminal) & emmisms ST e
View Settings:
\ View Title: [Terminal 1
8 Terminal 1 5 g E-I uE| =2 - = O Encoding: 150-8859-1 v
Mo Connection Selected -
D Connection Type:
Senal v]
Settings:
Port: COoM27 v|
a Baud Rate: [960[] v]
1| i 3 Data Bits: [8 v]
1d. Configure the “Connection Type” to be “Serial St B F }
Parity: Mone -
and select the port specified in the Device Manager Flow Control: [None n
(you may have to type in the string). Lm0 B
Note: We've seen issues with the MSP432 UART with Window drivers.
If the port cannot be opened, close CCS and unplug the Launchpad. Plug the ok J[concel

Launchpad back in and start CCS. Reload the application and start terminal again.
5

Wip TEXAS INSTRUMENTS

Lab Problem

There are three problems with this application. All the three subtle problems are in main.c. Play
around with the console commands and buttons on the board to see if you can find and fix them.

The following projects are supplied for users:
- debugExample_withBugs: Debugging is turned off. This project appears to work fine...?

- debugExample_withBugs_debugEnabled: Same as above, but with the debugging topics we
talked about enabled (at the bottom of the .cfg file).

- debugExample_withBugs_working: Bugs fixed and debugging disabled.

6

Wip TEXAS INSTRUMENTS

Importing zipped projects into Desktop CCS
Project->Import CCS Projects...

Select CCS Projects to Import
Select a directory to search for existing CC5 Eclipse projects.

(D) Select search-directory: | C:\training\FAESummit_2016

@ Select archive file: Citraining\FAESummit_2016\debugExampleBundlezip | Browse.. |

Discovered projects:

] debugExample_withBugs Select All
| debugExample_withBugs_debugEnabled
debugExarmple working| Deselect All
Refresh

Automatically import referenced projects found in same search-directory

Copy projects into workspace

Open the Resource Explorer and browse available example projects...

)

7

Wip TEXAS INSTRUMENTS

Lab: What’s wrong?

Import the debugExample withBugs project (see the previous slide for help). Build
and run the example on the MSP-EXP432P401R launchpad. See if you can
determine any problems before halting and doing the following techniques we’ve
learned.

1. Check System and Task stack peaks in ROV or “Scan for Errors...”: A quick and easy
way to see if there are any issues detected is select “BIOS->Scan for errors...” in ROV.
Stack overflows will show up here as well as Hwi and Task.

2. Turn on TI-RTOS “Minimal” or “Enhanced” Exception Handling.

3. Enable HeapTrack if you have a dynamic allocation.

Big hint: the debugging options we learned are disabled in the bottom of the .cfg file, so it might
be useful to enable them (or you can import the debugExample withBugs debugEnabled
project as a short-cut to enabling them).

Can you find and fix the 3 bugs in main.c now? The next slides have
the answers...

8

Wip TEXAS INSTRUMENTS

Answers: Bug #1...Stack too smalli

If we halt the target and “Scan for Errors...” in ROV->BIOS, we see a strange message
about the task stack

Module | Scan fer errors... |Raw |

mod tab

inst field message

Let’s enable stack initialization and checking in the .cfg file and then rebuild/reload/run.
Task.initStackFlag = true;

Task.checkStackFlag

true;
halHwi.initStackFlag true;
halHwi.checkStackFlag = true;

Now when we run it and look, we see the Task stack overflow (also shows in Task->Detailed
in ROV) > Cti.sysbios.knl.Task: line 373: E_stackOverflow: Task @x28ee8fcé stack overflo
W .

xdc.runtime.Error.raise: terminating execution

4. .m

Let’'s bump it up to 1024 and rebuild/reload/run.
#define TASKSTACKSIZE 1024

When we are done, we could shrink this down to better number.

9

Wip TEXAS INSTRUMENTS

Answers: Bug #2...Memory Leak

If you restarted (r) the console and happened to look at the memory usage...

it is going down! Something is leaking! Let’s turn on HeapTrack (rebuild/reload/run).

var HeapTrack = xdc.useModule('ti.sysbios.heaps.HeapTrack'):;

BIOS.heapTrackEnabled = true;

Before the first clock tick, we allocated a block of 0x28 (40D). After ~8.2, ~10.0, etc.

seconds we have the same size again. We are only using malloc, so that has an
8 byte overhead. So we are looking for a size of 32 bytes in the console app.

| Basic | HEEpAIIc-cList| TaskAllocList |F'.aw |

a Task List block heapHandle blockAddr requestedSize clockTick overflow
 Boot 0:2000113c 020000860 (x30 0 NO
tisysbios.knl.Task IdleTask 2 0x2000113c 0x200008a8 0x28 0 NO
P ;'Jr;;:": 3 (52000113c (x200008e8 0x28 8169 MO
4 0:2000113c 0x20000928 028 10095 NO
5 0:2000113c (x20000968 0:28 12092 NO

After looking at simpleConsole() function we see that the comment/check was wrong!

/* simpleConsole returns 0 if the buffer needs to be freed */
rc = simpleConsole (consoleBuffer, CONSOLEBUFFERSIZE) ;
if (rc == 0) {

free (buffer);

Serial (COMZ27, 9600, 8, 1, Mone

Restarting console
Capnszole (h for help)
Hm

F Memory =152
b

R

r
estarting conscle
ale (h for help)

Fras Memory =|8a
Hr
Restarting conscle
Canzole (h for help)
Hm
Free Memory =|24
>

10

Wip TEXAS INSTRUMENTS

Answers: Bug #3...0verflowing Buffer

Try pushing button0 10 times or more and then button1 to print the count. Look the console task’s
memory allocation in HeapTrack.

BH RTOS Object View (ROV) &2

@ ClockFregs - | Basic | HeapAllocList TaskAllocList |Raw |
: ElﬂtEI:_'] 4 Task List block heapHandle blockfAddr requestedSize clockTick overflow
ateHwi
— + Boot 1 0:2000113c 0x20000860 (0530 0 YES
® GateMutex ti.syshios.knl. Task IdleTask
2 0:2000113c (w200008a8 0x28 0 NO
& HeapMem T memET T
@ HeapTrack Orphan 3 0:2000113c (w200008e8 028 8169 NO
& Hwi E 4 0:x2000113c (w20000928 0x28 10095 MO
& Idle 5 0:x2000113c (w20000968 0x28 12092 NO
[B

There is an overflow. With a little searching and maybe looking at the memory browser, we see that we
did give enough space for string + two digits + two “\n’ in counterStr in main(), but forgot the string
terminate character (\0’). Reminder: strlen does not include the \O’ character in the returned count.
/ *

* Allocate buffer for gpioButtonFxnl.

* Get the size of the string + 2 (for two digits) + 2 (for '\n' chars).

*/

countStr = malloc(strlen(PUSH STR) + 4);

11

Wip TEXAS INSTRUMENTS

