Designing a flyback DC/DC converter

Guidelines for topology selection

Brigitte Hauke – Boost and Buck-Boost Controller Application Manager Youhao Xi – Boost and Buck-Boost Controller Application Manager June 2023

Video 1

Outline of video series

- 1. Guidelines for topology selection
- 2. Fundamentals of flyback converters
- 3. Flyback converter design procedure I
- 4. Flyback converter design procedure II
- 5. Flyback transformer basics
- 6. Practical issues experienced with flyback converters

TOPOLOGY SELECTION

Fundamental DC-DC power converter topologies

Fundamental DC-DC power converter topologies

When V_{IN} can vary from $\langle V_{OUT}$ to $\rangle V_{OUT}$ during operation, the buckboost topology is the right choice.

5

Topologies derived from inverting buck-boost I

Topologies derived from inverting buck-boost II

6. 4-SW Buck-Boost

Q1

Ci

L1

+

Co

D2

Guideline of topology selection

8

Flyback vs SEPIC

Vo

Flyback vs SEPIC

	Flyback	SEPIC
Pros	 Supporting both isolated and non-isolated outputs Able to support multiple outputs Having freedom in duty cycle optimization Auxiliary winding can save IC power dissipation Popular, and well understood among engineers 	 Lower conducted EMI emission Clamped switch node ringing Better availability for separate inductors solutions Able to support low profile design when using separate inductors
Cons	 Higher conducted EMI emission High switch node ringing Transformer often needs custom design Not easy to support low profile design 	 Does not support isolated outputs No freedom in duty cycle optimization Slower dynamic response with separate inductors. Coupled inductor has larger size, and is less available Less understood among engineers
Suitable Applications	 Multiple output rails Isolated output(s) Wider input voltage range Possibly lower IC power dissipation 	 Single output rail Non-isolated output Narrower input voltage range Lower profile solution (separate inductors)

Video 1 summary – video 2 to 6 outlook

- We discussed
 - Topology selection guidelines based on power level
 - Flyback and SEPIC topologies comparison and their suitable applications
- We will discuss
 - Fundamentals of flyback: operating modes and key parameters
 - Design procedure demonstrated with LM5155 example, for non-isolated, PSR and isolated applications
 - Flyback transformer basics, and the need of air gap
 - Frequently asked questions including multi rails, light load regulation, and high input voltage solutions, and commonly seen mistakes

Tools and application collaterals

Most important: E2E Forum https://e2e.ti.com/support/

All the following are available in the product folders on https://www.ti.com/

- 1. Flyback EVMs and user's guides
- 2. Excel design calculators
- 3. WEBENCH[™] Power Designer support
- 4. PSpice[®] models
 - Transient model supports flyback
 - We are adding more average models for flyback loop simulation
- 5. Application notes
- 6. Reference designs
 - You can find many flyback reference designs at: <u>https://www.ti.com/reference-designs/index.html</u>

© Copyright 2023 Texas Instruments Incorporated. All rights reserved.

This material is provided strictly "as-is," for informational purposes only, and without any warranty. Use of this material is subject to TI's **Terms of Use**, viewable at TI.com