INA240

High-voltage, enhanced PWM rejection current sense amplifier for large common-mode transients Current Sense Amplifier INA240 TEXAS INSTRUMENTS

Benefits of designing with current sense amplifiers

Discrete current sensing

Dedicated current sense amplifier

Op amp used for current sensing External gain setting resistors Input range limited by supply voltage

INA240 Family

High-voltage, enhanced PWM rejection current sense amplifier for large common-mode transients

Features

- Wide common-mode : -4V to 80V
- Bi-directional
- High AC CMRR: 93dB @ 50kHz
- Enhanced PWM rejection
- High accuracy
 - Input offset voltage: 25µV (Max) with 0.25µV/°C Max Drift
 - Gain error: ±0.20% (Max) with 2.5ppm/°C Max Drift
- Available gains: 20, 50, 100, 200V/V
- Package: TSSOP-8
- AEC Q100 Option available in 1Q17

Applications

Motor control

Power supplies

Solenoid/valve Control

Tools & Resources

- INA240EVM gain options:
 - 20V/V, 50V/V, 100V/V, 200V/V
 - INA240EVM User's Guide
 - TINA-SPICE Model
 - TIDA-00913 GaN half-bridge with in-line motor current sensing using INA240

Benefits

- Large input range to integrate into increasing common-mode voltage applications
- · High accuracy minimizes system margins
- High CMRR allows for direct in-line motor current sensing

Enhanced PWM Rejection

• What is it?

- Active circuitry which monitors the input common-mode signals.
- If a fast transition is detected, will suppress the signal to minimize the "glitch" to be propagated through the device's output.
- How do other solutions tackle this problem?
 - Competitive solutions typically utilize highbandwidth amplifiers to settle the output as quickly as possible.
 - Problem with this approach is it may incur added delay due to the settling time.

- What system-level benefit is there with Enhanced PWM Rejection?
 - "Blanking time" is reduced substantially!
 - Can measure accurately at lower duty cycles!

Why is in-line motor sensing important?

- Why measure current in a motor?
 - Fault protection
 - Input into motor control algorithm

• Why measure current in-line vs. low-side?

- Low-side is a proven approach with a large customer base and perceived to have a lower system cost, but has difficulty to scaling to higher precision and lower drift
- Low-side creates a non-linear output signal that must be post-processed to extract the proportional base current information
- In-line provides a faster response, higher precision, and the ability to have less drift over a wide temperature range
- In-line reproduces a continuous proportional signal of the phase current which does not need further processing

5

TI solutions for 3-phase DC Motor Control

Current meas. options in 3-phase DC motor

TI 3-phase DC motor current measurement solutions

In-line Phase Current								
Device	V _{CM} Range	V _{os}	V _{os} Drift	Gain	Gain Error	Gain Error Drift	Comment	
INA240	-4V to +80V	25µV	0.25µV/°C	20, 50, 100, 200	0.2%	2.5ppm/°C	Enhanced PWM Rejection	
Low-side Phase Current								
Device	V _{cM} Range	V _{os}	V _{os} Drift	Gain	Gain Error	Gain Error Drift	Comment	
INA303	0V to +36V	35µV	0.1µV/°C	20, 50, 100	0.10%	10ppm/°C	Integrated Window Comparator	
High-side Motor Current Monitoring for Over-Current Protection								
Device	V _{CM} Bange	V _{os}	V _{os} Drift	Gain	Gain	Gain Error	Comment	
INA240	-4V to +80V	25µV	0.25µV/°C	20, 50, 100, 200	0.2%	2.5ppm/°C	Ultra-high Precision	
LMP8640HV	-2V to +76V	900µV	2.6µV/°C	20, 50, 100	0.25%	26.2ppm/°C	High Bandwidth	
INA200	-16V to +80V	2.5mV	5µV/°C (typ)	20, 50, 100	1%	-	Over-current	
	Low-side M	otor Cur	rent Monito	oring for Over-C	urrent P	rotection		
Device	V _{см} Range	V _{os}	V _{os} Drift	Gain	Gain Error	Gain Error Drift	Comment	
INA199	-0.3V to +26V	150µV	0.1µV/°C	50, 100, 200	1.40%	10ppm/°C	Low-cost Current Sense Amplifier	
INA301	0V to +36V	35µV	0.1µV/°C	20, 50, 100	0.10%	10ppm/°C	Integrated Fast Comparator	

TI solutions for 3-phase DC motor control

Current Meas. options in 3-phase DC Motor

TI 3-phase DC Motor Current Measurement Solutions

Vsupply	System benefits gained from using INA240	n or		Comment Enhanced
High-side Current Sensing	Most accurate phase current representation with in-line phase current sensing	n pr	Gain Error Drift 10ppm/°C	Comment Integrated Window Comparator
	Algorithm optimization	nt P		Comment Ultra-high
	Reduced blanking time	70 1%	2.5ppm/°C 26.2ppm/°C	Precision High Bandwidth Over-current
	Possible elimination of galvanic isolation	n n or		Comment
	Increased motor efficiency	% %	10ppm/°C 10ppm/°C	Current Sense Amplifier Integrated Fast Comparator
Low-side Current Sensing				
	TE	XAS	5 Instru	MENTS

TI solutions for embedded DC-DC power

Current measurement in Embedded DC-DC

TI Solutions for Embedded DC-DC

High-side Current Sensing (system power)								
Device	V _{CM} Range	V _{os}	V _{os} Drift	Gain	Gain Error	Gain Error Drift	Comment	
INA240	-4V to +80V	25µV	0.25µV/°C	20, 50, 100, 200	0.2%	2.5ppm/°C	Ultra-high Precision	
INA210	-0.3V to +26V	35µ∨ 60µV 100µV	0.1µV/°C	50, 75, 100, 200, 500	0.9%	10ppm/°C	High Performance	
INA301	0V to +36V	35µV	0.1µV/°C	20, 50, 100	0.10%	10ppm/°C	Fast Comparator	
INA302	0V to +36V	35µV	0.1µV/°C	20, 50, 100	0.10%	10ppm/°C	Over/Under Current	
High-side Current Sensing (phase power)								
Device	V _{CM} Range	V _{os}	V _{os} Drift	Gain	Gain Error	Gain Error Drift	Comment	
INA240	-4V to +80V	25µV	0.25µV/°C	20, 50, 100, 200	0.2%	2.5ppm/°C	PWM Reiection	
INA210	-0.3V to +26V	35µV 60µV 100µV	0.1µV/°C	50, 75, 100, 200, 500	0.9%	10ppm/°C	High Performance	
LMP8645	-2V to +42V	1000µV	7µV/°C	Adjustable	2%	140ppm/°C	High Bandwidth	
			Low-side (Current Sensing				
Device	V _{cM} Range	V _{os}	V _{os} Drift	Gain	Gain Error	Gain Error Drift	Comment	
INA210	-0.3V to +26V	35μV 60μV 100μV	0.1µV/°C	50, 75, 100, 200, 500	0.9%	10ppm/°C	High Performance	
INA199	-0.3V to +26V	150µV	0.1µV/°C	50, 100, 200	1.40%	10ppm/°C	Low-cost	
INA301	0V to +36V	35µV	0.1µV/°C	20, 50, 100	0.10%	10ppm/°C	Fast Comparator	
INA302	0V to +36V	35µV	0.1µV/°C	20, 50, 100	0.10%	10ppm/°C	Warning/ Shutdown	

TI solutions for embedded DC-DC power

Current measurement in Embedded DC-DC

FI Solutions for Embedded DC-DC

Thank you for joining!

