mmWave Radar for Automotive and Industrial Applications

December 7, 2017

Karthik Ramasubramanian

Distinguished Member of Technical Staff, Texas Instruments

1

Introduction

- Radar technology has been in existence for several decades
 - Military, Weather, Law enforcement, and so on
- In the past decade, use of radar has exponentially increased
 - Automotive and Industrial applications
- Automotive applications
 - Front-facing radar (LRR/MRR)
 - Adaptive Cruise Control, Autonomous Emergency Braking
 - Corner radar (SRR)
 - Blind Spot Detection, Lane Change Assist, Front/Rear Cross Traffic Alert
 - Newer applications
 - Automated parking, 360 degree surround protection
 - Body/Chassis and In-cabin applications
- Industrial applications
 - Fluid level sensing
 - Solid volume identification
 - Traffic monitoring and Infrastructure systems
 - Robotics, and many others

77GHz mmWave Radar

- mmWave: RF frequencies within 30 GHz to 300 GHz
 - Wavelength is in the order of few millimeters
- 77GHz mmWave radar bands
 - 76-77 GHz
 - Allocated for vehicular radar in many countries
 - · Also available for infrastructure systems in certain regions
 - 77-81 GHz
 - · Recently made available for short range radar
 - Legacy 24 GHz UWB short range radar to be phased out by 2022
 - 75-85 GHz: Available for level probing radar
- mmWave radar sensors can measure
 - Radial distance (range) to the object
 - Relative radial velocity to the object
 - Angle of arrival using multiple TX, RX
- Some benefits of radar
 - Robust to environmental conditions like dust/fog/smoke
 - Operation in dazzling light, or no ambient light
 - Operation behind plastic enclosure

FMCW Radar – Overview

- Multiple types of radar modulation waveforms used
 - Pulsed radar, CW Doppler radar, UWB, FSK, FMCW, PN-modulated radar
- FMCW: Frequency Modulated Continuous Wave
 - FMCW (sometimes called LFMCW or Linear FMCW) is the most commonly used scheme in automotive radar today
 - Linear FMCW: TX signal has frequency changing linearly with time (i.e., chirp)
- Key benefits of FMCW radar
 - Ability to sweep wide RF bandwidth (GHz) while keeping IF bandwidth small (MHz)
 - Better range resolution. RF sweep bandwidth of 2 GHz can achieve 7.5cm range resolution, while IF bandwidth can still be <15MHz
 - Lower peak power requirement, compared to pulsed radar

FMCW Radar – System Model (1/3) <u>1. TX signal</u>

Texas Instruments

FMCW Radar – System Model (2/3) 2. RX

2. RX signal

High-level block diagram

•

Received signal is a scaled and delayed version of transmitted signal

$$x_{R}(t) = \alpha x_{T}(t - t_{d}) = \alpha \cos\left(2\pi f_{c}(t - t_{d}) + \pi \frac{B}{T_{c}}(t - t_{d})^{2}\right) \qquad t_{d} = \frac{2R}{c}$$

$$\alpha = \text{Path loss attenuation}$$

$$t_{d} = \text{Time delay of reflection (from object)}$$
Round-trip delay of reflection t_{d} is
$$t_{d} = \frac{2R}{c}$$

$$R = \text{Range (Distance) of the object}$$

$$c = \text{Speed of light}$$

$$t_{d} = \frac{2R}{c}$$

FMCW Radar – System Model (3/3)

Beat frequency or IF signal after receive mixer is as follows

3. Beat signal

FMCW Radar – How it works (1/2) Static objects

- For static objects, the beat frequency is simply proportional to the distance (round-trip delay)
 - Beat frequency is the product of FMCW frequency slope (B/T_c) and round-trip delay (t_d)
 - For multiple objects, the beat signal is a sum of tones, where each tone's frequency is proportional to the distance of the object
 - The frequencies of these tones gives the distances to the different objects
 - Detection of objects and Distance (Range) estimation is done typically by taking FFT of received IF signal

FMCW Radar – How it works (2/2) Moving objects

- For moving objects, velocity (v) is determined using phase change across multiple chirps
- Phase and frequency of the received beat signal for the nth chirp can be calculated as

$$\phi_0 - 2\pi \frac{2\nu}{c} f_c n T_c - 2\pi \left[\frac{2\nu}{c} (f_c + nB) + \frac{B}{T_c} t_d \right] t$$

New terms in beat frequency

Phase change from chirp-to-chirp that depends only on the velocity (not on range)

- Second dimensional FFT is performed across chirps to determine the phase change and thus the velocity
- The two-dimensional FFT process gives a 2D range-velocity image (FFT heatmap)
- Typically, detection of objects is done on this image
 - After detection, the range and relative speed of the objects are easily calculated

9

- Consider received signal for multiple RX antennas (say, four) as shown in figure
- Additional distance (Δ) travelled at successive antennas depends on the angle of arrival θ $\Delta = dsin(\theta)$
- This additional distance results in a phase change (w) across consecutive antennas

$$W = \frac{2\pi}{\lambda} dsin(\theta)$$

- This phase change can be estimated (w_{est}) using an FFT (3rd dimension FFT)
- Once w is estimated, the angle of arrival (θ) can be derived easily

$$\theta_{est} = \sin^{-1} \left(\frac{w_{est} \lambda}{2\pi d} \right)$$

Sample FMCW Radar processing flow (1/2)

• Typical processing flow used in FMCW (sawtooth) Radar signal processing

Sample FMCW Radar processing flow (2/2)

Typical (simple) FMCW chirp configuration consists of a sequence of chirps followed by idle time

Advantages of Fast FMCW modulation

- Slow FMCW (Triangular) waveform used in many legacy systems
 - Chirp duration in ms, instead of us
- Slow FMCW has advantage of low DSP MIPS requirement
 - No two-dimensional FFT processing
- However, it suffers from ambiguity issues
 - No elegant way of getting range-doppler image
- Fast FMCW (Sawtooth) waveform is preferred in newer systems
- Fast FMCW has ability to provide range-doppler two dimensional image of objects

Fast (sawtooth) FMCW

Radar system performance parameters

Key parameters

- Max range
- Range resolution
- Range accuracy
- Max velocity
- Velocity resolution
- Velocity accuracy
- Field of view
- Angular resolution
- Angular accuracy
- Cycle time

 $\mathsf{R}_{\mathsf{max}}$

Max range (2/2)

• Max range depends on the below factors

$$R_{max} = \frac{P_t G_t (RCS) G_r \lambda^2 T_f}{(4\pi)^3 (SNR) (kT)(NF)}$$

Typical range					
			Azim	Elev	
10 dBm – 13 dBm			FOV	FOV	Antenna
			(deg)	(deg)	gain (dB)
9 dBi – 23 dBi	Depends on Azimuth and	SRR	120	30	9.21
(USRR – LRR)	Elevation field of view	MRR	90	12	14.44
$0.1m^2 - 50m^2$	Pedestrian vs. Truck	LRR	24	8	21.94
(-10 dBsm to 17 dBsm)				I	
		Ta	irget	RC	S
9 dBi – 23 dBi	Depends on Azimuth and	Pe	edestria	n 0.1	~ 1 sa.m
	Elevation field of view		lotorhik	e 5 sa m	
11 dB – 18 dB			or of other	10	sa m
	Implementation dependent		וג י	10	34.111
2 ms – 20 ms		Ir	UCK	50	sq.m
20110		Thu			
10 dB – 18 dB	3 dB loss = 15% loss of 12 dB loss = 50% loss		s of range		
			B loss =	= 50% lo	ss of range
	Typical range 10 dBm – 13 dBm 9 dBi – 23 dBi $(USRR - LRR)$ 0.1m ² – 50m ² (-10 dBsm to 17 dBsm) 9 dBi – 23 dBi 11 dB – 18 dB 2 ms – 20 ms 10 dB – 18 dB	Typical range10 dBm - 13 dBm9 dBi - 23 dBi (USRR - LRR)Depends on Azimuth and Elevation field of view0.1m2 - 50m2 (+10 dBsm to 17 dBsm)Pedestrian vs. Truck9 dBi - 23 dBi 	Typical range10 dBm - 13 dBm9 dBi - 23 dBi (USRR - LRR)Depends on Azimuth and Elevation field of view0.1m² - 50m² (-10 dBsm to 17 dBsm)Pedestrian vs. Truck9 dBi - 23 dBi 11 dB - 18 dBDepends on Azimuth and Elevation field of view11 dB - 18 dB 2 ms - 20 msImplementation dependent10 dB - 18 dBTmplementation dependent	Typical range10 dBm - 13 dBm9 dBi - 23 dBi (USRR - LRR)Depends on Azimuth and Elevation field of view0.1m² - 50m² (-10 dBsm to 17 dBsm)Pedestrian vs. Truck9 dBi - 23 dBi (-10 dBsm to 17 dBsm)Depends on Azimuth and Elevation field of view9 dBi - 23 dBi 11 dB - 18 dBDepends on Azimuth and Elevation field of view10 dB - 18 dB 10 dB - 18 dBImplementation dependent	Typical range10 dBm - 13 dBm9 dBi - 23 dBi (USRR - LRR)Depends on Azimuth and Elevation field of view $0.1m^2 - 50m^2$ (-10 dBsm to 17 dBsm)Pedestrian vs. Truck9 dBi - 23 dBi 9 dBi - 23 dBiDepends on Azimuth and Elevation field of view9 dBi - 23 dBi 11 dB - 18 dBDepends on Azimuth and Elevation field of view10 dB - 18 dB 10 dB - 18 dBImplementation dependent10 dB - 18 dBTumber dependent

RX array beamforming gain can be additionally included.

Range resolution and Range accuracy

- Range resolution
 - Ability to separate two closely spaced objects in range
 - Range resolution is a function of RF bandwidth used

$$f_{b} = \left(\frac{2R}{c}\right) \left(\frac{B}{T_{c}}\right)$$
$$\Rightarrow \delta f = \left(\frac{2\delta R}{c}\right) \left(\frac{B}{T_{c}}\right)$$
But $\delta f \approx \frac{1}{T_{c}}$, therefore, $\delta R = \frac{c}{2B}$

- Range accuracy
 - Accuracy of range measurement of one object
 - Depends on SNR
 - Typically range accuracy is a small fraction of range resolution

$$\sigma_{R} = \frac{c}{3.6B\sqrt{2SNR}}$$

Sweep BW	Range resolution	
(MHz)	(cm)	
200	7	5
600	2	5
1000	1	5
2000	7.	5
4000	3.7	5

Max velocity

- Max unambiguous velocity in Fast FMCW modulation depends on chirp repetition period
 - Higher velocity needs faster ramps

$$v_{\rm max} = \frac{\lambda}{4T_c}$$

 λ = wavelength T_c = Total chirp duration (incl. inter-chirp time)

•	For a given max range and range
	resolution, higher max velocity needs
	higher IF bandwidth

- Advanced techniques are often used to increase the max velocity
 - Ambiguity resolution techniques can be used to resolve aliased velocity into true velocity

Total Chirp duration (us)		Max unamb velocity (+/-kmph)
5	0	70
3	8	92
2	5	140

Velocity resolution and Velocity accuracy

- Velocity resolution
 - Ability to separate two objects in velocity
 - Depends on the active duration of the frame

$$\delta v = \frac{\lambda}{2NT_c}$$

 λ = wavelength N = number of chirps in the frame T_c = Total chirp duration (incl. inter-chirp time)

Active Frame duration (ms)	Velocity resolution (+/-kmph)
	5 1.40
10	0.70
15	0.47
20	0.35

- Velocity accuracy
 - Accuracy of velocity measurement of one object
 - Depends on SNR
 - Typically a fraction of velocity resolution

$$\sigma_v = \frac{\lambda}{3.6NT_c\sqrt{SNR}}$$

Benefits of 77GHz mmWave

- Wide RF bandwidth (4 GHz) provides good range resolution and range accuracy
 - 20X better than legacy 24GHz narrowband sensors (which use ~200MHz bandwidth)
- High RF frequency (small wavelength) provides good velocity resolution and accuracy

77 GHz ($\lambda \approx 4$ mm)

- 3X better than 24GHz sensors

• Smaller form-factor for the sensor

Angular resolution

- Angular resolution
 - Ability to separate objects in angle (for same range and velocity)
 - Radar sensors have poorer angular resolution typically (compared to LIDAR for example)
 - However, in many real life situations, objects get resolved in range or velocity, due to good resolution in those dimensions

Angular resolution (in radians) for K-length array is given by:

$$\delta\theta = \frac{\lambda}{Kdcos(\theta)} \leftarrow$$

• Note the dependency of the resolution on θ .

Resolution is best at $\theta=0$

$$\delta \theta = \frac{2}{\kappa} \leftarrow \text{Resolution is often quoted assuming d} = \lambda/2 \text{ and } \theta = 0$$

Array length	Ang. Resolution (deg)
8	14.32
12	9.55
24	4.77
40	2.86

Use of Multiple TX – MIMO radar

Multiple TX along with multiple RX (MIMO radar) to increase angular resolution – eg. 2 TX, 4 RX can give 8 virtual channels

Cascaded multi-chip radar

Two corner reflectors

2-chip cascade radar

2-chip cascade enables better separation of the corner reflectors

TI mmWave radar devices

- TI offers a family of 77GHz radar devices for automotive and industrial applications
 - Highly integrated devices based on RFCMOS
 - High accuracy, Small form-factor, Sensing simplified

References

- M. Skolnik, Introduction to Radar Systems, McGraw-Hill, 1981
- Donald E. Barrick, "FM/CW Radar Signals and Digital Processing", NOAA Technical Report ERL 283-WPL 26, July 1973
- A. G. Stove, "Linear FMCW radar techniques", IEE Proceedings F, Radar and Signal Processing, vol. 139, pp. 343-350, October 1992
- M. Schneider, "Automotive Radar Status and Trends", in German Microwave Conference (GeMiC), pp. 144-147, Ulm, Germany, April 2005
- TI whitepapers
 - The fundamentals of millimeter wave Available at <u>http://www.ti.com/lit/spyy005</u>
 - Highly integrated 77GHz FMCW Radar front-end: Key features for emerging ADAS applications Available at http://www.ti.com/lit/spyy003
 - TI's smart sensors enable automated driving Available at http://www.ti.com/lit/spyy009
 - AWR1642: Radar-on-a-chip for short range radar applications Available at http://www.ti.com/lit/spyy006
 - Fluid-level sensing using 77 GHz millimeter wave Available at <u>http://www.ti.com/lit/spyy004</u>
 - Robust traffic and intersection monitoring using millimeter wave radar Available at http://www.ti.com/lit/spyy002

