Simple Power Solutions for Industrial Communication's Equipment

Flavio Sestagalli Coilcraft Technical Marketing, Europe mouser.com

Michael Helmlinger / presenter: Yann Ducommun Applications, Texas Instruments

Power Requirements for Industrial Solutions

With the increasing complexity of industrial systems, there is a growing demand for flexible power solutions.

High Efficiency

Wide Input and Output voltage range

Operating Temp range of 125C

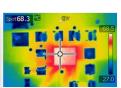
±1% Output Voltage Accuracy

QFN package

TI TPS63070 and TPS62135/6

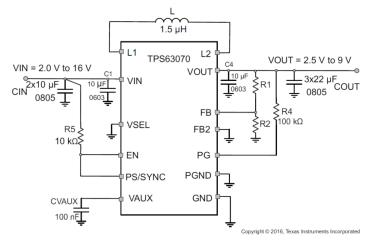
TPS63070 – Buck-Boost Converter

Features


■ Input Voltage: 2V to 16V

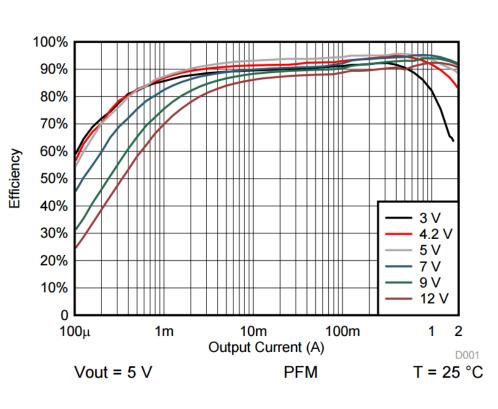
Output Voltage: 2.5V to 9V

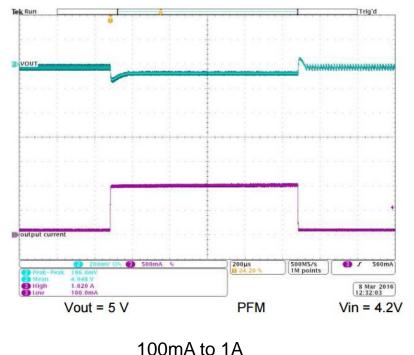
- 2A Output Current 3.6A Switch Current Limit
- 95% Efficiency in Buck & Boost Mode
- Positive and Negative Average Current Limit
- 2.5 x 3mm QFN package


- √ Easy-to-Use QFN
- ✓ Low Resistance
- ✓ Good thermals

Benefits

- Optimized for highest flexibility and multiple power sources
- No droop in efficiency during the buck-boost transition where VIN=VOUT
- Enables longer battery life with higher than 85% efficiency when operating at light loads
- High switching frequencies allows the use of a small 1µH inductor





TPS63070 – Buck-Boost Converter

Efficiency

Load Transient

Features

Input Voltage: 3V to 17V

Output Voltage: 2.5V to 12V

Output Current: 4A

Up to 95% Efficiency

Forced PMW mode

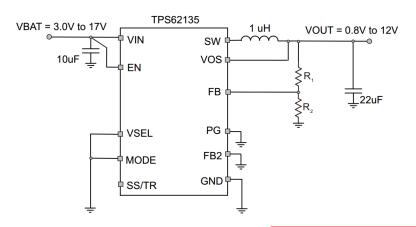
Output Voltage Accuracy ± 1%
 (PWM mode over full temperature)

Precise Enable

SoftStart / Tracking function

■ Tj = -40 to 125C

2 x 3mm QFN package

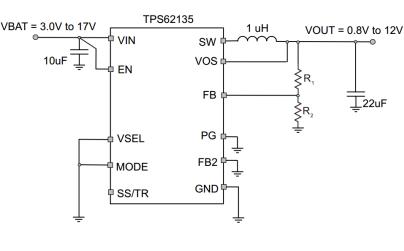

DCS-Control: www.ti.com/lit/an/slyt531/slyt531.pdf

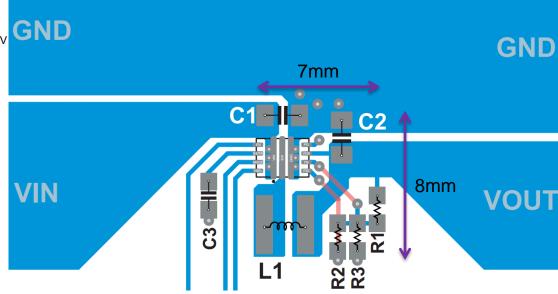
Benefits

- Optimized for highest flexibility and multiple power sources
- Power save mode with AEE enables high efficiency over whole operation range
- Two different switching frequencies result in high flexibility of Efficiency, Ripple and Solution Size:

> TPS62135: 2.5Mhz

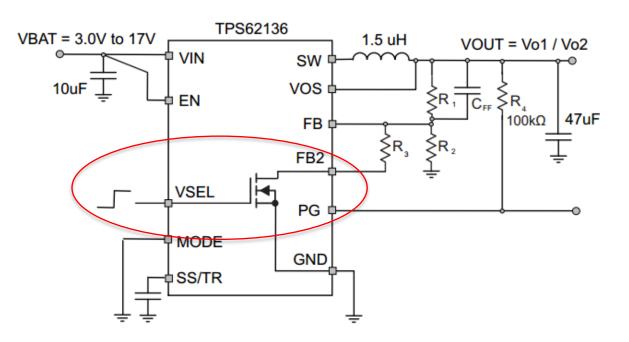
> TPS62136: 1Mhz

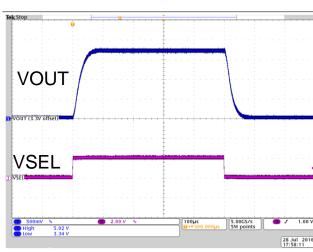




Schematic

Layout

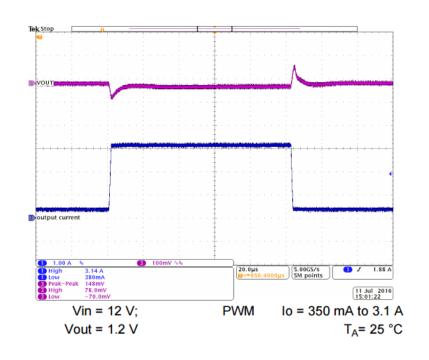




Vsel feature

Output Voltage Change from 3.3 V to 5 V in PWM with 20 Ω load resistance

VSEL allows to switch between two output voltages by changing the output voltage divider ratio



Efficiency

100 90 80 70 Efficiency (%) 60 50 40 $V_{IN} = 4 V$ 30 $V_{IN} = 5 V$ $V_{IN} = 8 V$ 20 $V_{IN} = 10 \text{ V}$ $V_{IN} = 12 V$ 10 $V_{IN} = 15 V$ 10_µ 100μ 10m 100m Output Current (A) Vout = 3.3 VPFM $T_A = 25^{\circ}C$

Load Transient

TPS62136 Inductor Selection

Inductor Selection

Option 1:

Calculate the steady state inductor peak current (Does not include transients)

$$I_{L(\text{max})} = I_{OUT(\text{max})} + \frac{\Delta I_{L(\text{max})}}{2}$$

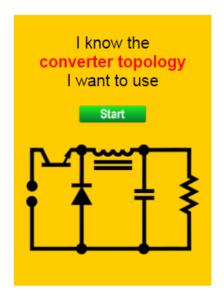
Option 2:

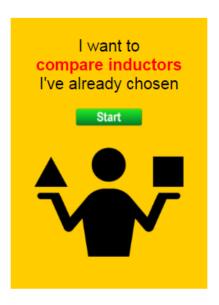
Use the max current limit value of the DS (Recommended and most conservative way)

TPS62136	Min	Тур	Max
I _{LIMH}	4.8A	5.6A	6.5A

Inductor Design Requirements

- For high efficiencies, the inductor should have a low dc resistance to minimize conduction losses.
- Especially at high switching frequencies, the core material has a higher impact on efficiency. When using small chip inductors, the efficiency is reduced mainly due to higher inductor core losses. This needs to be considered when selecting the appropriate inductor.
- Design calls for 1.5uH inductor.
- Steady state working conditions: Irms 4A 20% ripple 1MHz.
- Maximum inductor current: 6.5A (Load Transient / Short circuit)




Inductor Selection Process

Power Inductor Finder Tools

I know the inductor specifications that I need Start

www.coilcraft.com/apps/power_tools/

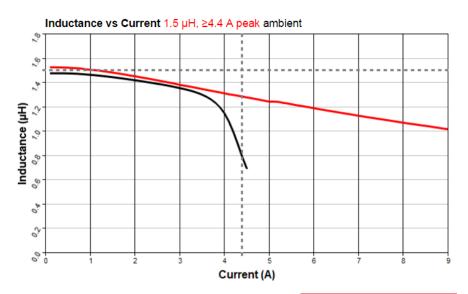


Inductor Selection Process

Power Inductor Finder

- Find all the power inductors that meet your exact requirements
- Search for the nominal inductance or the <u>actual inductance at your operating current</u>

Required Inputs				Optional Inputs											
Inductance Frequency			Current Ripple pk-pk		DCR max		Length max		Height max		Construction	AEC-Q200			
1.5 to option	Lat current	1		4	А	20	%							✓ SMT ✓ Shielded	Grade 1 (125°)
● μH ● nH	L nominal	○ kHz ○ t	MHz	O peal	k o rms	0,8	A	Ο Ω	• mΩ	• mm	O in	• mm	O in	Leaded	Grade 3 (85°)



Selection Process Result Analysis

XAL4020 vs. XFL4020

- XFL offers the best DCR
- XFL feature low losses material
- XAL provides the highest Isat
- XAL features soft saturation

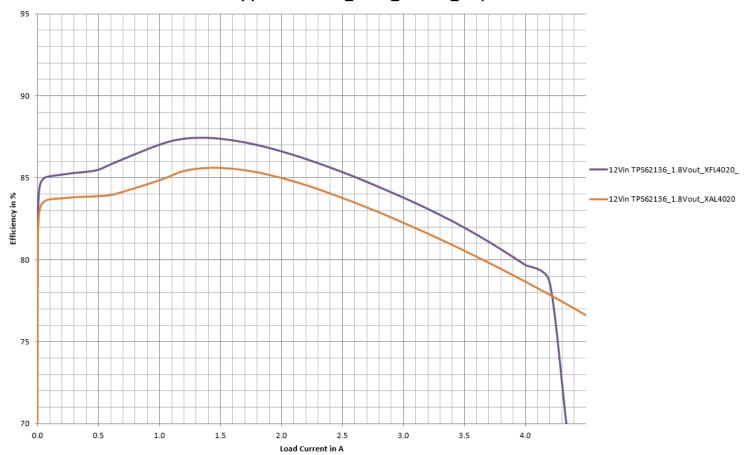
	Inductance	DCR max	Isat (30%)	
XAL4020	1.5μΗ	23.6 mΩ	7.1 A	
XFL4020	1.5μΗ	15.8 mΩ	4.6 A	

Losses/Efficiency Evaluation @25°C

Inductor losses and temperature rise at 1 MHz, 4 A rms, 0.8 A pk-pk

P	art number	Total losses ☐ Core + AC winding loss ☐ DCR loss	Part temperature at 25°C ambient	
	XAL4020-152	373 mW	37°C	165°C Max
-	XFL4020-152	252 mW	33°C	165°C Max

Losses@25C ambient Core+AC		DCR	Total	Self heating	
XAL4020	30	343	373	12° C	
XFL4020	22	230	252	8° C	

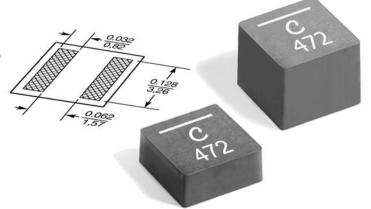


Efficiency comparison

Product & Technology Advancements

What are Ltra Molded Style Inductors?

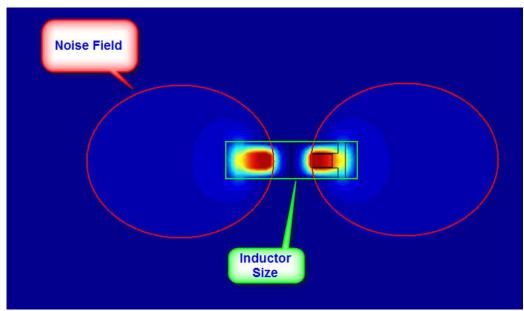
- Ltra is a different way of making an inductor using magnetic materials to form a solid combination body shape
- Eliminates wasted space between windings
- Provides better Isat and DCR in the same size part.

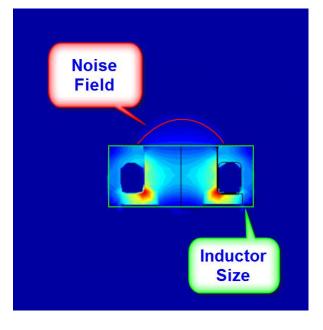


Product & Technology Advancements

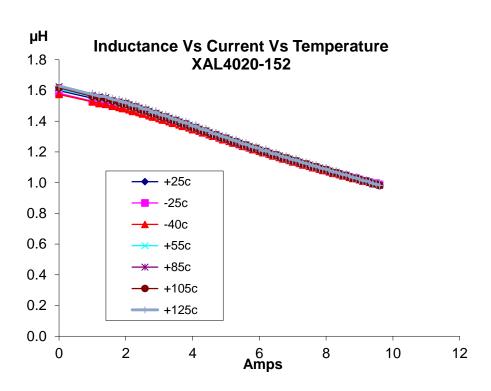
Ltra Means Reliability

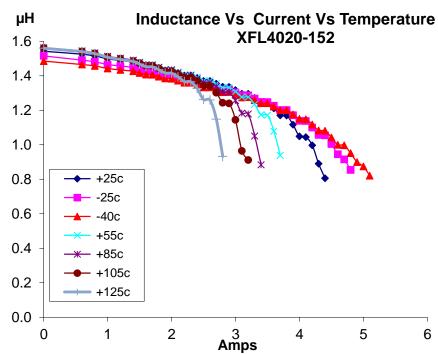
- Large terminal/soldering areas provide:
 - Best possible solder joint strength and thermal management
 - High current ratings without hot spots
- Elimination of hot spots allows parts to run cooler, increasing long-term reliability
- Inductors can be packaged more closely, reducing overall solution size





Radiated EMI Reduction



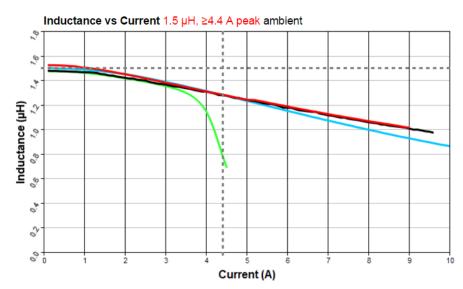


Temperature Stability

New Technology Advancements Outlook

XEL Family Inductors: Key Features

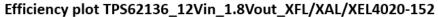
- Extremely low DC and AC losses for high switch frequencies (2 to 5+ MHz)
- High saturation current
- No thermal aging issue
- High operating temperature range (–40°C to +125°C ambient)
- AEC-Q200 Grade 1 qualified

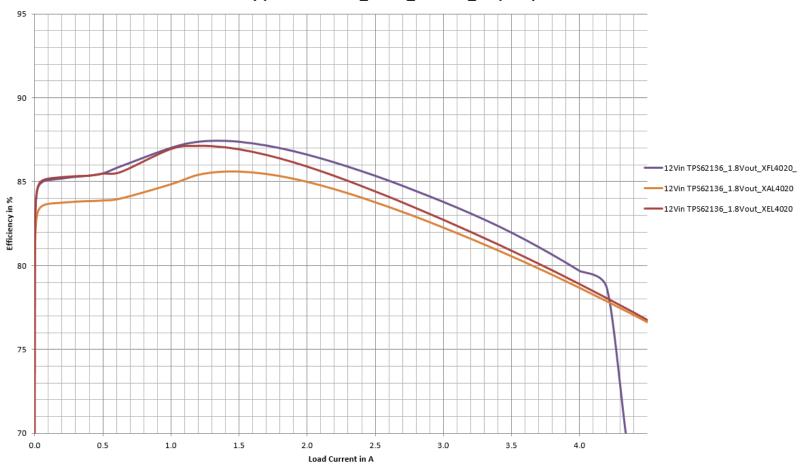


Losses/Efficiency Evaluation @25°C

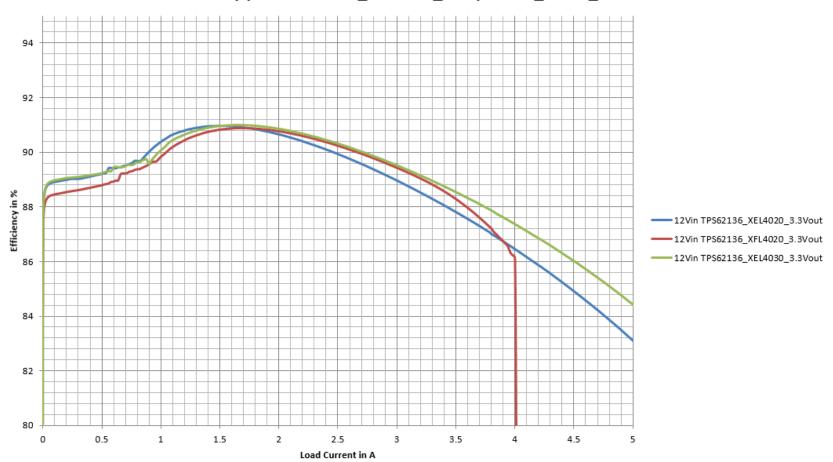
Inductor losses and temperature rise at 1 MHz, 4 A rms, 0.8 A pk-pk

Part number	Total losses □ Core + AC winding loss ■ DCR loss	Part temperature at 25°C ambient	
XEL4020-152	366 mW	37°C	165°C Max
XAL4020-152	373 mW	37°C	165°C Max
XFL4020-152	252 mW	33°C	165°C Max
XEL4030-152	264 mW	36°C	165°C Max





Efficiency comparison



Efficiency comparison

Efficiency plot TPS62136_inductor_comparison_12Vin_3.3Vout

Simple Low-Power TEC Driver Reference Design

Solution Features

- Up to 2A Continuous TEC current
- Source and sink current capability to drive a TEC
- Positive & Negative Current limit
- Featured Applications:
 - Optical Networks
 - Industrial / Medical

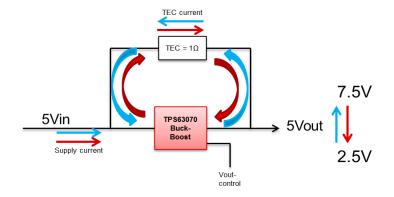
Solution Benefits

- Simple Design with low BOM count
- Single Device Solution
- Flexible Design, Easy Adaptable to Different System Energy Requirements
- <100mm² Total Solution Size

Tools & Resources

TI Designs Number: PMP9796

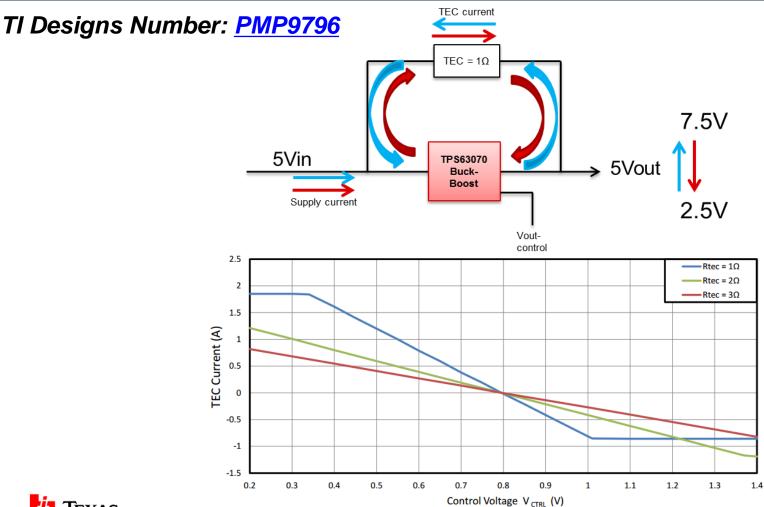
BOM:


IC: TPS63070

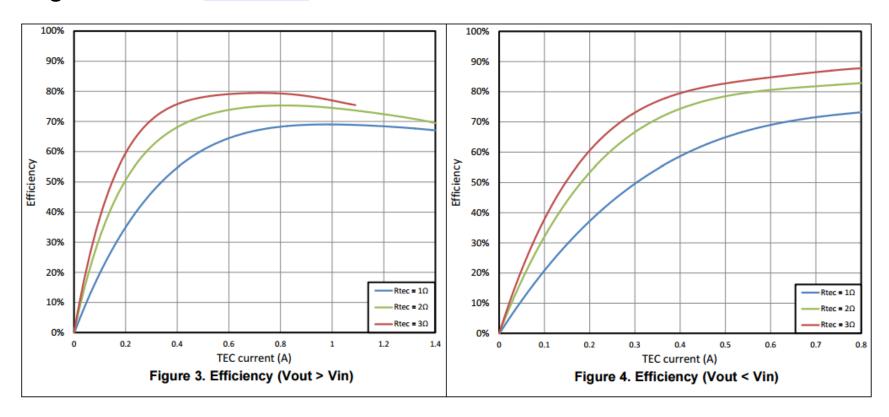
(16Vin, 3.6A sync buck-boost)

Inductor: XAL4020

Block Diagram



Simple Low-Power TEC Driver Reference Design



Simple Low-Power TEC Driver Reference Design

TI Designs Number: PMP9796

Thank you!

