Introduction to RTD **Measurement circuits
TI Precision Labs - ADCs Introduction to RTD
measurement circuits
TI Precision Labs – ADCs
Croted by Pryon Lion**

Created by Bryan Lizon Presented by Josh Brown

RTD biasing schemes

RTD measurement circuit basics

Basic 4-wire RTD measurement system using a low-side R_REF

TEXAS INSTRUMENTS $\frac{1}{2}$

IDAC biasing & ratiometric measurements

Basic 4-wire RTD measurement system using a low-side R_REF

Total circuit resistance (R_TOTAL)

IDAC compliance voltage

Compliance voltage:

- **AC compliance voltage**
 Exampliance voltage:

 Headroom required between

IDAC output and AVDD to

maintain constant current

 Veltage at IDAC output pip IDAC output and AVDD to maintain constant current **AC compliance voltage**
 Example 1990
 Compliance voltage:

• Headroom required between

IDAC output and AVDD to

maintain constant current

• Voltage at IDAC output pin =

R_TOTAL * IDAC

• Typically specified to 0.1 **AC compliance voltage:**

• Headroom required between

IDAC output and AVDD to

maintain constant current

• Voltage at IDAC output pin =

R_TOTAL * IDAC

• Typically specified to 0.1%

• May depend on the selected

• May **Example 18 Compliance voltage:**

• Headroom required between

IDAC output and AVDD to

maintain constant current

• Voltage at IDAC output pin =

R_TOTAL * IDAC

• Typically specified to 0.1%

deviation

• May depend on t
- R_TOTAL * IDAC
- deviation
- IDAC current

ADS124S08 IDAC Accuracy vs Compliance Voltage

6

Code to RTD resistance to temperature

For $T < 0$ °C:

nperature

callendar-Van Dusen equation
 $rT < 0°C$:
 $R_{RTD} = R_0 * (1 + (A*T) + (B*T^2) + [(C*T^3) * (T - 100)])$
 $rT > 0°C$:
 $R_{RTD} = R_0 * [1 + (A*T) + (B*T^2)]$ ∗ (T − 100)]) **Callendar-Van Dusen equation

Callendar-Van Dusen equation

2:

Callendar-Van Dusen equation

2:

Callendar-Van Dusen equation

Callendar-Van Dusen equation

(C * T³) * (T – 100)])**

For $T > 0$ °C:

 \mathbf{I}

R_{RTD} look-up table (LUT)

7

**assumes RTD response is linear

LUT linear interpolation

 R_{RTD} look-up table (LUT)

-
- between two points

$$
\begin{array}{rcl}\n\text{R1} &= & 131.28 \, \Omega \\
\hline\n\text{(T1 = 81°C)} & & \text{R}_{\text{MEAS}} = & 131.5 \, \Omega \\
\hline\n\text{(T1 = 81°C)} & & \text{(T}_{\text{MEAS}} = ?) & & \text{(T2 = 82°C)} \\
\hline\n\text{Equation of a line}^{**:} & & \text{T}_x = M * R_x + B \\
\text{Calculate the slope:} & & \text{M} = \frac{T2 - T1}{R2 - R1} \\
& & \text{B2 - 81} \\
\hline\n\text{Calculate } y\text{-intercept:} & B = T_x - M * R_x \\
& & \text{B31.28 } \, \Omega = -264.474 \, \text{°C} \\
\text{Calculate } T_{\text{MEAS}}: & T_{\text{MEAS}} = 2.632 \, \frac{\text{°C}}{\Omega} * R_{\text{MEAS}} - 264.474 \, \text{°C} \\
\hline\n\text{Calculate } T_{\text{MEAS}}: & T_{\text{MEAS}} = 2.632 \, \frac{\text{°C}}{\Omega} * R_{\text{MEAS}} - 264.474 \, \text{°C} \\
\hline\n\text{Example: } T_{\text{MEAS}} = 2.632 \, \frac{\text{°C}}{\Omega} * R_{\text{MEAS}} - 264.474 \, \text{°C} \\
\hline\n\text{Example: } T_{\text{MEAS}} = 2.632 \, \frac{\text{°C}}{\Omega} * R_{\text{MEAS}} - 264.474 \, \text{°C} \\
\hline\n\text{Example: } T_{\text{MEAS}} = 2.632 \, \frac{\text{°C}}{\Omega} * R_{\text{MEAS}} - 264.474 \, \text{°C} \\
\hline\n\text{Example: } T_{\text{MEAS}} = 2.632 \, \frac{\text{°C}}{\Omega} * R_{\text{MEAS}} - 264.474 \, \text{°C} \\
\hline\n\text{Example: } T_{\text{MEAS}} = 2.632 \, \text{°C} \\
\hline\n\text{Example: } T_{\text{MEAS}} = 2.632 \, \text{
$$

Equation of a line**: $T_x = M * R_x + B$

Calculate the slope: M

$$
r*assumes RTD response is linear\n
$$
R_{MEAS} = 131.5 \Omega
$$
\n
$$
T_X = M * R_X + B
$$
\n
$$
M = \frac{T2 - T1}{R2 - R1}
$$
\n
$$
= \frac{82 - 81}{131.66 - 131.28} = 2.632 \frac{°C}{Ω}
$$
\n
$$
B = T_X - M * R_X
$$
\n
$$
= 81°C - 2.632 \frac{°C}{Ω} * 131.28 Ω = -264.474°C
$$
\n
$$
T_{MEAS} = 2.632 \frac{°C}{Ω} * R_{MEAS} - 264.474°C
$$
$$

Calculate y-intercept: B

$$
T_x - M * R_x
$$

= 81°C - 2.632 $\frac{C}{\Omega}$ * 131.28 Ω = -264.474°C

(1)
$$
(T_{MEAS} = ?)
$$
 (1) $(T2 = 82^{\circ}C)$
\n e^{**} :
\n $T_x = M * R_x + B$
\n $M = \frac{T2 - T1}{R2 - R1}$
\n $= \frac{82 - 81}{131.66 - 131.28} = 2.632 \frac{{}^{\circ}C}{\Omega}$
\ncept: $B = T_x - M * R_x$
\n $= 81^{\circ}C - 2.632 \frac{{}^{\circ}C}{\Omega} * 131.28 \Omega = -264.474^{\circ}C$
\n $T_{MEAS} = 2.632 \frac{{}^{\circ}C}{\Omega} * R_{MEAS} - 264.474^{\circ}C$
\n $= 81.585^{\circ}C$

Calculate T_{MEAS} :

Low-side versus high-side reference resistor

TEXAS INSTRUMENTS $\frac{1}{2}$

AVDD

IDAC1

IDAC1

2-, 3-, and 4-wire RTD wiring configurations**

1x IDAC versus 2x IDACs for 3-wire RTDs 3-wire RTD using 1x IDAC** 3-wire RTD using 2x IDACs**

-
- \times IDAC mismatch causes additional error

Additional information

RTD Design Guide = more detailed analysis of all RTD circuit configurations:

- o 2-wire RTD w/ low-side R_REF
- o 2-wire RTD w/ high-side R_REF
- o 3-wire RTD w/ low-side R_REF and 1x IDAC
- o 3-wire RTD w/ high-side R_REF and 1x IDAC
- o 3-wire RTD w/ low-side R_REF and 2x IDACs
- o 3-wire RTD w/ high-side R_REF and 2x IDACs
- o 4-wire RTD w/ low-side R_REF
- \circ 4-wire RTD w/ high-side R R
- o Multi-RTD systems

For more detailed information, review TI's app note on RTD measurement circuits (SBAA275)

Thanks for your time! Please try the quiz.

Quiz: Introduction to RTD measurement circuits

-
- **Quiz: Introduction to RTD measurement circuit**
1. What does the IDAC compliance voltage specification indicate?
a) It provides the voltage range at the IDAC output pin over which the IDAC can maint
constant current, with **a) It provides the IDAC compliance voltage specification indicate?**
A) It provides the voltage range at the IDAC output pin over which the IDAC can maintain constant current, within some defined deviation
b) It shows that constant current, within some defined deviation **iz: Introduction to RTD measurement circuits**

What does the IDAC compliance voltage specification indicate?

a) It provides the voltage range at the IDAC output pin over which the IDAC can maintain

constant current, wit **iz: Introduction to RTD measurement circuits**
What does the IDAC compliance voltage specification indicate?
a) It provides the voltage range at the IDAC output pin over which the IDAC can maintain
constant current, within **Example 12:** Introduction to RTD measurement circuits
What does the IDAC compliance voltage specification indicate?
a) It provides the voltage range at the IDAC output pin over which the IDAC can maintain
constant current
	-
	-
	-
- **Quiz: Introduction to RTD measurement circuits**

1. What does the IDAC compliance voltage specification indicate?

a) It provides the voltage range at the IDAC output pin over which the IDAC can maintain

constant curren properties of the reference eliminates initial tolerance errors What does the IDAC compliance voltage specific
a) It provides the voltage range at the IDAC out constant current, within some defined deviation
b) It shows that the IDAC is compliant with IEC
c) It indicates the range of What does the IDAC compliance voltage specific
a) It provides the voltage range at the IDAC out
constant current, within some defined deviation
b) It shows that the IDAC is compliant with IEC
c) It indicates the range of
	-
	-

Quiz: Introduction to RTD measurement circuits

- **Quiz: Introduction to RTD measurement circuits**
3. One advantage of a high side reference resistor is that it can offer some protection against
electrical overstress. What is a disadvantage to this method?
a) Input filte electrical overstress. What is a disadvantage to this method? **a) Individend Community and Community Community Community Community Community Community Community Community of the community of this method?**
A) Input filter capacitors may be required for this method?
An extra bias resis **iz: Introduction to RTD measurement circuits**

One advantage of a high side reference resistor is that it can offer some protection against

electrical overstress. What is a disadvantage to this method?

a) Input filter c **common model in the common model common model common model common model common model control and the ADC is impacted by this resistor common model rejection of the ADC is impacted by this resistor (a) The common mode reje The voltage coefficient of this resistor can cause nonlinearity**
 Condition of the voltage coefficient of this method?

(a) Input filter capacitors may be required for this method?

(b) An extra bias resistor can be req **Quiz: Introduction to RTD measurement circuits**

3. One advantage of a high side reference resistor is that it can offer some protection against

electrical overstress. What is a disadvantage to this method?

a) Input fil One advantage of a high side reference resistor
electrical overstress. What is a disadvantage to t
a) Input filter capacitors may be required for this
b) An extra bias resistor can be required to keep
c) The common mode re
	-
	-
	-
	-
- because the RTD output and reference scale proportionately. One advantage or a nigh side reference resistor
electrical overstress. What is a disadvantage to 1
a) Input filter capacitors may be required for this
b) An extra bias resistor can be required to keep
c) The common mode re
	-
	-

Thanks for your time!

© Copyright 2023 Texas Instruments Incorporated. All rights reserved.

This material is provided strictly "as-is," for informational purposes only, and without any warranty.

Use of this material is subject to TI's Terms of Use, viewable at TI.com

17