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LLC Topology Benefits 

• Soft switching over entire load 

range 

 

• Reduced EMI signature 

(sinusoidal primary current) 

 

• Efficiency of ~93% to 96% 

realizable 

 

• Easy Magnetics integration 
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ZVS Switching 

• Zero volt switching achievable when there 

is enough circulating current in the LLC 

power stage 

 

• At gate turn-off, circulating current 

discharges the switch node capacitance 

 

• Switch node must fully discharge during 

the dead time before the next gate turn-on 

 

• ZVS greatly reduces switching losses and 

minimizes EMI 
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LLC Common Applications 

• Common Design Characteristics 

– Narrow, High voltage input 

• PFC input (~400V) 

• Low line input (85V to 120V) 

• High line input (190V to 265V) 

– Output Power 

• 100W to 1kW  

• High Efficiency Desired (~93% to 96%) 

• Common Applications 

– OLED/LED TV 

– All-In-One (AIO) Power 

– AC Adapter 

– Projector 
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Example Application 

• UCC28056 + UCC25630x 

 

•  Single Phase Transition Mode 

PFC + LLC 

 

• Up to 300W 

 

• System architecture minimizes 

number of high voltage dividers 

– maximizes efficiency across entire 

load range 
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Example Application 
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• UCC28064 + UCC25630x 

 

• Interleaved Transition Mode 

PFC + LLC 

 

• Greater than 300W 

 

• Low profile designs 

 

• High light load efficiency via 

phase shedding 

 



PFC + LLC System Level Considerations 

UCC28056 

• 75W to 300W 

• Very low standby power 

• enables systems to meet energy 

standards while keeping PFC on during 

standby 

– Greatly simplifies power architecture 

• No AUX winding required for zero cross 

detection 

UCC28064 

• 300W to 700W 

• Reduced current ripple – higher 

system reliability 

• User adjustable phase management 

and burst mode threshold to achieve 

low standby power 

• Soft burst-on and burst-off avoids 

audible noise 

 

8 



LLC Operating Principle 
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LLC Operating Principle  

• Lr, Cr, Lp and reflected RL 

forms an impedance divider 

 

• Complex Gain Equation 

 

• Gain varies by varying 

frequency. 

 

• LLC operates at a fixed 50% 

duty cycle 
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LLC Operating Principle  

• Lr, Cr, Lp and reflected RL 

forms an impedance divider 

 

• Gain varies by varying 

frequency 

 

• Q1 and Q2 always operating at 

50% duty cycle 

 

• Regulation achieved by 

modulating switching frequency  
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LLC Operating Principle 
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LLC Operating Principle: At Resonance 
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• When switching 

frequency is equal to 

resonant frequency of 

LLC tank: 

 

• Two possible 

states 

 

• Power stage gain 

equal to 1 

 

 



LLC Operating Principle: Below Resonance 

14 

Q1

CR

LM

LK

Q2

VIN

Transformer

CO

Q4

Q3

LR

esr

NP

NS

NS

ILR(t)

ILM(t)

ISEC(t)

VCR(t)

VOUT(t)

Gate 

Drive

Gate 

Drive

Gate 

Drive

VCO(t)

• When switching 

frequency is less than 

resonant frequency of 

LLC tank: 

 

• Four possible 

states 

 

• Power stage gain 

> 1 

 

 

 



LLC Operating Principle: Above Resonance 

15 

Q1

CR

LM

LK

Q2

VIN

Transformer

CO

Q4

Q3

LR

esr

NP

NS

NS

ILR(t)

ILM(t)

ISEC(t)

VCR(t)

VOUT(t)

Gate 

Drive

Gate 

Drive

Gate 

Drive

VCO(t)

• When switching 

frequency is greater 

than resonant 

frequency of LLC 

tank: 

 

• Four possible 

states 

 

• Power stage gain 

< 1 

 

 

 



LLC Design Example 
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LLC Power Stage Design Example 

• Input Voltage Range: 340V to 410V 

 

• Output Voltage: 12V 

 

• Total Output Power: 120W 

 

• Switching Frequency 

– Total Range: 50kHz to 160kHz 

– Resonant Frequency: 100kHz 

 

• Diode Rectification 
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LLC Power Stage: First Harmonic Approximation 

• LLC power stage analysis is difficult 

– No easy analytical solution 

• First harmonic approximation is 

common design approach 

– Assumes only the first harmonic of the 

switching waveform is significant 

– Reasonably accurate close to resonant 

frequency 

– Increasingly inaccurate as operating point 

moves away from resonant frequency 
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LLC Stage: Gain Characteristic 
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• Q = (√(LR/CR))/RE  

• Resonant Tank peak gain increases as Q 

decreases – ie. as load decreases 

 

• ΔG/ ΔF  slope changes as switching 

frequency crosses from Inductive to 

Capacitive region – AVOID this 

– Loss of ZVS and control law reversal! 

• ZVS is possible in Inductive regions 

– Possible ≠ Guaranteed 

• Operate in Inductive regions 

 

Capacitive 

Inductive_1 Inductive_2 

ΔG/ ΔF is negative ΔG/ ΔF is positive 

LLC stage gain vs normalised resonant 

frequency with Q as a parameter 

Q = 1 

Q = 0.4 



LLC Power Stage Design Example: Transformer Turns Ratio and LLC 
Gain 

• Determine Transformer Primary:Secondary Turns Ratio 

 

– 𝑛 =
𝑉𝐼𝑁_𝑛𝑜𝑚𝑖𝑛𝑎𝑙/2

𝑉𝑜𝑢𝑡
=

390/2

12
= 16.25 

 

– Turns ratio selected as 16 

 

• Determine LLC power stage gain range 

 

– 𝑀𝑔_𝑚𝑖𝑛 = 𝑛
𝑉𝑜𝑢𝑡+𝑉𝑓_𝑑𝑖𝑜𝑑𝑒

𝑉𝐼𝑁_𝑚𝑎𝑥/2
= 16

12+0.5

410/2
= 0.976 

 

– 𝑀𝑔_𝑚𝑎𝑥 = 𝑛
𝑉𝑜𝑢𝑡+𝑉𝑓_𝑑𝑖𝑜𝑑𝑒+𝑉𝑙𝑜𝑠𝑠

𝑉𝐼𝑁_𝑚𝑖𝑛/2
= 16

12+0.5+0.5

340/2
= 1.224 
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LLC Power Stage Design Example: LLC Tank Parameters 

• Calculate equivalent load resistance Re 

– 𝑅𝑒 =
8×𝑛2

π2
×

𝑉𝑜𝑢𝑡

𝐼𝑜𝑢𝑡
=

8×162

π2
×

12

10
= 249Ω 

• Select ratio of magnetizing Inductance to resonant 

inductance: Ln 

– 𝐿𝑛 =
𝐿𝑚

𝐿𝑟
 

• Select Quality Factor: Qe 

– 𝑄𝑒 =
𝐿𝑟/𝐶𝑟

𝑅𝑒
 

• Goal is to select Ln and Qe from graph so that attainable 

gain is > Mg_max 

– Ln of 13.5 and Qe of 0.15 selected 

• Graph can be obtained from UCC25630x Calculator: 

– http://www.ti.com/product/UCC256302/toolssoftware 
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LLC Power Stage Design Example: LLC Tank Parameters 

• Select resonant capacitance: Cr 

– 𝐶𝑟 =
1

2π × 𝑄𝑒 × 𝐹𝑟𝑒𝑠 × 𝑅𝑒
=

1

2π ×0.15 ×100𝑘𝐻𝑧 ×249Ω
=

42.6𝑛𝐹 

– Use Cr = 44nF 

• Select resonant inductance: Lr 

– 𝐿𝑟 =
1

(2π×𝐹𝑟𝑒𝑠)2𝐶𝑟
=

1

(2π×100𝑘𝐻𝑧)244𝑛𝐹
= 57.58µ𝐻 

– Use Lr = 61.5µH 

• Select magnetizing inductnace: Lm 

– 𝐿𝑚 = 𝐿𝑛 × 𝐿𝑟 = 13.5 × 61.5µ𝐻 = 830.25µ𝐻  

– Use 830µH 

• Double check actual component values satisfy Mg_peak 

> Mg_max 

– Having some margin of Mg_peak > Mg_max is 

needed 

 
22 

FHA  

Calculation 



LLC Power Stage Design Example: Primary side MOSFETs 

• Select Primary Side MOSFET’ based on primary side 

resonant current and voltage stress 

– Primary RMS current: 𝐼𝑜𝑒 =
π

2 2
×

𝐼𝑜𝑢𝑡

𝑛
=

π

2 2
×

1.1×10𝐴

16
= 0.764 𝐴 

– RMS magnetizing current: : 𝐼𝑚 =
2 2

π
×

𝑛×𝑉𝑜𝑢𝑡

2π𝐹𝑚𝑖𝑛×𝐿𝑚

=

2 2

π
×

16×12

2π50𝑘𝐻𝑧 ×830µ𝐻
= 0.659 𝐴 

– Total resonant Current: 𝐼𝑟 = 𝐼𝑜𝑒
2 + 𝐼𝑚

2 =

(0.764 𝐴)2+(0.659 𝐴)2= 1.01 𝐴 

– Choose MOSFET with current rating 1.1 times the 

total resonant current 

 

– Max voltage stress each MOSFET sees is equal to 

the input voltage 

• Choose MOSFET rated to 1.5 times the max 

input voltage 
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LLC Power Stage Design Example: Resonant Inductor  

• Resonant inductor spec 

– Resonant inductance can either be implemented as 

discrete, external inductor or as the leakage 

inductance of the transformer (saves space) 

 

– For external resonant inductor, the maximum AC 

voltage across inductor is 𝑉𝐿𝑅 = 2π𝐹𝑚𝑖𝑛 𝐿𝑅𝐼𝑅 =
19.6𝑉 

– Complete Spec: 

• Inductance: 61.5µH 

• Rated Current: 1.1A 

• Terminal AC Voltage Rating: 20V 

• Frequency Range: 50kHz to 111kHz 
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LLC Power Stage Design Example: Transformer 

• Calculate secondary side currents 

– 𝐼𝑜𝑒𝑠 = 𝑛 × 𝐼𝑜𝑒 = 16 × 0.764 𝐴 = 12.218 𝐴 

– Current in each secondary winding: 

•  𝐼𝑤𝑠 =
2×𝐼𝑜𝑒𝑠

2
=

2×12.218

2
= 8.639 𝐴 

• Total Transformer Spec 

– Turns Ratio Primary : Secondary = 32 : 2  

– Primary Magnetizing Inductance: 830µH 

– Primary Winding Current: 1.1 A 

– Secondary Winding Current: 8.639 A 

– Switching Frequency Range: 50kHz to 111kHz 
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LLC Power Stage Design Example: Resonant Capacitor 

• Calculate AC voltage on resonant capacitor 

– 𝑉𝐶𝑅_𝐴𝐶 =
𝐼𝑟

2π𝐹𝑚𝑖𝑛𝐶𝑟
=

1.1 𝐴

2π×50𝑘𝐻𝑧×44𝑛𝐻
= 72.5𝑉 

• Calculate peak resonant capacitor voltage 

– 𝑉𝐶𝑅_𝑝𝑒𝑎𝑘 =
𝑉𝑖𝑛_𝑚𝑎𝑥

2
+ 2𝑉𝐶𝑅_𝐴𝐶 =

410𝑉

2
+ 2 × 72.5𝑉 =

307.5𝑉 

 

• Total resonant capacitor spec 

– Peak Voltage: 308V 

– Rated Current: 1.1A 

– Low dissipation factor preferred to limit temperature 

rise in the resonant capacitor 
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LLC Power Stage Design Example: Rectifier Diodes 

• Calculate half-wave average current 

– 𝐼𝑤𝑠 =
2×𝐼𝑜𝑒𝑠

π
=

2×12.218

π
= 5.503 𝐴 

 

• Calculate required voltage stress rating for each diode 

– 𝑉𝐷𝐵 = 1.2 ×
𝑉𝐼𝑁_𝑚𝑎𝑥

𝑛
= 1.2 ×

410

16
= 30.75𝑉 
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LLC Power Stage Design Example: Output Capacitance 

• Required Capacitor RMS Current Rating 

– 𝐼𝐶𝑜𝑢𝑡 = (
π

2 2
𝐼𝑜𝑢𝑡)2−𝐼𝑜𝑢𝑡2 = (

π

2 2
10)2−102 = 4.84 𝐴 

 

• Max ESR 

– Determined by maximum allowable ripple voltage at steady state 

– 𝐸𝑆𝑅𝑚𝑎𝑥 =
𝑉𝑜𝑢𝑡(𝑝𝑘−𝑝𝑘)

π

2
𝐼𝑜𝑢𝑡

=
0.3𝑉

π

2
×10

= 19𝑚Ω 

 

• Larger ESR results in more heat, reduced capacitor lifetime 

and larger output ripple 
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LLC Design Considerations 
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Why is Narrow Input Voltage Preferred? 

• Min and Max input voltage determines 

necessary gain range 

• Larger input voltage range results in larger 

required power stage gain range 

• Operating point move further away from 

resonant frequency 

– Poor efficiency! 

• FHA becomes less reliable 

• Greater possibility for converter to operate in 

capacitive region and zero current switching 

– Avoid this 

 

30 



ZCS Avoidance 

• ZCS leads to conduction of body diode 

in primary side MOSFETs 

– Large dI/dt spike 

– Greater stress on primary side MOSFETs 

and probability of damage greatly 

increases 

 

• Gain-Frequency relationship becomes 

inversed 
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ZCS Avoidance 
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• UCC25630x algorithm incorporates ZCS avoidance 

• Polarity of the inductor current is sensed at gate turn off edge 

• ZCS is detected if at HS or LS turn off edge, the direction of the resonant current (Ipolarity) is not correct 

• HS or LS switch will not be turned on until the next slew is detected on primary side switch node. 

• Vcomp will be rapidly ramped down until there a complete switching cycle without a near ZCS event is detected. 



Direct Frequency Control vs Hybrid 
Hysteretic Control 
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Direct Frequency Control (DFC) 

• Analogous to voltage mode control 

 

• Limited bandwidth and slow transient 

response 

 

• Complex power stage transfer function 
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Direct Frequency Control (DFC) 

• Power stage transfer function difficult to 

express analytically 

 

• Compensation strategy is typically 

begin with integrator and increase 

bandwidth if enough phase margin is 

available 
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Hybrid Hysteretic Control (HHC) 

• Charge control with added frequency 

compensation ramp 

 

• Analogous to current mode control with 

added slope compensation 

 

• 1st order power stage transfer function 

 

• Higher bandwidth and fast transient 

response 
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Hybrid Hysteretic Control (HHC) 

• HHC operating principle 

 

• Gate turn off thresholds (VTH and VTL) 

are derived from feedback 

 

• Gate turn off determined by comparing 

VCR to VTH and VTL 

 

• Gate turn on determined by adaptive 

dead time circuit 
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Hybrid Hysteretic Control (HHC) 

• Current sources on/off control synchronous to 

gate signal turn off edge 

 

• Inherent negative feedback for low side and high 

side gate signal balance 

 

• Automatically maintain the bias voltage at 3V – 

no need for extra resistor dividers 

 

• Current sources are turned off during burst off 

period – reduce standby power consumption 
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Hybrid Hysteretic Control (HHC) 
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• ~1st order system 

 

• Able to achieve higher 

bandwidth 
 Frequency control  HHC 



Hybrid Hysteretic Control (HHC) 

• Optocoupler collector voltage regulated at a 

constant voltage 

 

• No extra pole introduced due to the optocoupler 

parasitic capacitor 

– Higher loop bandwidth and fast transient 

 

• Small bias current (82uA) is used to limit the 

optocoupler current at light load 

– Low standby power consumption 
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HHC: Burst Mode Control 

• Advanced burst mode 

– Converter operates at the operating point with the 

highest efficiency during the burst period 

– Burst mode threshold tunable through external 

resistors 
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Efficiency vs. load for 
different VIN with 

different BM threshold 

setting 

UCC25630x: Ires stays 

at optimal efficiency 

operation condition in 

every switching cycle 

Conventional 

solution: Ires is not 

optimized 



HHC: Burst Mode Control 

• Burst mode allows system to turn on for a minimal of 15 switching pulses and turn off for a longer time 

to improve the light load efficiency – Low standby power consumption 

• The higher value of Vcomp and burst mode threshold (BMT) is used to compare with VCR for pulse 

generating guarantee a fast transient from light load/no load to full load – Fast transient 
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HHC: Burst Mode Control 

• Fast exit from burst mode without large 

VOUT dip 

• No need for secondary side wake up 

circuit 
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Load step between 0.5% 

load and full load. 

VOUT dip is ~100 mV 



HHC Benefits 

Fast Transient Response 

• HHC simply plant to ~1st order system, 

allowing for a higher system bandwidth 

• Innovated feedback chain removes extra pole 

introduced by the optocoupler parasitic 

capacitor 

• Burst mode implementation allow the system 

to get out of burst mode fast, to guarantee for 

a fast transient from light load to heavy load 

 

Low Standby Power Consumption 

• Slope compensation remove the need for extra 

resistors to maintain the dc bias voltage on 

VCR 

• Low optocoupler bias current helps to achieve 

a low standby power consumption on feedback 

loop 

• Burst mode improve the light load efficiency by 

turning off the switching for certain period 
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LLC Transient Response 
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Load Transient Response 

• Performance metric describing the 

power supply’s response to sudden 

change in load current 

 

• Factors to consider 

– Max output voltage deviation 

 

– Time needed for output voltage to return 

to regulation set point 

 

– Settling time behavior 
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Load Transient Response 

• Transient response dependent on converter 

bandwidth and phase margin 

 

• Approximation of delay between transient 

event and converter response from bode 

plot 

– 𝑡𝑝 =
1

4×𝑓𝑐
 

– Fc is crossover frequency 

– Tp is time from start of transient event to valley 

of output voltage dip 

– Approximation does not include slew rate or 

ESR considerations 
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Load Transient Response 

• UCC25630-1EVM crossover frequency: 

6kHz 

 

• Approximation of delay between 

transient event and converter 

response: 

– 𝑡𝑝 =
1

4×𝑓𝑐
=

1

4×6𝑘𝐻𝑧
= 50µ𝑠 
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Load Transient Response 

• Converter is unable to instantaneously react to 

transient event 

 

• After the transient event but before converter 

responds, charge is transferred from output 

capacitance to the load, resulting in output 

voltage droop 

 

• Maximum droop in output voltage dependent on 

closed loop output impedance, load step and 

slew rate 
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Load Transient Response 

• Maximum voltage droop can be 

approximated from total output 

capacitance and ESR 

 

– ∆𝑉𝑜𝑢𝑡=
∆𝐼𝐿𝑜𝑎𝑑𝑆𝑡𝑒𝑝×∆𝑡𝑝

𝐶𝑜𝑢𝑡
 + ∆𝐼𝐿𝑜𝑎𝑑𝑆𝑡𝑒𝑝 × 𝑅𝐸𝑆𝑅  

 

– ∆𝑉𝑜𝑢𝑡=
10 A×50µ 𝑠

1968 µ𝐹
 + 10 𝐴 × 1.75𝑚Ω = 272mV 
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V ~ 0.3V  



Load Transient Response 

• Phase margin describes stability 

of the power converter  

 

• determines the output voltage 

settling time and settling 

behavior 

 

• Insufficient phase margin results 

in underdamped response and 

oscillation in output voltage 

 

• >45° phase margin a must, 

>60° phase margin preferred 
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Compensation Goals 

• Target higher bandwidth for faster 

transient response 

 

• Maintain at least >45° phase margin at 

crossover frequency 

 

• >10dB gain margin 

 

52 



Isolated Compensation 

• Type II 

– 𝐹𝑧 =
1

2π𝐶28(𝑅22+𝑅25)
 

 

–
𝑉𝑟(𝑠)

𝑉𝑜(𝑠)
=

1+𝑠𝐶28(𝑅25+𝑅22)

𝑠𝐶28𝑅25
 

 

• R22 used to adjust mid-band gain of 

the feedback network 
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Test Results: UCC25630x EVM 

• Input voltage: 340 Vdc – 410 Vdc 

• Output voltage: 12 Vdc 

• Output current (rated): 10A 

• Resonant frequency: 96kHz 
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Test Results: Typical Waveforms 

Full Load (10A) Light Load (0.1A) 
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Resonant Cap Voltage 

Low side gate pulses 

Output Voltage (AC coupling) 

Low side gate pulses 



Test Results: Transient Response 

No Load to Full Load Full Load to No Load 
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V ~ 0.3V  

Output Voltage (AC coupling) 

Load current 

Output Voltage (AC coupling) 

Load current 



Transient Response DFC vs HHC: 12V Supply 

Legacy: Direct Frequency Control TI: Hybrid Hysteretic Control 
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V ~ 1V  

Output Voltage (AC coupling) 

Load current 

Low side gate 

V ~ 0.1V  

Output Voltage (AC coupling) 

Low side gate 

Load current 



Transient Response: Competitor #1 vs UCC25630x 

Competitor #1 TI: UCC25630x 
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CH1: Vout 

CH2: LO 

CH3: HO-HS 

CH4: Iout 

10.8% Vout dip from no load to full load 
CH1: LO 

CH2: Vout 

CH3: Iout 

CH4: HO-HS 

1.25% Vout dip from no load to full load 



Transient Response: Competitor #2 vs UCC25630x 

Competitor #2 using DFC Control TI: UCC25630x 
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Vout dip: 600mV Vout dip:250mV 



Transient Response: Competitor #3 vs UCC25630x 

Competitor #3 using DFC Control TI: UCC25630x 
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Vout dip:740mV Vout dip: 244mV 



System Level Benefits to Improved Transient Response 

• Tighter regulation of output voltage is realizable without needing additional output 

capacitance 

 

• Output capacitance can be significantly reduced and meet the same transient 

response performance as direct frequency control 
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Light Load Power Consumption (UCC25630-1EVM) 

62 

38.2 mW no load power consumption 



Standby Power: Competitor #2 vs UCC25630x 

Competitor #1 TI: UCC25630x 
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UCC28056 + UCC25630x Standby Power 

• PMP21251 170W transition mode PFC 

+ LLC design 

 

• 70mW no load standby power at 

115Vac 

 

• 89mW no load standby power at 

230Vac 
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Standby Power System Level Benefits 

• Enables designs to meet modern 

energy standards such as DOE Level 

VI and CoC Tier II 

 

• PFC does not need to be disabled at 

light load to meet efficiency goals 

 

• Keeping PFC ‘always on’ simplifies 

power supply architecture and provides 

faster response from standby to full 

load 
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Retrofitting UCC25630x into Gaming 
Station 
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Gaming: Transient Response 

Original Board TI: UCC25630x 
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Ch1: Vout Ch2: LO Ch3: Vbulk Ch4: Iout 

V ~ 1V  

Ch1: Vout Ch2: LO Ch3: Vbulk Ch4: Iout 

V ~ 0.1V  

• Test Condition: VinAC=115V, Vout=12V, Iout step from 0A to 10A 

• Transient performance is 10x better with UCC25630x 



PS4: Startup 

Original Board TI: UCC25630x 
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• Test Condition: VinAC=115V, Vout=12V, Iout=5A 

Ch1: Vout Ch2: LO Ch3: HS Ch4: Iout Ch1: Vout Ch2: LO Ch3: HS Ch4: Iout 



PS4: Load Regulation 

Original Board TI: UCC25630x 
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• Test Condition: VinAC=115V, Vout=12V, Iout=10A 

Ch1: Vout Ch2: LO Ch3: Vcr Ch4: Icr Ch1: Vout Ch2: LO Ch3: Vcr Ch4: Icr 



Summary 

• LLC is an excellent topology choice for designs with narrow, high voltage input 

and requires high efficiency across entire load range.  

 

• First harmonic approximation forms the foundation of the LLC design flow 

 

• Hybrid hysteretic control offers improved transient performance, reducing the 

required output capacitance to meet a given output voltage regulation 

requirement 
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