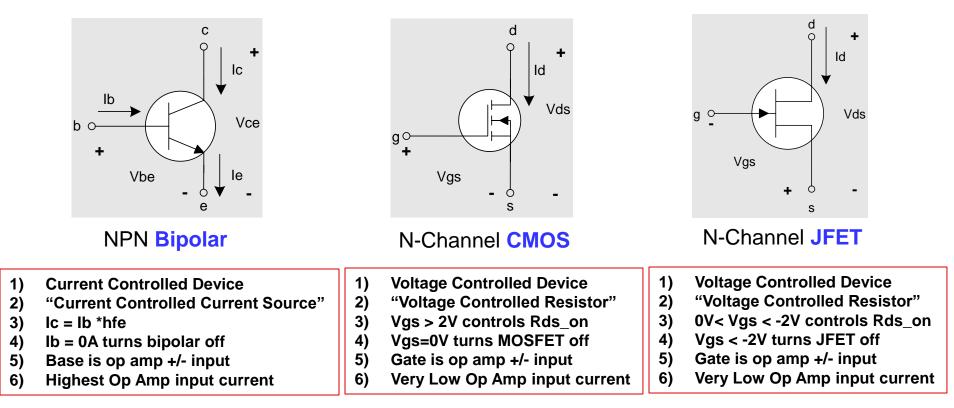
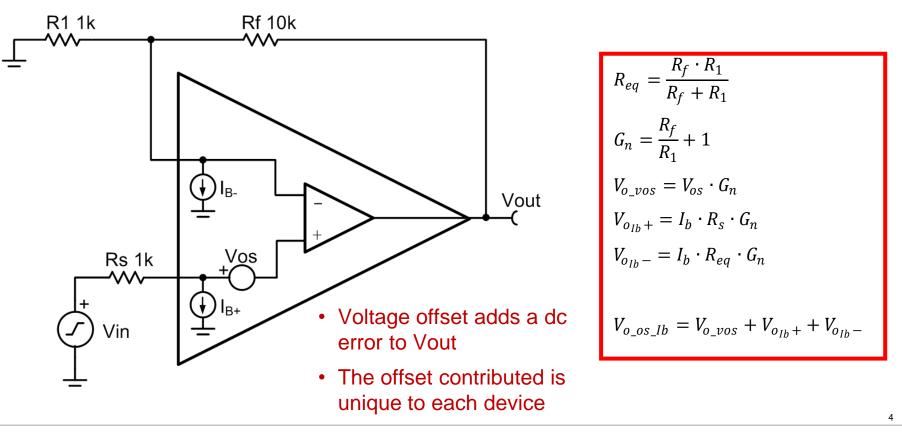
Op Amp Technology Overview

Developed by Art Kay, Thomas Kuehl, and Tim Green Presented by Ian Williams Precision Analog – Op Amps

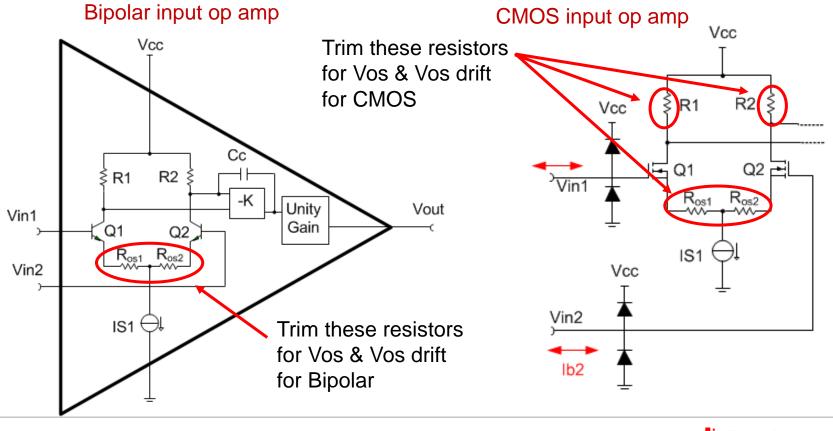


Bipolar vs. CMOS / JFET

- Transistor technologies
 - Bipolar, CMOS and JFET
- Vos and Ib and Drift
 - Laser Trim, Package Trim, and Zero Drift
- Noise
 - JFET, MOSFET, and Bipolar (1/f noise)
- Input Structures
 - Rail-to-Rail, Charge Pump
 - Chopper (Zero-Drift)
 - Chopper Noise Sources
 - Input crossover distortion
 - Input back-to-back diodes


- Output Structures The "Claw Curve"
 - Rail-to-Rail vs. Non Rail-to-Rail
 - Open Loop Output Impedance, Zo
- Bandwidth
- Summary

Bipolar, CMOS, JFET (Op Amp input device structures)

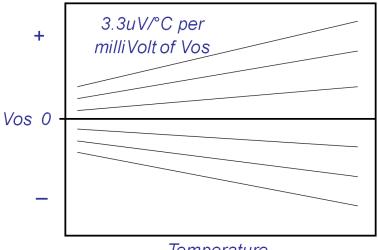


Vos & Ib: Model and Hand Calculations

What's inside the Amplifier – Bipolar vs. CMOS

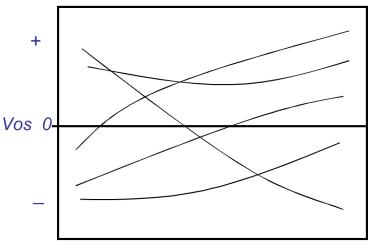
5

Bipolar and CMOS


Model	Tech- nology	Rail- to- rail	Supply V+ to V-	Op Current typ	Offset typ	Offset drift typ	Bias Current typ	Voltage noise 1 kHz	GBW	Slew rate
OPA211	Bipolar	RRO	4.5 - 36 V	3.6 mA	60 uV	0.35 uV/°C	60 nA	1.1 nV/√Hz	45 MHz	27 V/us
OPA350	CMOS	RRIO	2.7 - 5.5 V	5.2 mA	150 uV	4 uV/°C	0.5 pA	16 nV/√Hz	38 MHz	22 V/us

- OPA2x11 Ultra low Noise, low power, precision op amp
 - Ideal for driving high-precision 16-bit ADCs or buffering the output of high-resolution digital-to-analog converters DACs
- OPAx350 High-Speed, Single-Supply, Rail-to-Rail I/O
 - High-performance ADC driver, very high C_{Load} drive capability

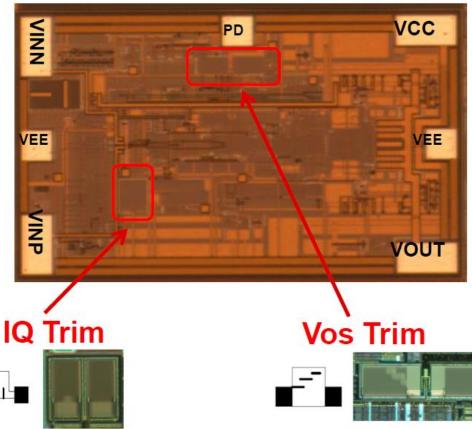
Inherent Drift of Bipolar vs. CMOS


Bipolar Drift of Input Stage

Temperature

- Drift is proportional to offset
- When Vos trimmed to zero, drift is near zero.
- Simple one step trim: just trim offset

CMOS & JFET Drift of Input Stage



Temperature

- Frequently more curvature than bipolar
- When Vos trimmed to zero, drift remains.
- More complex two part trim: drift first, then offset
- Offset and drift trims interact, difficult to optimize both

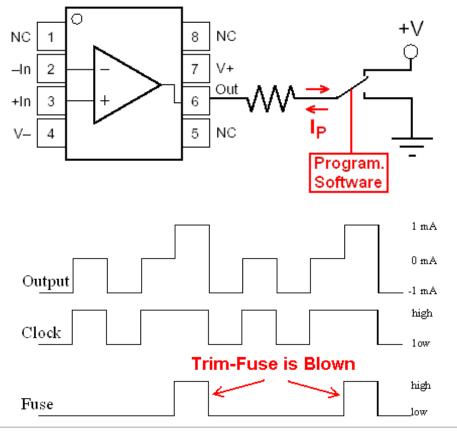
Laser Trim – What does it look like?

- Bipolar, CMOS, JFET can be used
 Only way to trim bipolar
- Trimmed in wafer form before package
- Laser makes narrow cuts in resistor
- Increases resistance continuously
- Circuit can be active, but laser may disturb circuit function—requires cutting in bursts (long test time)
- Generally each trim has a pair of resistors for bidirectional trim

8

Bipolar vs. CMOS

Op amps that utilize thin-film resistor laser trimming for improved offset and drift

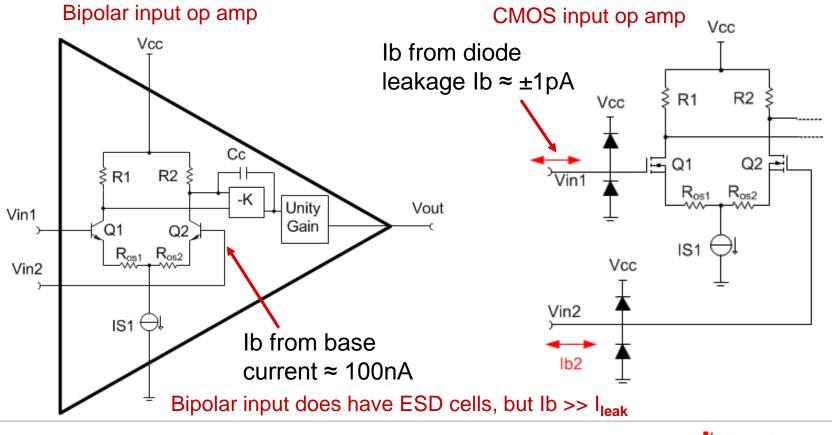

Model	Tech- nology	Rail- to-rail	Supply V+ to V-	Op Current typ	Offset typ	Offset drift typ	Bias Current typ	Voltage noise 1 kHz	GBW	Slew rate
OPA1612	Bipolar	Out	4.5 – 36 V	3.6 mA	100 uV	1 uV/°C	60 nA	1.1 nV/√Hz	40 MHz	27 V/us
OPA320S	LV CMOS	RRIO	1.8 – 5.5 V	1.5 mA	40 uV	1.5 uV/°C	0.2 pA	8.5 nV/√Hz	20 MHz	10 V/us

• OPA1612 - SoundPlus[™] High-Performance, Bipolar-Input Audio Op Amp

- Achieves very low noise density with an ultralow distortion of 0.000015% at 1 kHz.
- Rail-to-rail output swing to within 600 mV with a 2-k Ω load
- OPA320S 20-MHz, Low-Noise, RRI/O, Low operating current, with shutdown
 - A combination of very low noise, high gain-bandwidth, and fast slew make it ideal for signal conditioning and sensor amplification requiring high gain

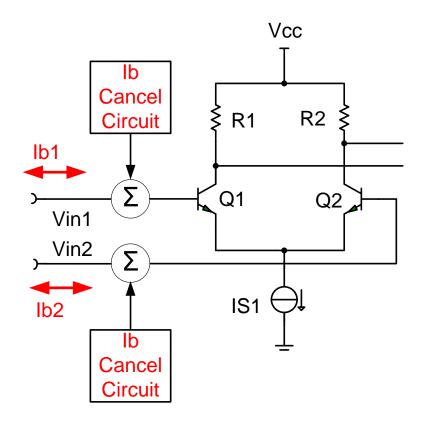
Package level electronic trim, e-trim™

- CMOS op amps only due to digital circuitry requirements
- Standard pinout
 - Trim data is entered through output current load
- · Blow and set internal fuses
- Disable trim mechanism after the trim is completed
 - No customer access to trim function
- Programmed fuses are read at each poweron


e-trim™

Model	Tech- nology	Rail- to- rail	Supply V+ to V-	Op Current typ	Offset typ	Offset drift typ	Bias Current typ	Voltage noise 1 kHz	GBW	Slew rate
OPA376	LV CMOS	RRIO	2.2 – 5.5 V	760 uA	5 uV	0.26 uV/°C	0.2 pA	7.5 nV/√Hz	5.5 MHz	2 V/us
OPA192	HV CMOS	RRIO	8 – 36 V	1 mA	5 uV	0.1 uV/°C	5 pA	5.5 nV/√Hz	10 MHz	20 V/us

- OPA376 Precision, Low-noise, Low offset, Low quiescent current
 - Well-suited for driving SAR ADCs as well as 24-bit and higher resolution converters
- OPA192 Precision, 36 V, Low offset, Fast slewing
 - differential input-voltage range to the supply rail
 - high output current (±65 mA)



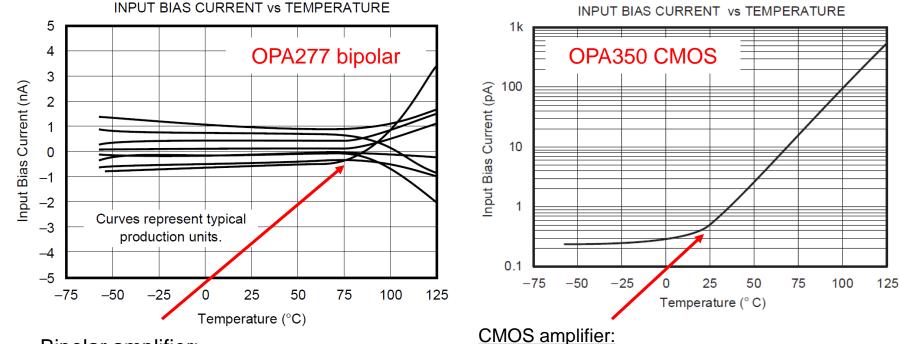
What's inside the Amplifier – Bipolar vs. CMOS

Bipolar - Bias Current Cancellation

Bipolar IB	Typical
Uncancelled	100nA
Cancelled	1nA

Bipolar - Bias Current Cancellation

Cancellation vs non-cancellation

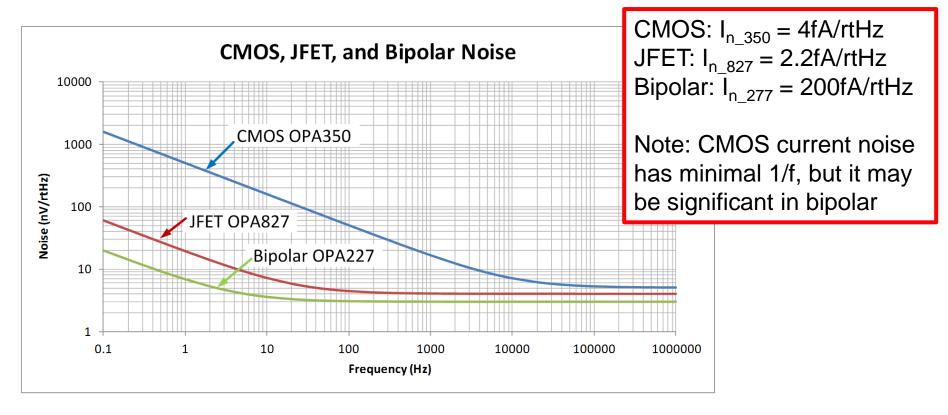

Model	Tech- nology	Rail- to- rail	Supply V+ to V-	Op Current typ	Offset typ	Offset drift typ	Bias Current typ	Voltage noise 1 kHz	GBW	Slew rate
OPA209	Bipolar with Ib cancel	RRO	4.5 - 36 V	2.2 mA	35 uV	0.05 uV/°C	1 nA typ 4.5 nA max	2.2 nV/√Hz	18 MHz	6.4 V/us
OPA211	Bipolar w/o lb cancel	RRO	4.5 - 36 V	3.6 mA	60 uV	0.35 uV/°C	60 nA typ 175 nA max	1.1 nV/√Hz	45 MHz	27 V/us

• OPA209 – 36 V, low power, noise, offset, drift and input bias current

- Suitable for fast, high-precision applications. Has fast settling time to 16-bit accuracy
- OPA2x11 Ultra low Noise, low power, precision op amp
 - Ideal for driving high-precision 16-bit ADCs, or buffering the output of high-resolution DACs

Bipolar vs. CMOS bias current drift (lb vs Temp)

Bipolar amplifier:

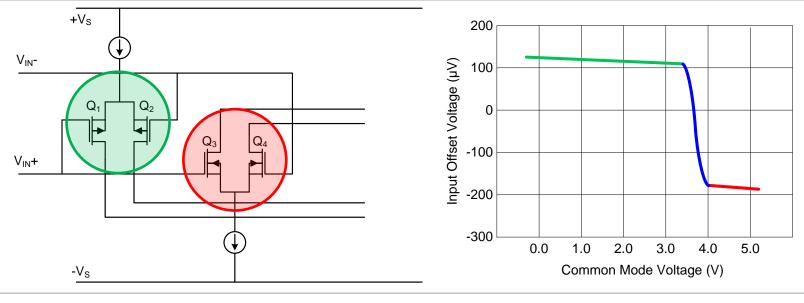

In this case you see a dramatic increase in bias current at 75 °C.

In this case you see a dramatic increase in bias current at 25 °C. Note the logarithmic graph, which doubles every 10 °C.

15

JFET, Bipolar, and CMOS Noise

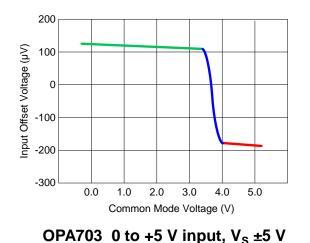
JFET, Bipolar, and CMOS Noise

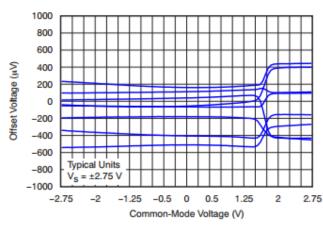

Model	Tech- nology	Rail- to- rail	Supply V+ to V-	Op Current typ	Offset typ	Offset drift typ	Bias Current typ	Voltage noise 1 kHz	GBW	Slew rate
OPA827	JFET + Bipolar	No	8 – 36 V	4.8 mA	75 uV	0.1 uV/°C	3 pA	4 nV/√Hz	22 MHz	28 V/us
OPA227	Bipolar	No	10 – 36 V	3.7 mA	10 uV	0.3 uV/°C	2.5 nA	3 nV/√Hz	8 MHz	2.3 V/us
OPA350	CMOS	RRIO	2.7 – 5.5 V	5.2 mA	150 uV	4 uV/°C	0.5 pA	16 nV/√Hz	38 MHz	22 V/us

- OPA827 Low-Noise, High-Precision, JFET-Input
 - Precision 16-bit to 18-bit mixed signal systems, transimpedance amplifiers
- OPA227 High Precision, Low Noise
 - Ideal for applications requiring both AC and precision DC performance
- OPAx350 High-Speed, Single-Supply, Rail-to-Rail I/O
 - High-performance ADC driver, very high C_{Load} drive capability

OPA703 Complementary CMOS – Rail-to-Rail

PARAMETER		CONDITION	MIN	TYP	MAX	UNITS
INPUT VOLTAGE RANGE						
Common-Mode Voltage Range	V _{CM}		(V–) – 0.3		(V+) + 0.3	V
Common-Mode Rejection Ratio	CMRR	$V_{\rm S} = \pm 5V$, (V–) – 0.3V < $V_{\rm CM}$ < (V+) + 0.3V	70	90		dB
over Temperature		$V_{s} = \pm 5V, (V_{-}) < V_{CM} < (V_{+})$	68			dB
-		$V_{\rm S} = \pm 5V$, (V–) – 0.3V < $V_{\rm CM}$ < (V+) – 2V	80	96		dB
over Temperature		$V_{S} = \pm 5V$, (V–) < V_{CM} < (V+) – 2V	74			dB

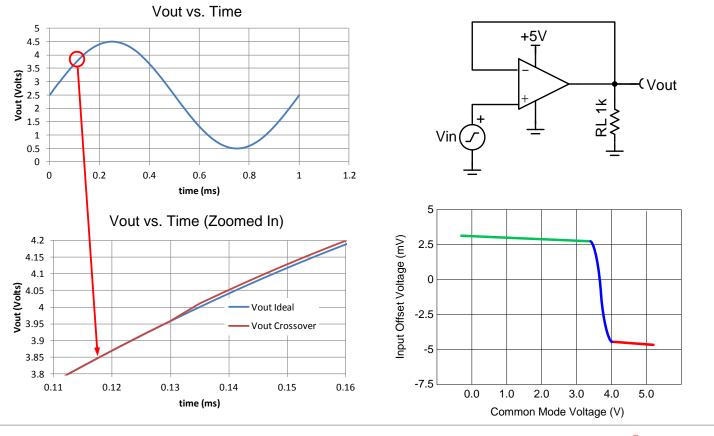



18

Complementary CMOS – Rail-to-Rail

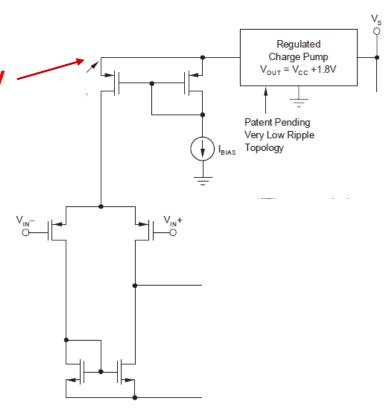
Abrupt offset change at input P-ch/ N-ch switchover point

Model	Tech- nology	Rail- to- rail	Supply V+ to V-	Op Current typ	Offset typ	Offset drift typ	Bias Current typ	Voltage noise 1 kHz	GBW	Slew rate
OPA703	12 V CMOS	RRIO	4 - 12 V	160 uA	35 uV	4 uV/°C	1 pA	45 nV/√Hz	1 MHz	0.6 V/us
OPA314	LV CMOS	RRIO	1.8 – 5.5 V	150 uA	60 uV	1 uV/°C	0.4 pA	14 nV/√Hz	2.7 MHz	1.5 V/us



OPA314 ±2.75 V input, V_S ±2.75 V

Input Crossover Distortion



20

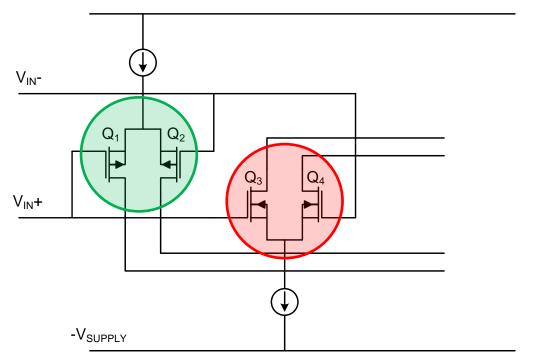
OPA365 MOSFET Charge Pump – Rail-to-Rail

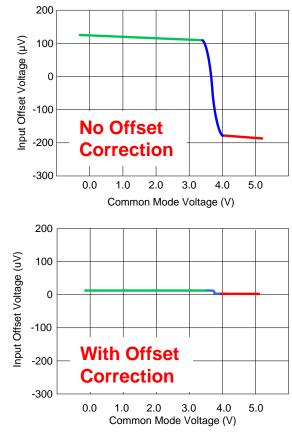
 $V_{OUT} = +V_{S} + 1.8V$

- Uses charge pump to raise
 V+ rail and overcome Vsat
 + Vgs of input PMOS FETs
- Charge pump switches at 10 MHz which is within op amp 50 MHz GBW
- Pump design is patented and has very low ripple
- Charge pump noise is small relative to broadband noise

MOSFET Charge Pump – Rail-to-Rail

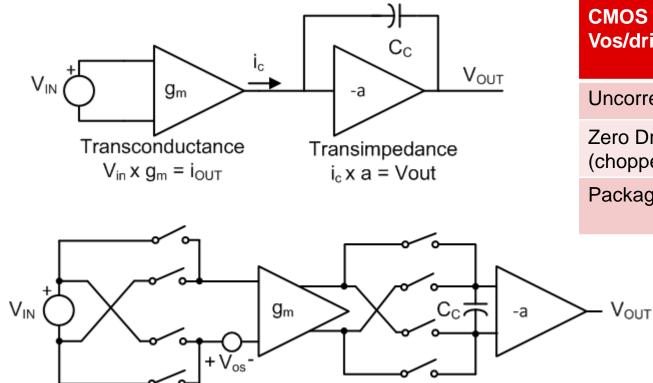
Eliminates input stage crossover distortion


Model	Tech- nology	Rail- to- rail	Supply V+ to V-	Op Current typ	Offset typ	Offset drift typ	Bias Current typ	Voltage noise 1 kHz	GBW	Slew rate
OPA365	LV CMOS	RRIO	2.2 – 5.5 V	4.6 mA	100 uV	1 uV/°C	0.2 pA	12 nV/√Hz	50 MHz	25 V/us
OPA322	LV CMOS	RRIO	1.8 – 5.5 V	1.5 mA	500 uV	1.5 uV/°C	0.2 pA	8.5 nV/√Hz	20 MHz	10 V/us


- OPA365 Wide bandwidth, Low-Distortion, High CMRR
 - High performance optimized for low voltage, single-supply applications
- OPA322 Wide bandwidth, Low-Noise, Low current
 - Optimized for low noise and wide bandwidth while requiring low quiescent current

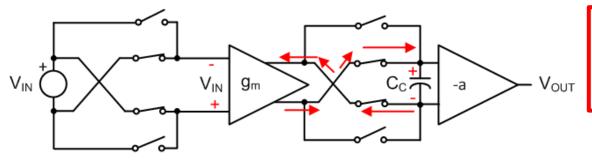
Chopper and Zero Drift MOSFET – Rail-to-Rail

"Chopper" and "Zero-Drift" CMOS Op Amps use complementary input P-ch/ N-ch concept with Digital Calibration for Offset Correction

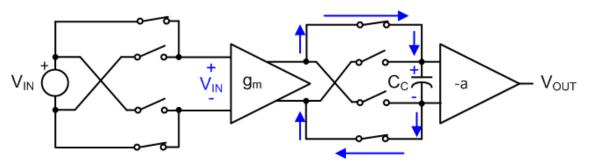


23

Comparing Common Architectures vs. Chopper

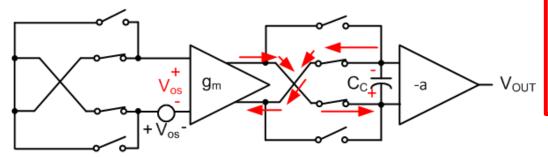


CMOS Vos/drift	Typ Vos (uV)	Typ Drift (uV/C)
Uncorrected	1000	5
Zero Drift (chopper)	10	0.05
Package Trim	10	0.5

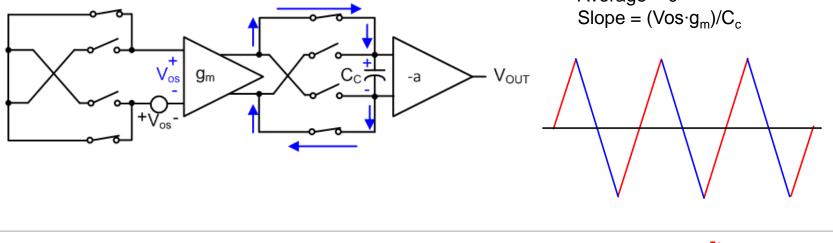


24

Chopper Amplifying Vin

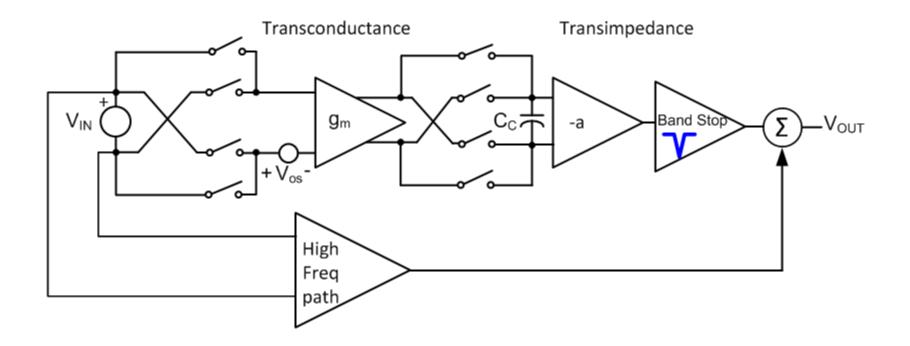


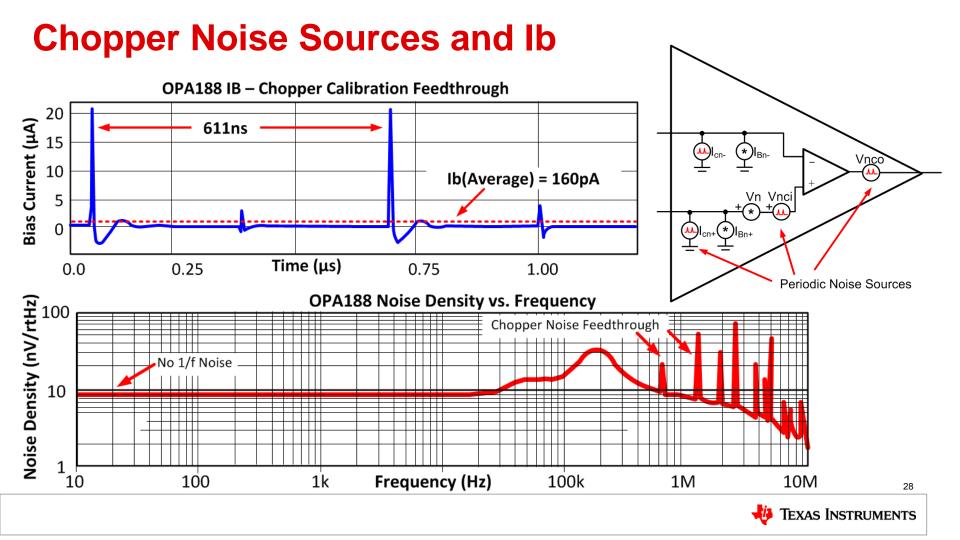
Vin inverted at the input and output every other calibration cycle
Overall signal path doesn't see an inversion



Chopper Amplifying Vos

- Vos only inverted at output every other calibration cycle
- Offset translates to triangle wave
- Offset average is zero
- Sync Filter eliminates triangle wave

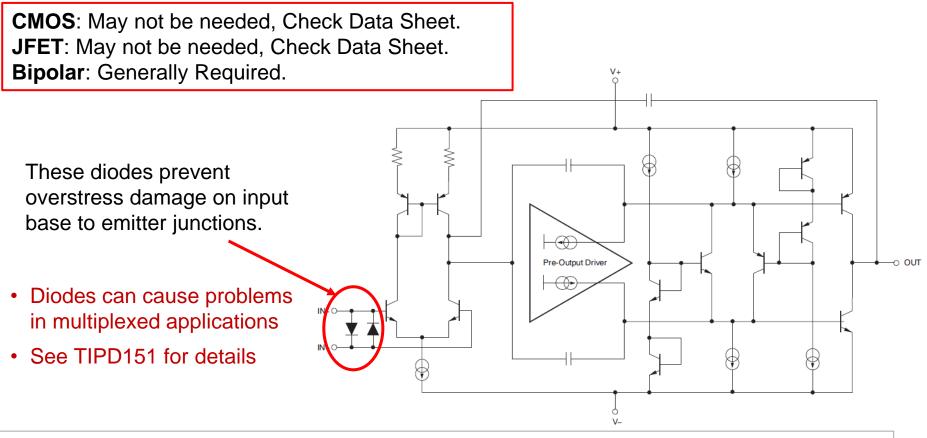

f = 125kHz on OPA333Average = 0 Slope = (Vos·g_m)/C_c



26

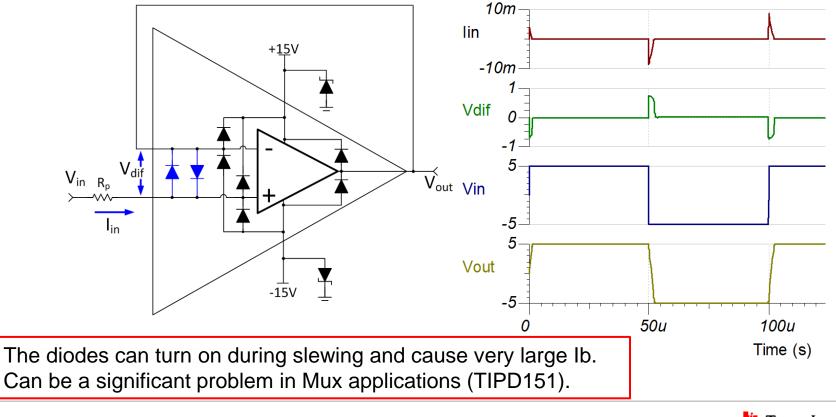
Chopper: A more complete diagram

Chopper Op Amps


Chopper techniques provide low offset voltage and near zero-drift over time and temperature

Model	Tech- nology	Rail- to- rail	Supply V+ to V-	Op Current typ	Offset typ	Offset drift typ	Bias Current typ	Voltage noise 1 kHz	GBW	Slew rate
OPA333	LV CMOS	RRIO	1.8 – 5.5 V	17 uA	2 uV	0.02 uV/°C	70 pA	55 nV/√Hz	350 kHz	0.16 V/us
OPA188	HV CMOS	RRO	4- 36 V	425 uA	6 uV	0.03 uV/°C	160 pA	8.8 nV/√Hz	2 MHz	0.8 V/us

- OPA333 1.8 V, Precision, microPower
 - Provides excellent CMRR without the crossover associated with traditional complementary input stages
- OPA2188 36 V, Precision, Low-Noise, Rail-to-Rail Output
 - Offers very low offset and drift with high CMRR, PSRR, and AOL performance

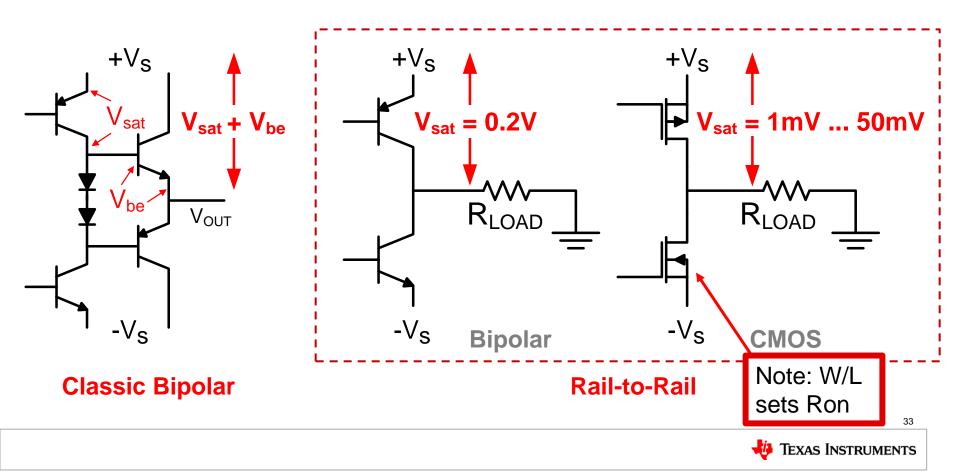


Input Stage Back-to-Back Diodes

Input Stage Back-to-Back Diodes

Texas Instruments

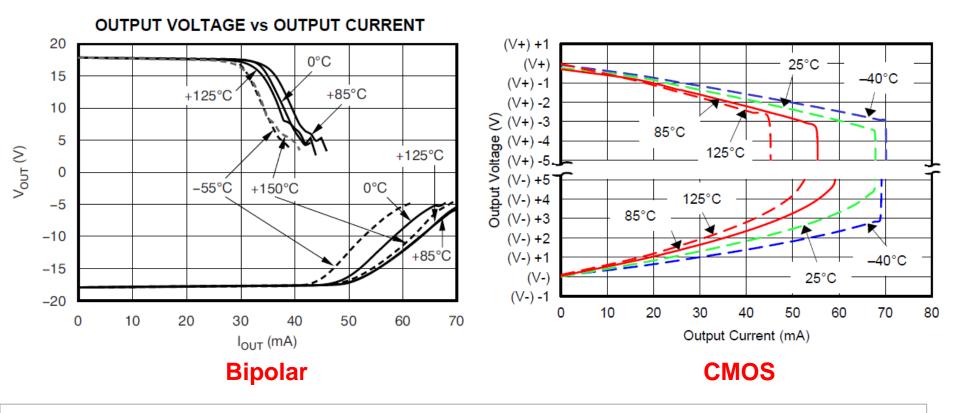
Input Stage Back-to-Back Diodes


Op amps with differential input over-voltage protection

Model	Tech- nology	Rail- to- rail	Supply V+ to V-	Op Current typ	Offset typ	Offset drift typ	Bias Current typ	Voltage noise 1 kHz	GBW	Slew rate
OPA171	HV CMOS	RRO	2.7 - 36 V	475 uA	250 uV	0.3 uV/°C	8 pA	14 nV/√Hz	3 MHz	1.5 V/us
OPA1622	Bipolar	Νο	4 – 36 V	2.6 mA	100 uV	0.5 uV/°C	1.2 uA	2.8 nV/√Hz	8 MHz	10 V/us

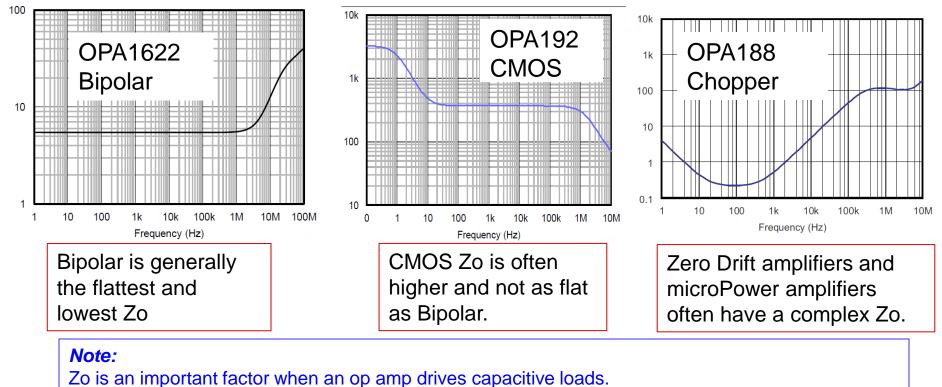
- OPAx171 36-V, Single-Supply, SOT553, General-Purpose Op Amps
 - single-supply, low-noise, low offset and drift, and low quiescent current
- OPA1622 SoundPlus™ High-Fidelity, Bipolar-Input, Audio Op Amp
 - very low noise density, with an ultralow THD+N of -119.2 dB at 1 kHz
 - drives a 32- Ω load at 100 mW output power

Classic Bipolar vs. Rail-to-Rail Output Stage

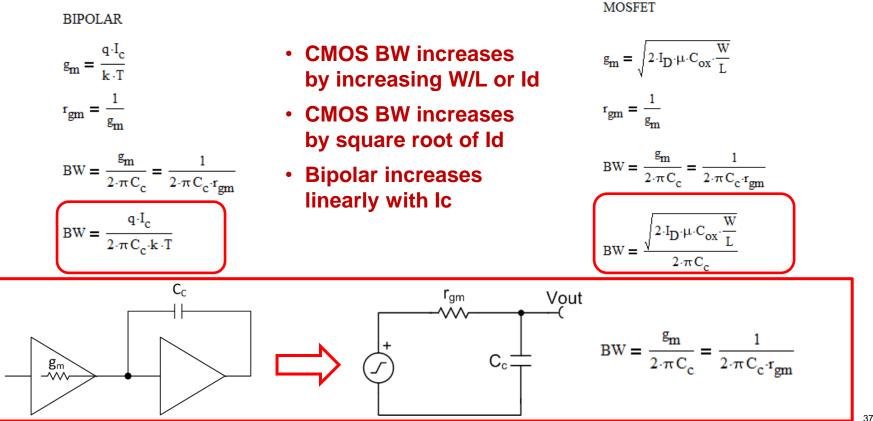

Classic Bipolar vs. Rail-to-Rail Output Stage

Model	Tech- nology	Output design	Supply V+ to V-	Op Current typ	Offset typ	Offset drift typ	Bias Current typ	Output Swing
OPA827	JFET + Bipolar	PNP/ NPN Emitter Followers	8 – 36 V	4.8 mA	75 uV	0.1 uV/°C	3 pA	(V-) + 3 V, (V+) – 3 V RL = 1 kΩ, Aol > 120 dB
OPA209	Bipolar	PNP/NPN Collectors	10 – 30 V	3.7 mA	10 uV	0.3 uV/°C	2.5 nA	(V-) + 0.6 V, (V+) – 0.6 V RL = 2 kΩ, Aol > 94 dB
OPA340	LV CMOS	P-Drain N-Drain	2.5 – 5.5 V	750 uA	150 uV	4 uV/°C	0.2 pA	(V-) + 1mV, (V+) – 1m V RL = 100 kΩ, Aol > 106 dB

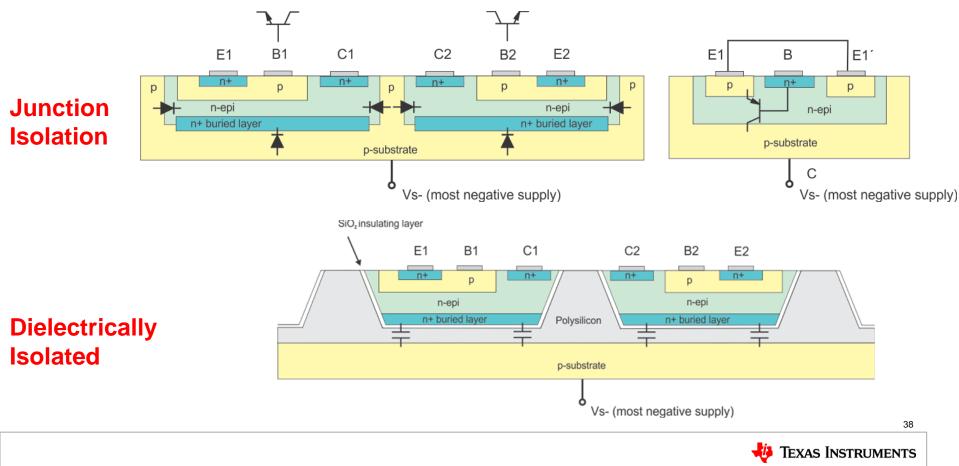
- OPA340
 - Rail-to-rail CMOS op amp optimized for low-voltage, single-supply operation
 - Voltage Output Swing typically 1 mV from rails for $R_L = 100 \text{ k}\Omega$, Aol $\geq 106 \text{ dB}$
 - Closest swing to rail of any PA op amp



Bipolar vs. CMOS Output Swing vs. lout


Open Loop Output Impedance: Zo – Bipolar vs. CMOS

Accurate SPICE op amp macromodels can be used to predict behavior and stabilize op amp circuits.



Bipolar vs. CMOS Bandwidth vs. Iq

Junction Isolation vs. Dielectrically Isolated

Junction Isolation vs. Dielectrically Isolated

High performance, JFET input, bipolar op amps

Model	Technology	Rail- to- rail	Supply V+ to V-	Op Current typ	Offset typ	Offset drift typ	Bias Current typ	Voltage noise 1 kHz	GBW	Slew rate
OPA827	Junction isolation	No	8V - 36 V	4.8 mA	75 uV	0.1 uV/°C	8 pA	4 nV/√Hz	22 MHz	28 V/us
OPA627	Dielectric isolation	No	9V – 36 V	7 mA	40 uV	0.4 uV/°C	1 pA	5.2 nV/√Hz	16MHz	55 V/us

- OPA827 Low-Noise, High-Precision, JFET-Input op amp
 - Precision 16-bit to 18-bit mixed signal systems, transimpedance amplifiers
- OPA627 "Hallmark" High-Precision JFET-Input op amp
 - lower noise, lower offset voltage, and higher speed than most JFET input op amps
 - Voltage noise performance comparable with the best bipolar-input op amps

Summary CMOS vs. Bipolar vs. JFET

Parameter	CMOS	Bipolar	JFET
Vos	 Generally Larger than bipolar. Complex trim. Inherent ≈ 5mV, Trimmed ≈ 500uV ✓ Can use zero drift, and package trim. 	 Generally smaller than JFET and CMOS. Laser Trim Only. Inherent ≈ 200uV, Trimmed ≈ 20uV 	Generally Larger than bipolar. Complex trim. Laser Trim Only. Inherent ≈ 1mV, Trimmed ≈ 100uV
Vos Drift	Generally Larger than bipolar. Complex trim.Very good if using chopper.	Inherently linear and easer to trim. Laser Trim Only.	Generally Larger than bipolar. Complex trim. Laser Trim Only.
lb	✓ Low compared with bipolarIb ≈ 1pA @ 25C	 Much larger than CMOS and JFET. Can use bias current calculation. Inherent ≈ 100nA, Canceled ≈ 1nA 	 ✓ Low compared with bipolar Ib ≈ 1pA @ 25C
lb Drift	Doubles every 10C, diode leakage $I_{B_{room}} \approx 1pA$, T = 25C $I_{B_{hot}} \approx 1000pA$, T = 125C	✓ Small compared to room temp $I_{B_{room}} \approx 1nA$, T = 25C $I_{B_{hot}} \approx 3nA$, T = 125C	Doubles every 10C, diode leakage $I_{B_room} \approx 1pA$, T = 25C $I_{B_hot} \approx 1000pA$, T = 125C
lbos	 Large offset current that is comparable to Ib. Don't use resistor to cancel effects. Ib ≈ ±1pA, Ibos = ±1pA 	 When bias current cancellation is not used lbos is low relative to lb. Resistor can help cancel effects. lb = 100nA, lbos = ±1nA When bias current cancellation is used lbos is comparable to lb. Don't use resistor to cancel effects. lb = ±1nA, lbos = ±1nA 	 Large offset current that is comparable to lb. Don't use resistor to cancel effects. lb ≈ ±1pA, lbos = ±1pA

Summary CMOS vs. Bipolar vs. JFET

Parameter	CMOS	Bipolar	JFET
Broadband Noise	Generally Larger than bipolar. Noise decreases to the square root of Id.	Generally smaller than JFET and CMOS. Noise decreases directly with Id.	Slightly higher than Bipolar
1/f Noise	Generally worse than bipolar. Noise Corner > 1kHz	✓ Generally better than CMOS. Noise Corner < 10Hz	✓ Generally better than CMOS, but not as good as bipolar. Noise Corner < 100Hz
Back-to-Back Diodes	May or may not be required. Check Data Sheet!	Senerally required	☑ Not required. Check Data Sheet
Integrated Digital?	Yes. i.e. Chopper, package trim	🗵 No	🗵 No
Rail to Rail Input	☑ Yes	🗵 No.	Not common. Difficult
Rail to Rail Output	Very close to the rail. 10mV	Close to the rail. 200mV	Same as bipolar
Output vs. Load	E Falls off quickly with load. Ron of output transistor.	Relatively flat until you reach current limit. Vsat not related to Ron as with CMOS.	Same as bipolar

Thank you

