Nano power for medical wearables and IoT applications

Battery Management Solutions January 25th, 2017

Janice Escobar

- Common Charging Requirements
- Charging Solutions
- Summary

Wearable Charging Requirements

- Wearable Battery Size
- Charging Voltage, Current
- Quiescent Current, Termination Current
- Ship Mode
- Solution Size

System-level approach to power is required

TI DELIVERS

Technology for billions of battery- or harvested-powered devices

Traditional chargers and Integration

Small solution size

Wireless Power

Water Proof

Energy Harvesting

Stretching battery life

Charging System Architecture - Considerations

- Solution Size: Needs to be small
- Charging: Charge with micro USB.
- Battery: Support small to medium capacity Li-Ion batteries (50 mAh to 300 mAh)
- Protection: Provide a safety net to ensure battery does not overheat and explode
- Power consumption: Extend run time between charges
- Low battery alert: Should be able to notify user about the battery conditions (preferably % charge remaining instead of "bars")
- Smartwatch system design poses unique challenges.
- Due to large number of sensor integration, less PCB space is available for battery solution these days.

Batteries for Wearables

- The Battery Compromise
 - Capacity Typical is 30mAh to 300mAh
 - Energy Density State of the Art is ~150mAh/cm³
- Most popular Batteries for Wearables
 - Primary Li-Metal Standard CR2032, highest energy density, but must be replaced by user

Rechargeable Li-Ion – Most popular, able to get in various sizes, shapes, and capacities

Li-Ion Charging – Challenges at Ultra-Low Power

What is an ideal charger for IoT applications?

High Accuracy in Current & Voltage

Maximize battery life by preventing over charging

Low Termination Current

Maximize battery run time by preventing early termination

Low Battery leakage

Longer stand by time

Small Size

Smaller total solution size

8

Solution size is critical for Wearables

Power path function

Up to 500mA charge rate

- Up to 1000mA charge rate
 - Termination to 5 ~ 10mA

Capacitor

WCSP IC

Resistor

- Up to 250mA charge rate
- Termination control to 1mA
 - < 75nA battery pin leakage

Accurate Small Cell Charge Termination

- Charged 41mAh battery at 40 mA fast charge current (1C)
- Termination at 4 mA (10%) or 1 mA
- Shaded area represents additional 5 10% capacity restored on each charge

10

Low Battery Leakage

For a wristband that uses 50mAh battery and supports 30 days of normal use, how critical is the battery leakage?

Days of Use for One Charge

Charger to Battery Leakage (uA)

Li-lon needs high accuracy charge control

- The higher the voltage, the higher the initial capacity
- Overcharging shortens battery cycle life

Source: "Factors that affect cycle-life and possible degradation mechanisms of a Li-lon cell based on $LiCoO_2$," Journal of Power Sources 111 (2002) 130-136

Charging Solutions

- Energy Sources
- Simple Linear Charger vs. High Integration Linear Chargers (BMU)
- Wireless charger
- Energy Harvesting

Energy Sources

- Simple Linear charger vs. High Integration Linear Chargers (BMU)
- Wireless charger
- Energy Harvesting

Energy Sources for Wearables

- USB Most Common Today
- Wireless Power Most Benefits for Wearables
 - Allows for Water-Proof and Dust-Proof Designs
 - Eliminates Wires and Connectors
 - Simplifies User Experience for Recharging
- Alternative Energy Sources Most Flexibility for Power

- Energy Sources
- Simple Linear Charger vs. High Integration Linear Chargers (BMU)
- Wireless charger
- Energy Harvesting

Chargers Optimized for Small Batteries

bq25100 Linear Charger

bq25120 Battery Management Unit (BMU)

Wearables Solutions

Audio Devices

• <u>BQ2510x</u>

Smallest Linear Charger

• <u>TPS62743</u>

Smallest Low Iq DC/DC

Smallest Solution (If power path and I2C configurability is not needed)

Simple Activity Monitor

<u>BQ25120</u>

•

Meets all basic functional requirements

Smallest Solution Size and Lowest Power Consumption (power path and I2C)

Activity Monitor With Display and Additional Features

- <u>BQ25120</u>
- TPS61046 boost for OLED display
- <u>TPS61240</u> boost for HRM or LCD display
- TPS62743 buck if needed

Most Flexible Solution

Low Iq vs. Smart Power Management

- Low Iq
 - Enables high efficiency for components that need to be powered all the time at low loads
 - MCU, some sensors
- Smart Power Management
 - Ability to turn off devices that are used sometimes
 - Radios, some sensors, displays
 - Disconnect the battery for long shelf life

100% 90% 80% Efficiency (%) 70% 60% BA V BA1 50% .6 V BAT 3.8 V BAT .2 V BAT 40% 1E-6 1E-5 0 0001 0.10.2 0.5 0 001 0.01 Load Current (A) D007 $T_A = 25^{\circ}C$ V_{SYS} = 1.8 V

Figure 5. Ship Mode BAT, I_Q

20

- Energy Sources
- Simple Linear charger vs. High Integration Linear Chargers (BMU)
- Wireless charger
- Energy Harvesting

Benefit of Wireless Power

Convenience

Locations Listing L

No Cables or Connectors

Water Proof

Rugged Industrial Design

Wireless power for wearables

bq51003 2.5W Optimized Receiver

10 – 15% efficiency improvement at 1W output power vs. standard (5W-rated) receiver

System-level efficiency

TEXAS INSTRUMENTS

24

TIDA-00318: Charging Performance

- Small Size: 5x15(mm²)
- Adjustable charging current: 10~250 (mA)
- Supports 1mA Charge Termination Currents
- <75nA battery leakage current.</p>
- TI design: http://www.ti.com/tool/TIDA-00318

- Energy Sources
- Simple Linear charger vs. High Integration Linear Chargers (BMU)
- Wireless charger
- Energy Harvesting

Energy harvesting applications

Designs with low data rate, low duty cycle, ultra-low power

When does energy harvesting make sense?

Hard wire Power not available

Battery replacement not practical

Battery Life needs to be extended

Enabling efficient use of energy harvesting

Harvesting Light Energy

- Incident light generates electron-hole pairs
- I_{SC} proportional to light intensity

- Series Solar Cells
 - Higher Voltage
 - Shading of one cell decreases η of string
- Parallel Solar Cells
 - Lower Voltage Must boost
 - Shading only effect that cell

30

Solar Energy

Thermoelectric Energy Harvesters

- Convert heat energy to electrical energy
- One p-n leg generates ~ 0.2mV/K

Nature 413, Oct. 2001

31

Thermal Energy

Harvesting Vibration Energy

Roundy, Pervasive Computing, 2005

- Strain related to input vibration
- L_M , C_M are the mechanical mass and stiffness
- *R_M* takes into account mechanical losses

RF Energy

•

33

Power

- Challenging to develop in-house
- Commercially available transducers include rectifier+dc/dc converter
- Various frequencies (CB radio, AM radio, walkie talkie)
- Ambient
 - Known frequency and/or distance (Cell phone, Wifi)
- Capacitor

RF Harvesting Intentional

-RFID

 Known transmitter sends to waiting receiver - Similar concept as wireless battery charging RF

Future Development- New Technology

- Nikola Labs and Skyworks partnership
- Develop an easy to integrate harvesting solution
- RF to DC
- Custom Antenna + SIP = System power
- Nikola- Antenna provider/ Design integration
- Skyworks- Packaging + RF expertise
- Complete Energy Harvesting solution

SKYWORKS

RF Energy

NIKC

TI Energy Harvesting bq255xx Comparison

	<u>bq25504</u>	<u>bq25505</u>	<u>bq25570</u>
Description	Boost Battery Charger	Boost Battery Charger w/ Dual Source Support (primary and secondary storage)	Boost Battery Charger w/ regulated system rail
Cold start Voltage	330mV	330mV	330mV
Continuous Energy Harvesting from Vin	80mV	100mV	100mV
Quiescent Current	330nA	325nA	488nA
Charge Current Max	< 300mA	285mA	285mA
Buck Output Current	-	-	110mA
Package	3mm x 3mm QFN	3.5mm x 3.5mm QFN	3.5mm x 3.5mm QFN

Summary

- IoT applications are divers and are a growing market with specialized battery charging requirements
- High integration battery management unit demand is increasing
- Wireless charging is becoming more popular for wearables
- Energy harvesting will be needed for longer run time
- TI has solutions for simple low power medical devices, activity trackers, and sensor nodes with battery management needs

