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Address Bus

Data Bus

CPU RAM Memory Peripherals

0x0 – 0x1FFF 0x2000 – 0x3FFF 0x4000 – 0x5FFF



Examples of addressing
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Address Bus

Data Bus

CPU
RAM Memory Peripherals

0x0 – 0x1FFF 0x2000 – 0x3FFF 0x4000 – 0x5FFF

Peripheral configuration

Example:
I2C_CTRL = 0x42;

Addressing:

The address of I2C_CTRL is 0x4010

I2C_CTRL represents the address of 

a specific register where the value 

0x42 will be written

0x420x4010



Examples of addressing
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Address Bus

Data Bus

CPU
RAM Memory Peripherals

0x0 – 0x1FFF 0x2000 – 0x3FFF 0x4000 – 0x5FFF

Peripheral configuration

Example:
I2C_CTRL = 0x42;

Addressing:

The address of I2C_CTRL is 0x4010

I2C_CTRL represents the address of 

a specific register where the value 

0x42 will be written

0x0100

0x21

Global variable access

Example:

if (global_cnt == 0x21) {
do_something();

}

Addressing:

The address of global_cnt is 0x0100.

The CPU must first read global_cnt

from RAM to check its value. In this 

case let’s assume the value is 0x21. 



Examples of addressing
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Address Bus

Data Bus

CPU
RAM Memory Peripherals

0x0 – 0x1FFF 0x2000 – 0x3FFF 0x4000 – 0x5FFF

Peripheral configuration

Example:
I2C_CTRL = 0x42;

Addressing:

The address of I2C_CTRL is 0x4010

I2C_CTRL represents the address of 

a specific register where the value 

0x42 will be written

0x0104

0x32

Global variable access

Example:

if (global_cnt == 0x21) {
do_something();

}

Addressing:

The address of global_cnt is 0x0100.

The CPU must first read global_cnt

from RAM to check its value. In this 

case let’s assume the value is 0x21. 

C pointer

Example:
int is_positive(int *val) {

return *val > 0;
}

Addressing:

The address of val is 0x0104.

The CPU fetches the data before it 

performs the compare operation. Let’s 

say that data is 0x32



CPU addressing modes
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• Determines which 

instruction the CPU will run

• Determines what data the CPU will 

process

Simplified view of an instruction:

CPU Registers

System Address Bus

R1
R2
R3

0x0000

0x5FFF

Encoding of an instruction:

1 0 0 1 0 1 0 1 0 1

OPERAND

Key concept:

Addressing mode are the ways a CPU can access data in the system

OPCODE



Register addressing mode
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→ Register contents are operand

CPU Registers

System Address Bus

R1
R2
R3

0x0000

0x5FFF

ADD
Add R1, R2. Store result in R2

R1 R2

Step 1
CPU send the values of R1 and R2 to ALU

Step 2
ALU processes data and returns the result

Step 3
CPU writes result back to R2 

ALU

Result



Indirect register addressing mode
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CPU Registers

System Address Bus

R1
R2
R3

0x0000

0x5FFF

MOV
Load data from the address in R1 into R2

@R1 R2

Step 1
CPU requests data at the address in R1

Step 2
CPU writes data into R2 Address

Data

→ Register contents is an address pointer to the operand



Immediate addressing mode
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PC
R1
R2
R3

0x0000

0x5FFF

ADD R1 #IMED

Step 1
CPU reads the word after the instruction to 

get the operand. 

Step 2
CPU sends #IMED and R1 to ALU. 

ALU computes result

→ Data following instruction is the operand

Step 3
CPU writes result back to R1

R1
R2
R3

0x0000

0x5FFF

CPU Registers

System Address Bus

R1
R2
R3

0x0000

0x5FFF

R1

Result

#IMED



Indexed addressing mode
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CPU Registers

System Address Bus

R1
R2
R3

0x0000

0x5FFF

BITX
Perform logic AND of operands. Set 

status bit based on result.  

(R1) R2 OFFSET

Step 1
CPU computes address by adding the 

value of R1 and OFFSET. OFFSET is the 

word following the instruction. 

Step 2
CPU reads data at the computed 

address

OFFSET

R1+

Computed 
Address

Data

Address

→ Data at address in the register plus an offset

Data
Step 3
R2 and Data are logically ANDed. 

Result affects status bits

R2

Status bits



Addressing mode description
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Addressing 

Mode

Syntax Description

Register Mode Rn Register contents are operand

Indexed Mode X(Rn) (Rn + X) points to the operand. X is 

stored in the next word

Symbolic Mode ADDR (PC + X) points to the operand. X is 

stored in the next word. Indexed Mode 

X(PC) is used

Absolute Mode &ADDR The word following the instruction 

contains the absolute address

Indirect Register @Rn Rn is used as a pointer to the operand

Indirect Autoincrement @Rn+ Rn is used as a pointer to the operand. 

Rn is incremented afterwards

Immediate Mode #N The word following the instruction 

contains the immediate constant N. 

Indirect Autoincrement Mode @PC+ 

used

Orthogonal architecture:
Instructions implement all addressing modes for 

all operands

Non-Orthogonal architecture:
Instructions implement a subset of addressing modes 



Addressing mode speed comparison
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Addressing Mode
Clock Cycles

Source Destination

Register

Register 1

Program counter 3

Indexed 4

Absolute 4

Indirect register

Register 2

Program counter 4

Indexed 5

Absolute 5

Indirect register 

with 

autoincrement

Register 2

Program counter 4

Indexed 5

Absolute 5

Immediate

Register 2

Program counter 3

Indexed 5

Absolute 5
Addressing mode complexity

Number 

of clock 

cycles



Addressing modes in practice
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C Code:

int is_odd(int *val) {
if (*val & 0x1) {

return 1;
} else

return 0;
}

Assembly:

DECD.W  SP
MOV.W   R12,0x0000(SP)
MOV.W   #1,R15
BIT.W   @R12,R15
JEQ     ($C$L1)
MOV.W   #1,R12
JMP     ($C$L2)
CLR.W   R12
INCD.W  SP
RETA

Description

Load the value ‘1’ into R15

Source operand addressing mode 

Immediate

Destination addressing mode

Register



Addressing modes in practice
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C Code:

int is_odd(int *val) {
if (*val & 0x1) {

return 1;
} else

return 0;
}

Assembly:

DECD.W  SP
MOV.W   R12,0x0000(SP)
MOV.W   #1,R15
BIT.W   @R12,R15
JEQ     ($C$L1)
MOV.W   #1,R12
JMP     ($C$L2)
CLR.W   R12
INCD.W  SP
RETA

Description

Test if bits are set in both @R12 
and R15

Source operand addressing mode 

Register indirect

Destination addressing mode

Register



Addressing mode review
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To find more microcontrollers 
technical resources and search 
products, visit 
ti.com/microcontrollers.


