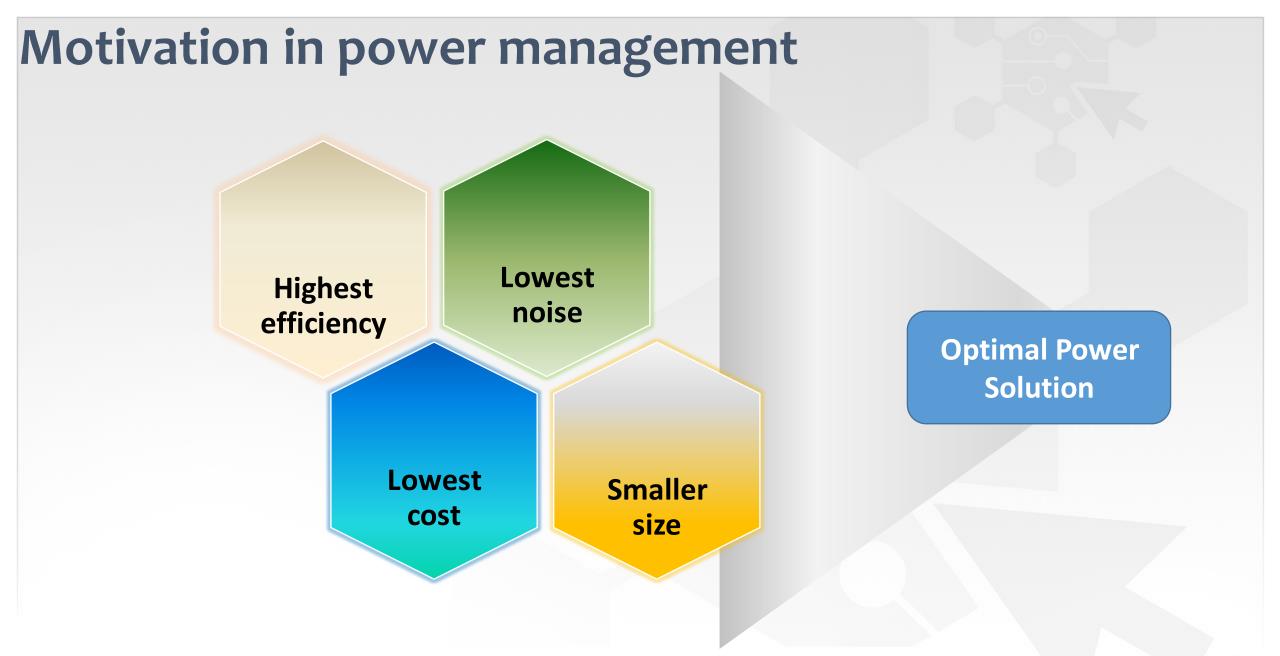
TI Webinar Series Using Isolated Gate Drivers for MOSFET, IGBT and SiC applications

Nagarajan Sridhar

Strategic Marketing Manager – New Products and Roadmap

High Power Driver Solutions, HVPS, SVA

Texas Instruments


This webinar is intended to provide

✓An understanding of an isolated driver

 A guideline on how to and when to identify an isolated driver and the type of driver depending on the power switch and application

X This webinar is not intended to discuss details on isolation technology – That will be discussed in a webinar on October 20th, 2017.

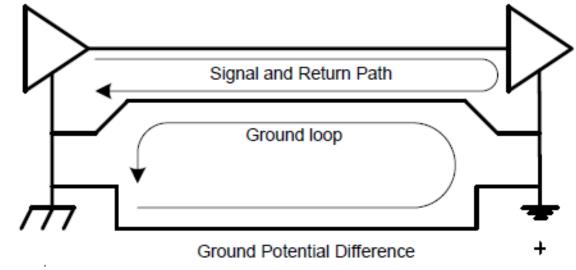
Agenda

- Isolation:
 - Definition, why isolate, how to isolate and applications
- Concept of power electronics and definition of a gate driver
- Types of gate driver
- Motivation for an isolated gate driver
 - Walking through an example application
- Types of isolation techniques, terminology and standards
- Isolated gate driver requirements
- MOSFET vs IGBT isolated gate driver and applications
- Wide band gap semiconductors
 - Value of SiC and gate driver requirements
- More information on TI isolated gate driver family and isolation

What is Isolation

A means of transporting data & power between a high voltage and a low voltage circuit while preventing:

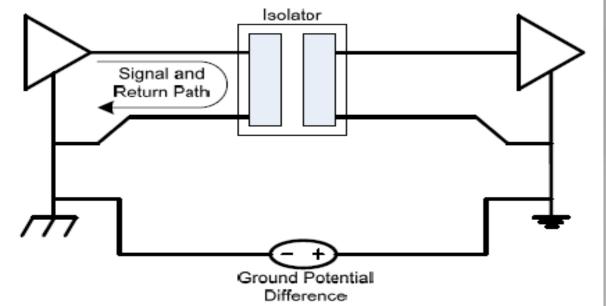
- Hazardous DC or
- Uncontrolled transient current from flowing in between the two circuits.


Why isolate?

- To protect from and safely withstand high voltage surges that would damage equipment or harm humans
- To protect expensive controllers intelligent systems
- To tolerate large ground potential differences and disruptive ground loops in circuits that have high energy or are separated by large distance
- To communicate reliably with high side components in high-voltage high performance solutions

When to use isolation?

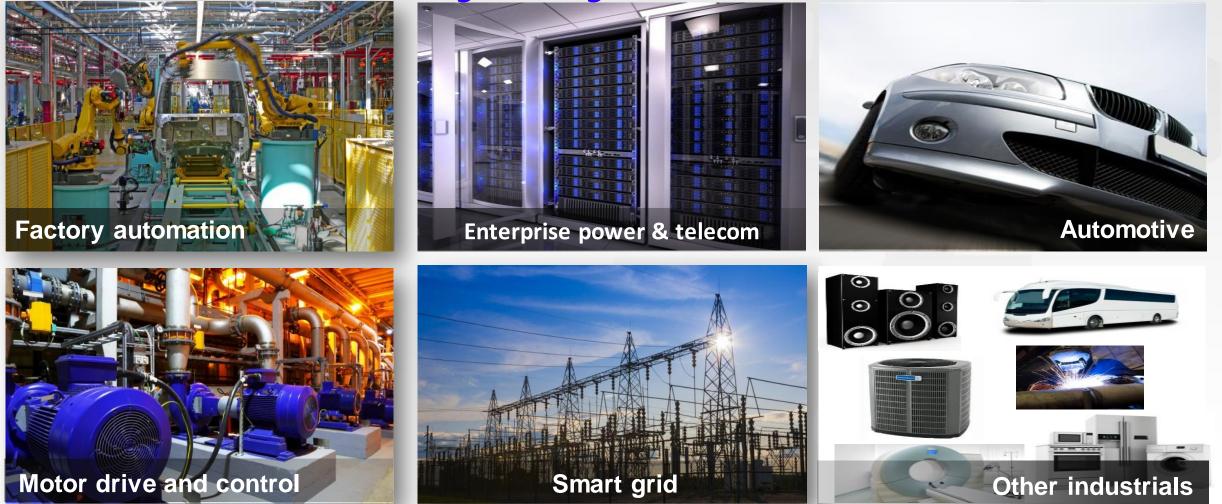
- More than one conductive path between two circuits creates a ground-loop
- Multiple ground paths can lead to unintended compensation currents



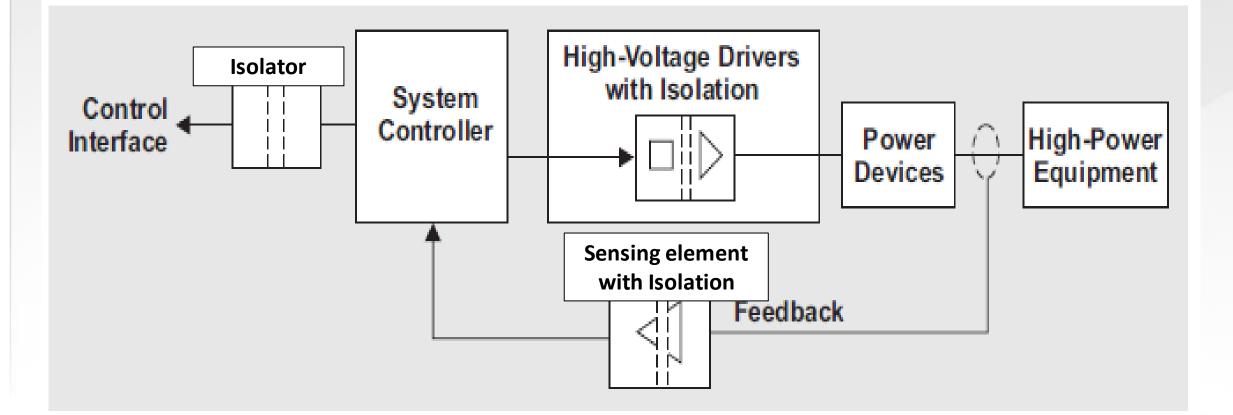
How to isolate?

Ground loops can be broken by

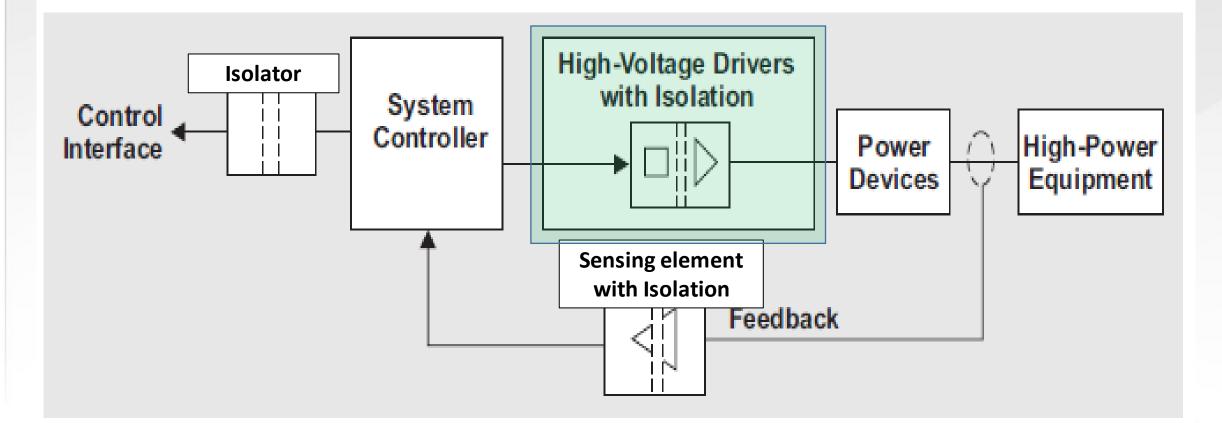
- Disconnecting the grounds
- Common-mode chokes
- Frequency selective grounding
- Differential amplifiers
- Galvanic isolators



Only galvanic isolation provides protection for very large potential differences

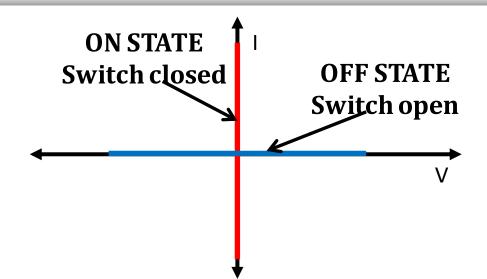

Applications For switched-mode power electronic applications involved in high-power and

high-voltage conversion



A conceptual power drive system block diagram *Electronic devices and integrated circuits (ICs) used for isolation are called isolators*

A conceptual power drive system block diagram *Electronic devices and integrated circuits (ICs) used for isolation are called isolators*

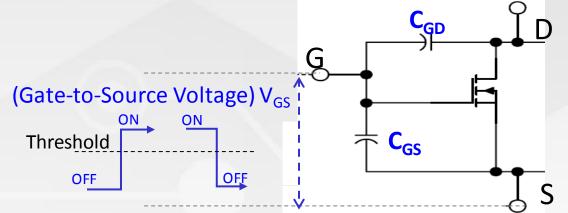


Let us take a step back and understand
The concept of power electronics
What is a gate driver

'Power Switch' - Fundamental Component in Power Electronics

Ideal switch:Blocking loss, $P_{OFF} = V_{OFF} \ge I_{OFF} = 0$ Conduction loss, $P_{ON} = V_{ON} \ge I_{ON} = 0$ 4 quadrant operation

Power Switches control flow of current in power electronic circuits by operating in 2 states (ON/OFF)

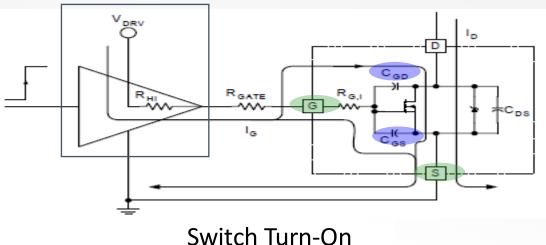

- GATE (G) terminal controls ON/OFF status of switch
- Modern Power Electronics dominated by Switch Mode Power conversion

How does GATE terminal of a Power Switch Work?

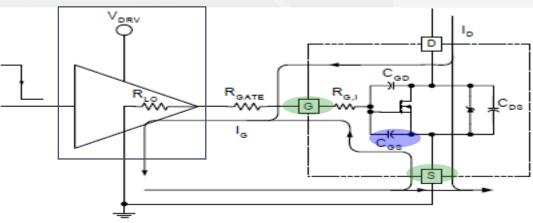
Let's take example of a power MOSFET

- GATE terminal controls ON/OFF state of MOSFET
- o VGS = Voltage Between Gate & Source
- <u>To turn ON:</u> Apply a positive voltage,
- \circ V_{GS} > Threshold level
- \circ <u>To turn OFF</u>: V_{GS} < Threshold level
- GATE is a capacitive input, highimpedance terminal
- 2 parasitic capacitors inside MOSFET internal structure (C_{GS}, C_{GD})

Now, about Gate Drivers....

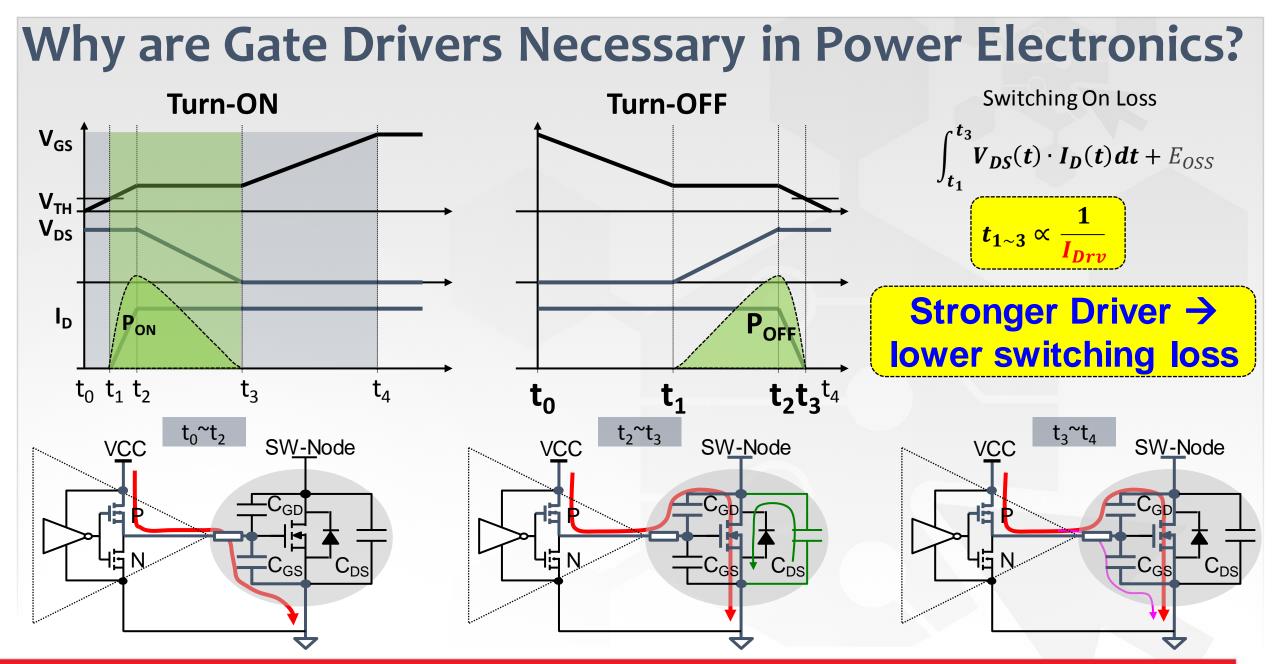

What is a Gate Driver

It is a power amplifier that accepts a low-power input from a controller IC and produces the appropriate high-current gate drive for a power MOSFET


Gate Driver device applies voltage signal (V_{GS}) between Gate (G) & Source (S) of power MOSFET, while providing a high-current pulse

- \rightarrow To charge/discharge C_{GS}, C_{GD} QUICKLY
- → To switch ON/OFF power MOSFET QUICKLY

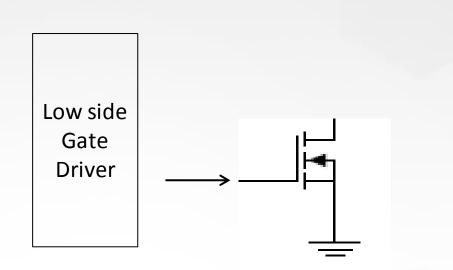
Gate Driver

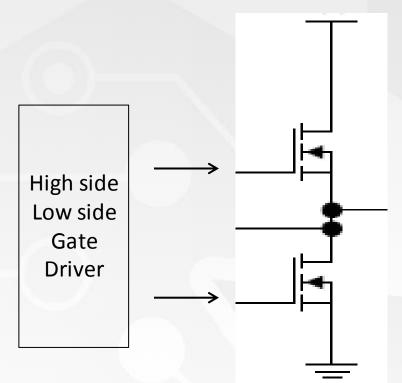


Gate Driver

Switch Turn-Off

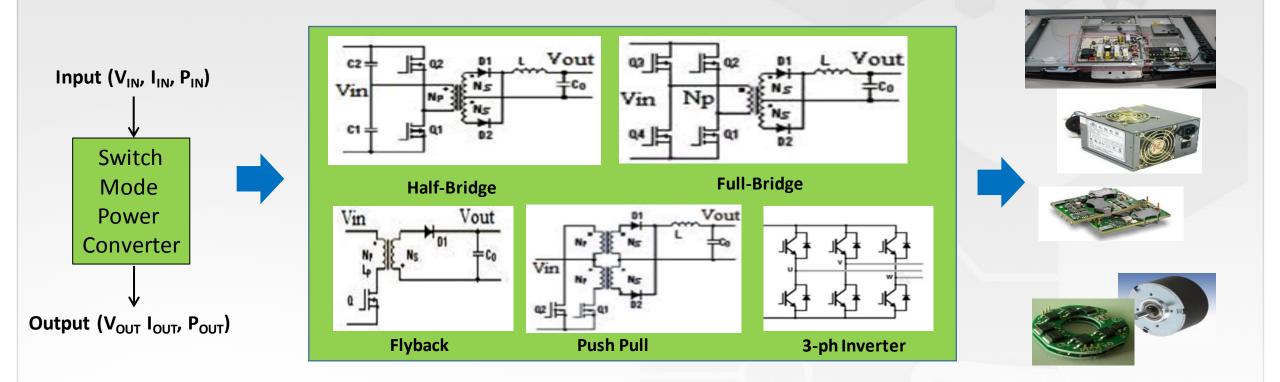
Fast charge/discharge of C_{GS}, C_{GD} <u>reduces power loss</u> in time intervals


Types of Gate Drivers – Based on Switch Position/Arrangement

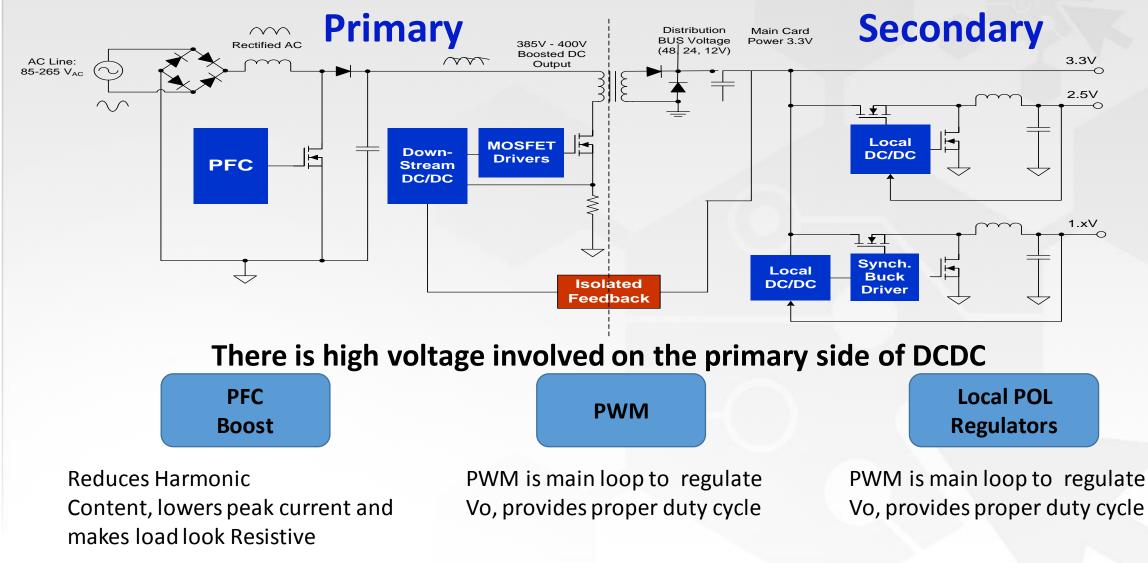

1. Low Side Drivers

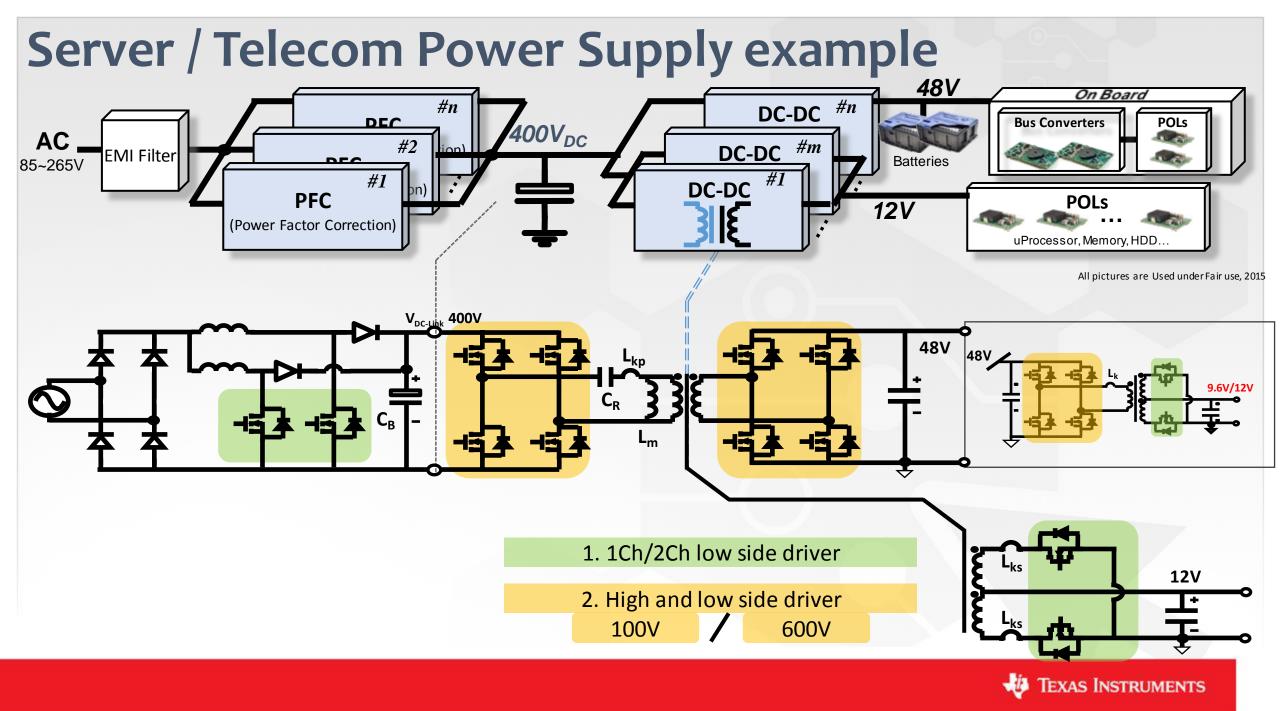
Used to Drive GND referenced switches

2. High side-Low Side Drivers

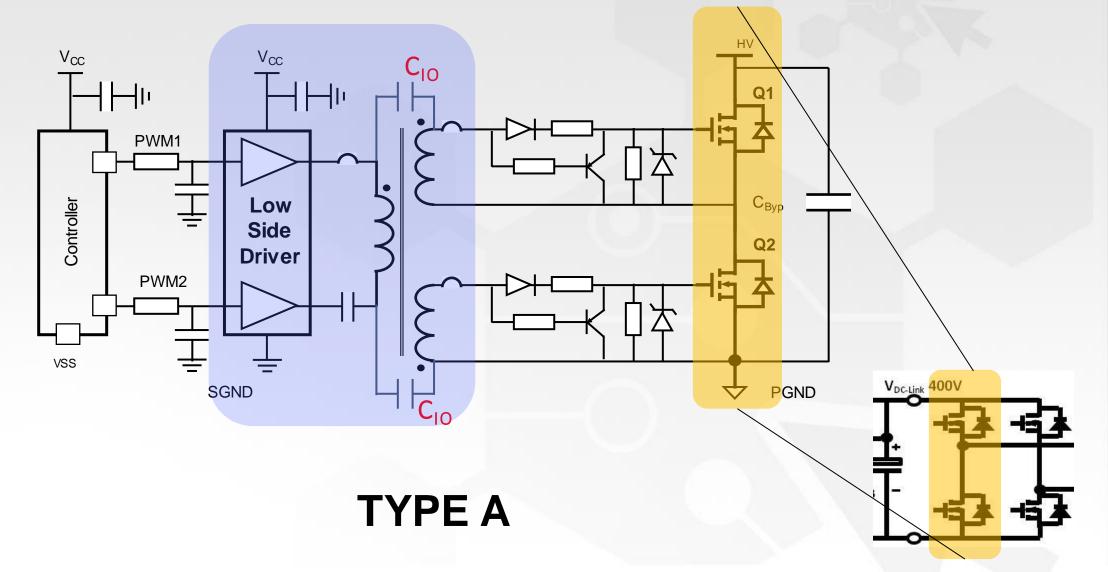

Used to Drive 2 switches connected in Bridge Arrangement

Topologies in switched mode power electronics

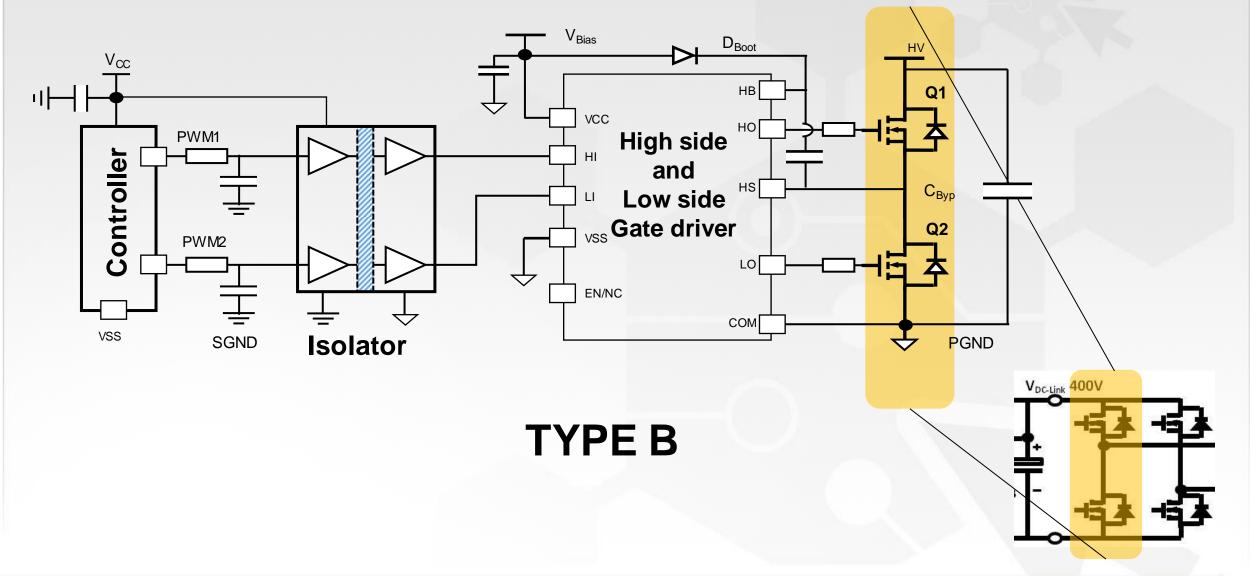



Lets look at a power supply application

Power Supply application

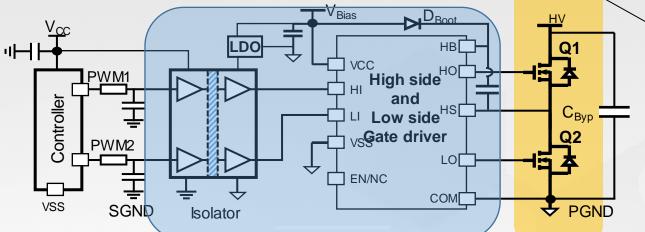


Based on the positioning/placement of the controller, isolation is required between the controller and the driver



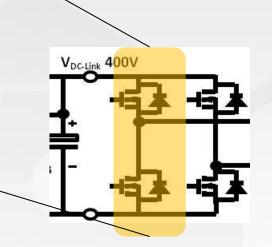
Traditional method of isolation: Transformer

Consider an Isolator + Driver



Comparison between Gate Drive Transformer & High & Low Side Driver with isolator

	Туре А	Туре В	
T _{Prop}	≈20ns	≈100ns	
Bias Power	NO	Yes	
C _{IO}	≥10pF	≤1pF	
Parasitics	Large (L _{LK})	Very small	
Overshoot	Large	Small	
Size	Bulky	Small	



TYPE B

TYPE C: ISO Driver

- ✓ CMTI>100V/ns
- ✓ 5kVrms reinforced isolation
- ✓ T_{Prop}: 25ns Typ.
- ✓ Match./_{TPWD} < 5ns</p>
- ✓ 110mm²

Trending towards integration: Isolated gate driver PCB Area **TYPE C: ISO Driver TYPE A Reduction – 76%** (UCC21520) Area Vol **H** (mm) **W** (mm) **L** (mm) ✓ CMTI>100V/ns (mm^2) (mm^3) UCC27324 6.2 54.25 5 1.75 31 Type A GA3550-BL 17.4 24.13 10 420 4200 ✓ 5kVrms reinforced SUM 451 4254 isolation

TYPE B

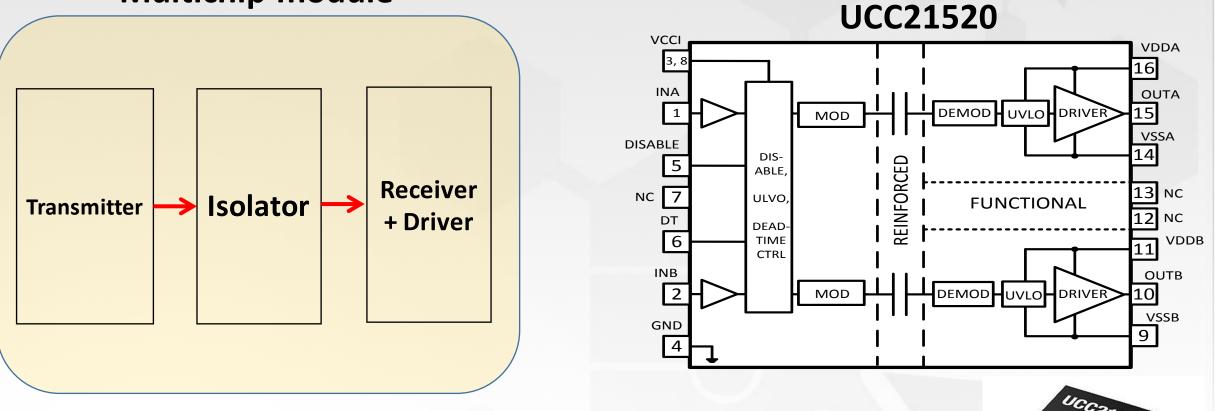
	ISO7520C	10.5	10.6	2.65	111.3	295
	UCC27714	8.75	6.2	1.75	54.25	95
	MURS360	8.1	6.1	2.4	49.41	119
		SUM	215	509		

TEXAS INSTRUMENTS

✓ T_{Prop}: 25ns Typ.

110mm²

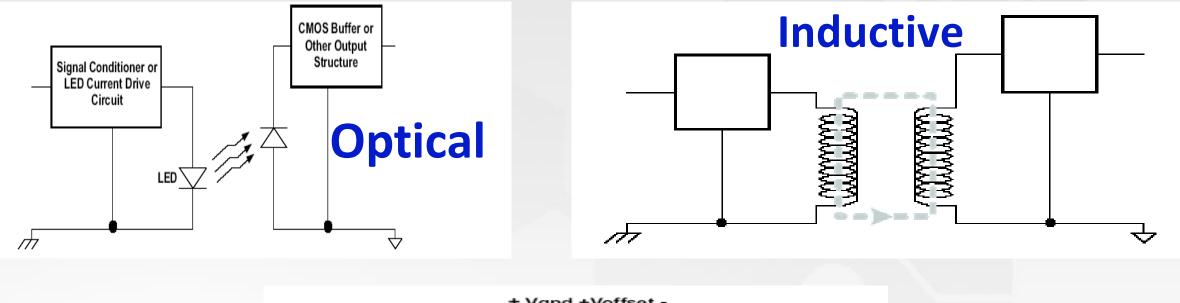
Match./_{TPWD} < 5ns

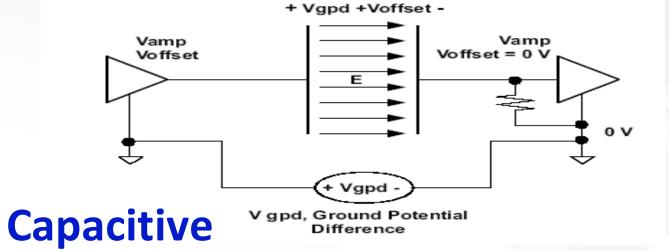

Why is driver + isolation integration trend important?

- Adding isolation is becoming mandatory as part of regulatory compliance
- System solutions becoming smaller in size
 - Datacenters space limited but more storage
 - \odot Telecom bay stations and RRUs Higher data transactions
- Higher efficiency
 - \odot Switching to higher voltages
 - \circ More intelligence to systems \rightarrow More protection of controls
- Higher performance density
- Isolation robustness
- Availability of high voltage devices
 Wide band gap devices SiC, GaN

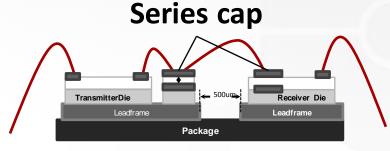
Construction of an isolated gate driver

Multichip module




Visit the UCC21520 webpage

Types of isolation methods


TI uses Capacitive Isolation Technology

\checkmark SiO₂ is the most stable dielectric over temperature and moisture

- ✓ Highest lifetime in the industry, >1.5 kV_{RMS} for 40 years
 - ✓ Superior transient protection for harsh environments, >12.8kV

✓ Leverage advantages of TI's process technology

- ✓Manufacturing repeatability leading to tight part-to-part skew
- \checkmark Integration path with many other circuits
- ✓ No wear out mechanisms, low defect levels, high MTBF

Value of Capacitive isolation

Higher power density, enabling smaller solutions

High drive currents reduces switching losses with a rise time of 6ns and fall time of 7ns for a 1.8nF load for high frequency switch mode power applications (UCC21520) Isolation robustness

Best-in-class surge protection of 12.8kVand noise immunity greater than 100V/ns with integrated deadtime control is ideal for safetycritical applications. Low power consumption

 (\mathbf{U})

Reduced standby power as low as 1milliamps (mA) helps increase energy efficiency and increase the life of the device.

Levels of Isolation

Functional Isolation

- Functional Isolation is necessary for the proper operation of a product. There is no need for protection against electric shock
- Basic Isolation
 - Basic Isolation is single level of isolation providing basic protection against electric shock
- Reinforced Isolation
 - A single insulation system that provide electrical shock protection equal to double insulation
- Supplementary Isolation
- Double Isolation

Standards that apply to Isolated drivers

• Component level Standards:

- IEC 60747-5-5 (VDE 0884-5-5) .
- VDE 0884-10 / VDE 0884-11
- IEC 60747-17
- UL 1577

•

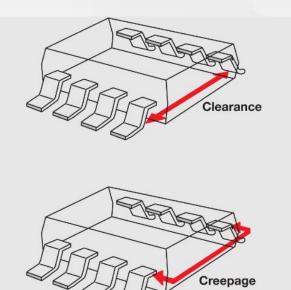
....

TI Isolated gate drivers must pass

System Level / End Equipment Standards

- IEC 61800-5-1, safety requirements for adjustable speed drives
- IEC 60601-1, Medical equipment standard
- IEC 61010-1, safety standard for measurement, control and Lab equipment
- IEC 60950-1, Telecom equipment standard
- ISO 6469-3, Electric Vehicle Safety Standard

Customer boards and systems must pass – TI Isolated gate drivers should enable



Common Isolation Terminologies

- Isolation Rating Voltage (Vrms) : Viso
- Working/Operating/Repetitive Voltage (Vrms)
- Impulse or Surge Voltage (Vpk): Viosm
- Channel to channel voltage

Creepage Distance

Clearance

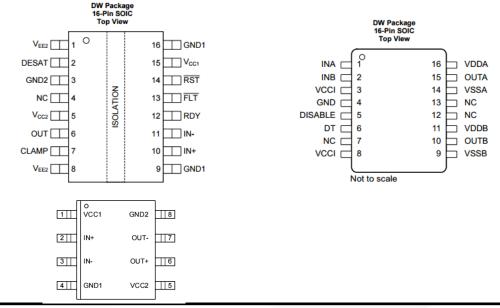
- Tracking
- Comparative Tracking Index (CTI)

СТІ	Material Group	
600 <= CTI		
400 <= CTI < 600	II	

- Pollution Degree 1
- Pollution Degree 2
- Pollution Degree 3

Details on these terminologies to be discussed in the Oct 20th webinar offered on isolation

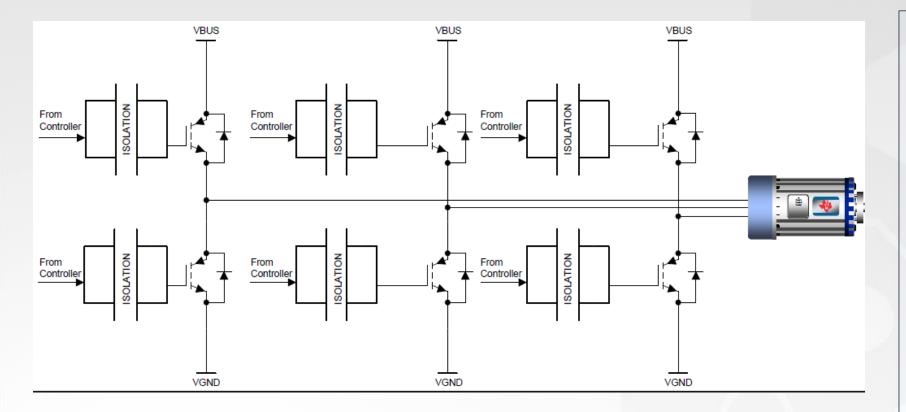
Key requirements for an isolated driver


In addition to understanding the levels of isolation.... It is important to find out about the driver functionalities:

- Propagation delay
- Common Mode Transient Immunity (CMTI)
- Rise time/fall time
- Maximum driver side supply voltage
- > UVLO
- Channel to channel delay
- Protection schemes
- Dead time control and overlap
- Enable/disable features

Type of isolated gate drivers

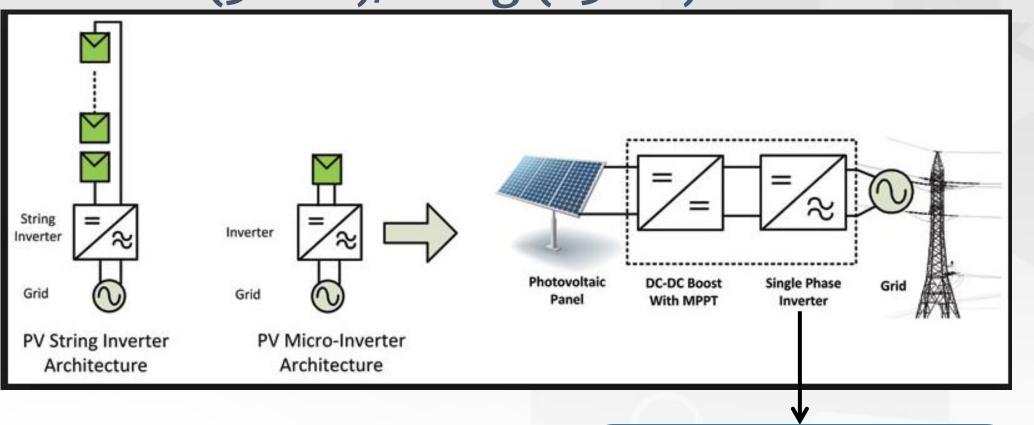
Туре	Single	Dual
Power switch	MOSFET, IGBT	MOSFET
Pinouts	8, 16, 24, 32	16 (for SOIC), 13,14
Type of isolation	Basic and Reinforced	Basic and Reinforced
Package type	SOIC (narrow and wide)	SOIC (narrow & wide), LGA
Protection features	Yes (for 16, 24 and 32 pins)	No
Examples	DW Package 16-Pin SOIC Top View	DW Package



Comparison between MOSFET and IGBT iso drivers

Power Switch	MOSFET	IGBT
Switching frequencies	High (>20 kHz)	Low to Medium (5-20kHz)
# Channels	Single and Dual	Single
Protection	No	Yes – Desaturation, Miller Clamping
Max Vdd (power supply)	20V	30V
Vdd range	0-20V	-10 to 20V
Operating Vdd	10-12V	12-15V
UVLO	8V	12V
CMTI	50-100V/ns	<50V/ns
Propagation delay	Smaller the better (<50ns)	High (not critical)
Rail Voltage	Up to 650V	>650V
Typical Applications	Power supplies – Server, datacom, telecom, factory automation, onboard and offboard chargers, solar u-inverters and string inverters (<3kW), 400-12V DCDC - Auto	Moto drives (AC machines), UPS, Solar central and string power inverters (>3kW), Traction inverters for auto

Motor drive application



Gate driver options:

- 6 single channel iso drivers with no protection (8pin) and usually reinforced
- 6 single channel iso drivers with protection (DESAT, Miller clamp or split output) (16 pin)
- 3 single channel iso drivers for high side only (8 or 16 pin) along with 3 non isolated drivers

Solar micro (300W)/string (<3kW) inverter

Usually MOSFET single inverters needing <u>isolated</u> (basic or reinforced) drivers

State-of-the-art Power Semiconductors (Wide Band Gap) **Si-MOSFET** SiC-MOSFET **IGBT** GaN Nom-OFF Nom-ON Voltage Ratings ≥650V ≥650V ≤650V 20~650V **Optimal V**_{GS} 0~15V -10~15V -5~20V -5~10V -4~6V (-10~20V) Max.Limit (-5~25V) (-10~7V) $(\pm 18V)$ (±20V) GaN 5V IGBT / 12V **≁10V Si-MOSFET** SiC-MOSFET 12 80 '4V Conditions: $v_{gs} = 20^{\circ} 20^{\circ}$ 55 T₁ = 25 °C 60 tp < 200 µs 50 10 $V_{GS} = 18 V$ V_{GE}=18V 45 60 15V 50 V_{gs} = 16 V $7 \vee$ 40 12V 35 40 10V 40 30 3V 30 25 -7 6 V 20 20 5V 5.5 V 20 15 10 5 V 10 4.5 V 2V **0** · 2.5 5.0 7.5 0 - I-V curves are from datasheets of Infineon, CREE, EPC 2 4 10 15 20 0.0

Value of Silicon carbide in high voltage & high power applications

- ✓ High power density 10x more than Silicon
 - ✓ High current density
- ✓ High breakdown voltage
- ✓ Drive higher current in a reduced footprint
- ✓ High thermal conductivity
- ✓ High mobility ability to switch at high frequencies

Comparison of SiC to MOSFET and IGBT iso drivers

le and Dual	Low to Medium (5-20kHz) Single Yes – Desaturation, Miller Clamping 30V	High (>50 kHz) Single and Dual Yes – Current sense, Miller Clamping 30V
	Yes – Desaturation, Miller Clamping	Yes – Current sense, Miller Clamping
	30V	30V
x, <i>r</i>		
)V	-10 to 20V	-5 to 25V
2V	12-15V	15-18V
	12V	12-15V
LOOV/ns	<50V/ns	>100V/ns
ller the better (<50ns)	High (not critical)	Smaller the better (<50ns)
o 650V	>650V	>650V
com, factory automation, oard and offboard chargers, solar	Moto drives (AC machines), UPS, Solar central and string power inverters (>3kW), Traction inverters for auto	PFC – Power supplies, Solar inverters, DCDC for EV/HEV and traction inverters for EV, Motor drives, Railways
	er the better (<50ns) 650V er supplies – Server, datacom, om, factory automation, ard and offboard chargers, solar erters and string inverters	er the better (<50ns)High (not critical)650V>650Ver supplies – Server, datacom, om, factory automation, ard and offboard chargers, solarMoto drives (AC machines), UPS, Solar central and string power inverters (>3kW), Traction inverters for auto

TI isolated gate driver family

All families support MOSFETs, SiC MOSFETs, IGBTs

			,	
Driver Type		ISO*****		UCC****
# Channels		1		2, 1
DESAT, Soft Turn-off, Miller clamp		Yes		No (yes for Miller Clamp)
SiC support		Yes		Yes
Withstand Isolation voltage (V _{ISO})	5.7kVrm	ns / 8kVpk	5.7kVrms / 8kVpk 3kVrms / 4242kVpk	5.7KVrms/8kVpk
ISO working voltage (V _{IOWM})	1.5kVrms / 2.121kVpk	1kVrms / 1.42kVpk	1.5kVrms / 2.121kVpk 850Vrms/1.2kVpk	1.5kVrms / 2.121kVpk
CMTI (Min)	100kV/µs		100kV/µs	
Supply type	Unipolar, Bipolar		Unipolar, Bipolar	
Peak drive current	2.5A/5A		17A	4A/6A 8A/12A - with Parallel Channels
Rising and Falling time	20ns/20ns @1.0nF		10ns/10ns @ 1nF	6ns/7ns @1.8nF
VCC, Input	2.25V to 5.5V		3V to 18V	3V to 18V
VDD, Output	15V	to 30V	15V to 35V	9.2V to 25V
VDD, quiescent current	3.0	бmА	1mA	1mA
Propagation delay (Typ)	76ns		50ns	19ns
Protection	UVLO, Power ready in	dication, Fault Feedback	UVLO	UVLO, Disable, Programmable Dead Time
Packages	SOIC-16 (>8r	nm Creepage)	SOIC-8 (>4mm, >8.5mm Creepage)	SOIC -16 (Wide Body)
Devices	<u>ISO5851</u> I <u>SO5852S</u> (split O/P)	<u>ISO5451</u> <u>ISO5452</u> (split O/P)	ISO53xx	<u>UCC21520</u>

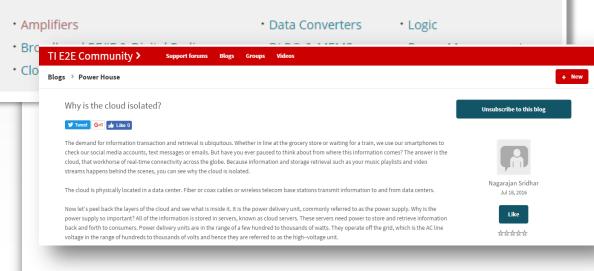
Discover more about isolation

High-voltage reinforced isolation: Definitions and test methodologies

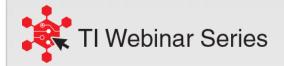
Anant S Kamath	Parameter	Definition	Relevance	
Systems Engineer, Isolation, Interface Grou Teash Instruments Kannan Soundarapandian Prodect: Im Manage, Isolation, Interface Tease Instruments Reinfic	Basic Isolation	Isolation that can provide protection against high voltage as long as the barrier is intact.	Basic isolation needs to be coupled with another insulation barrier, if human access is possible.	
	Reinforced Isolation	Isolation that is equivalent to two basic isolation barriers in series.	Reinforced isolation by itself is sufficient as a safety barrier against high voltage.	
V _{KTM}	VIOTM	The sinusoidal voltage isolator can tolerate for 60sec (defined in pk)	Tolerance to temporary overvoltage on supplies due to	
	The sinusoidal voltage isolator can tolerate for 60sec (defined in rms)	load changes, arcing etc.		
	V _{IORM}	Maximum periodic voltage that the isolator has to handle on a continuous basis throughout its operating life (defined in pk)	The voltage that the isolator has to handle as part of normal operation (for eg. an isolated gate driver sees a	
	V _{IOWM}	Maximum continuous working voltage that the isolator has to on a continuous basis throughout its operating life (defined in rms)	pk voltage equal to the DC bus voltage).	
_	V _{SURGE}	Maximum peak voltage of the 1.2us/50us standard surge waveform that the isolator can handle.	Represents direct and indirect lightning strikes. Min 10kV required for reinforced isolation.	
	Creepage	Minimum distance from pins on side 1 to side 2 along the surface of the package $% \left({{{\rm{T}}_{\rm{s}}}} \right)$	Limits working voltage or continuous voltage due to degradation along package surface (called tracking)	
	Clearance	Minimum distance from pins on side 1 to side 2 through the air	Limits peak voltages and surge voltages in system environment due to air breakdown	
	CMTI	The maximum rate of change of ground potential difference (GND1-GND2) that the isolator can withstand without bit errors	Indicates robustness of isolator to ground noise. Very important in gate-drive applications	

- Reliability and isolation resources:
 - High-voltage reinforced isolation: Definitions and test methodologies
 - High-voltage isolation quality and reliability for AMC130x
- <u>Understanding isolation terminology and</u>
 <u>relevance</u>
- Discover our isolation glossary
- Watch part <u>one</u> and <u>two</u> of our introduction to digital isolation video series
- Join the <u>TI E2E[™] Community Isolation forum</u>

Helpful information for readers: UCC21520


TI E2E™ community

As a member of **my**.TI you can join the TI E2E™ Community where you can ask questions, share ideas and collaborate with fellow engineers and TI experts


nity Contents are provided "AS IS" by the respective TI and Community contributors and do not constitute TI specifications. See Terms of use.

Engage in the Community

- View the <u>UCC21520 datasheet</u>.
- Download the application note, "<u>UCC21520: A</u> <u>Universal Isolated Gate Driver with Fast Dynamic</u> <u>Response</u>."
- Watch videos about the <u>value of an isolated driver</u> and <u>dynamic performance of an isolated driver</u>.
- Learn more about Tl's <u>gate driver portfolio</u> and find technical resources.
- Read the Power House blog post, "<u>Why is the cloud</u> <u>isolated?</u>"
- Join the <u>TI E2E™ Community Power Management</u> forum

Thank you

