
1

Memory addressing &
CPU addressing modes
TI Precision Labs – Microcontrollers

Presented by Brandon Fisher

Prepared by Evan Lew

Memory addressing review

2

N Memory Ln

Memory addressing review

3

Address Bus

Data Bus

CPU RAM Memory Peripherals

0x0 – 0x1FFF 0x2000 – 0x3FFF 0x4000 – 0x5FFF

Examples of addressing

4

Address Bus

Data Bus

CPU
RAM Memory Peripherals

0x0 – 0x1FFF 0x2000 – 0x3FFF 0x4000 – 0x5FFF

Peripheral configuration

Example:
I2C_CTRL = 0x42;

Addressing:

The address of I2C_CTRL is 0x4010

I2C_CTRL represents the address of

a specific register where the value

0x42 will be written

0x420x4010

Examples of addressing

5

Address Bus

Data Bus

CPU
RAM Memory Peripherals

0x0 – 0x1FFF 0x2000 – 0x3FFF 0x4000 – 0x5FFF

Peripheral configuration

Example:
I2C_CTRL = 0x42;

Addressing:

The address of I2C_CTRL is 0x4010

I2C_CTRL represents the address of

a specific register where the value

0x42 will be written

0x0100

0x21

Global variable access

Example:

if (global_cnt == 0x21) {
do_something();

}

Addressing:

The address of global_cnt is 0x0100.

The CPU must first read global_cnt

from RAM to check its value. In this

case let’s assume the value is 0x21.

Examples of addressing

6

Address Bus

Data Bus

CPU
RAM Memory Peripherals

0x0 – 0x1FFF 0x2000 – 0x3FFF 0x4000 – 0x5FFF

Peripheral configuration

Example:
I2C_CTRL = 0x42;

Addressing:

The address of I2C_CTRL is 0x4010

I2C_CTRL represents the address of

a specific register where the value

0x42 will be written

0x0104

0x32

Global variable access

Example:

if (global_cnt == 0x21) {
do_something();

}

Addressing:

The address of global_cnt is 0x0100.

The CPU must first read global_cnt

from RAM to check its value. In this

case let’s assume the value is 0x21.

C pointer

Example:
int is_positive(int *val) {

return *val > 0;
}

Addressing:

The address of val is 0x0104.

The CPU fetches the data before it

performs the compare operation. Let’s

say that data is 0x32

CPU addressing modes

7

• Determines which

instruction the CPU will run

• Determines what data the CPU will

process

Simplified view of an instruction:

CPU Registers

System Address Bus

R1
R2
R3

0x0000

0x5FFF

Encoding of an instruction:

1 0 0 1 0 1 0 1 0 1

OPERAND

Key concept:

Addressing mode are the ways a CPU can access data in the system

OPCODE

Register addressing mode

8

→ Register contents are operand

CPU Registers

System Address Bus

R1
R2
R3

0x0000

0x5FFF

ADD
Add R1, R2. Store result in R2

R1 R2

Step 1
CPU send the values of R1 and R2 to ALU

Step 2
ALU processes data and returns the result

Step 3
CPU writes result back to R2

ALU

Result

Indirect register addressing mode

9

CPU Registers

System Address Bus

R1
R2
R3

0x0000

0x5FFF

MOV
Load data from the address in R1 into R2

@R1 R2

Step 1
CPU requests data at the address in R1

Step 2
CPU writes data into R2 Address

Data

→ Register contents is an address pointer to the operand

Immediate addressing mode

10

PC
R1
R2
R3

0x0000

0x5FFF

ADD R1 #IMED

Step 1
CPU reads the word after the instruction to

get the operand.

Step 2
CPU sends #IMED and R1 to ALU.

ALU computes result

→ Data following instruction is the operand

Step 3
CPU writes result back to R1

R1
R2
R3

0x0000

0x5FFF

CPU Registers

System Address Bus

R1
R2
R3

0x0000

0x5FFF

R1

Result

#IMED

Indexed addressing mode

11

CPU Registers

System Address Bus

R1
R2
R3

0x0000

0x5FFF

BITX
Perform logic AND of operands. Set

status bit based on result.

(R1) R2 OFFSET

Step 1
CPU computes address by adding the

value of R1 and OFFSET. OFFSET is the

word following the instruction.

Step 2
CPU reads data at the computed

address

OFFSET

R1+

Computed
Address

Data

Address

→ Data at address in the register plus an offset

Data
Step 3
R2 and Data are logically ANDed.

Result affects status bits

R2

Status bits

Addressing mode description

12

Addressing

Mode

Syntax Description

Register Mode Rn Register contents are operand

Indexed Mode X(Rn) (Rn + X) points to the operand. X is

stored in the next word

Symbolic Mode ADDR (PC + X) points to the operand. X is

stored in the next word. Indexed Mode

X(PC) is used

Absolute Mode &ADDR The word following the instruction

contains the absolute address

Indirect Register @Rn Rn is used as a pointer to the operand

Indirect Autoincrement @Rn+ Rn is used as a pointer to the operand.

Rn is incremented afterwards

Immediate Mode #N The word following the instruction

contains the immediate constant N.

Indirect Autoincrement Mode @PC+

used

Orthogonal architecture:
Instructions implement all addressing modes for

all operands

Non-Orthogonal architecture:
Instructions implement a subset of addressing modes

Addressing mode speed comparison

13

Addressing Mode
Clock Cycles

Source Destination

Register

Register 1

Program counter 3

Indexed 4

Absolute 4

Indirect register

Register 2

Program counter 4

Indexed 5

Absolute 5

Indirect register

with

autoincrement

Register 2

Program counter 4

Indexed 5

Absolute 5

Immediate

Register 2

Program counter 3

Indexed 5

Absolute 5
Addressing mode complexity

Number

of clock

cycles

Addressing modes in practice

14

C Code:

int is_odd(int *val) {
if (*val & 0x1) {

return 1;
} else

return 0;
}

Assembly:

DECD.W SP
MOV.W R12,0x0000(SP)
MOV.W #1,R15
BIT.W @R12,R15
JEQ (CL1)
MOV.W #1,R12
JMP (CL2)
CLR.W R12
INCD.W SP
RETA

Description

Load the value ‘1’ into R15

Source operand addressing mode

Immediate

Destination addressing mode

Register

Addressing modes in practice

15

C Code:

int is_odd(int *val) {
if (*val & 0x1) {

return 1;
} else

return 0;
}

Assembly:

DECD.W SP
MOV.W R12,0x0000(SP)
MOV.W #1,R15
BIT.W @R12,R15
JEQ (CL1)
MOV.W #1,R12
JMP (CL2)
CLR.W R12
INCD.W SP
RETA

Description

Test if bits are set in both @R12
and R15

Source operand addressing mode

Register indirect

Destination addressing mode

Register

Addressing mode review

16

17

To find more microcontrollers
technical resources and search
products, visit
ti.com/microcontrollers.

