
Linux Board Port Overview
for Sitara AM-Class Devices: AM33x, AM43x, and AM57x

What is a Linux Board Port?

1

Presenter
Presentation Notes

This training is going to discuss all the major steps used to port the Processor’s SDK Linux from a TI EVM to a Custom board.

Presentation overview
• What is a Linux board port?

• Linux board port process when migrating from a TI EVM to a custom board

• Linux board port process resources

• Conclusion

2

Disclaimer
This presentation covers Sitara catalog embedded processors in an overview
fashion. While the topics presented generally apply to all the processors, there will
be areas that are different between the processors. Please review the processor
TRM, Datasheet and TI Processors Linux SDK for specific information and
examples.

3

What is a Linux Board Port?

4

Presenter
Presentation Notes

This is a fair question to ask, another question that is asked is where do you begin. Discussed in this section are answers to these questions about where do you start as well as a metaphor used that explains the areas of work done by TI with the Linux SDK and how the custom board developer leverages this starting point.

Section overview: What is a Linux board port?
• The typical perception of porting an OS to a custom board

• Finding an abstraction for board porting

• The base port concept

• TI Processor SDK Linux board port abstraction

• Implementing a Linux board port

5

Presenter
Presentation Notes
Stepping through each of the agenda points. The key point of this section is show that porting to a custom board is expected and there is a method that can be followed to expedite a port. The TI EVMs are the starting point that board developers can use to create their port.

Board port questions you might have

6

Where to start?

Processor initialization code?

Processor privileged modes?

Interrupt setup?

How do I build code?

OS abstraction? (OSAL)

Architecture support?
Driver support?

Presenter
Presentation Notes
When looking at porting an OS to a custom board there is always the perception that as a developer you are starting from scratch, this is typically based on experience of previous ports. There is not a standard so to speak for porting, and therefore most take the belief of that they have to do everything.

These are common questions that people believe they have to resolve.

Finding an abstraction for board porting
• Abstractions have been used for awhile to accelerate porting to a new platform.
• Applications are typically written to this standard to make sure they are portable.
• One example you have heard of:

 IEEE Std 1003.1-2007 Portable Operating System Interface for Unix (POSIX)

Operating System

Application

Library APIs POSIX APIs provide an OS abstraction layer

Presenter
Presentation Notes
Porting to a new platform is not a new concept, ever since the Unix epoch platform porting has been a requirement. Languages and Operating systems have been required to be portable for years. Because moving platforms is a mandatory requirement software has evolved to define and use a hardware abstraction to make a port easier to accomplish.

Sometimes these hardware abstractions can be developed into multiple layers. Each abstraction layer can act as a refinement so that only changing one layer of abstraction is all that is needed to move to a new platform.

Looking at an Application as having layers, each abstraction layer can be written to be portable across hardware. Applications based on the C programming Language are setup for porting if they use the IEEE standard 1003.1 standard,

Everybody pretty much has seen this and is better known as the POSIX API standard.

This layered application is drawn in the picture here, the application is written to an API standard that abstracts access to HW functions provided by the OS.

To summarize, applications can be written to an abstraction layer such as the Posix API which in turn can abstract the operating system on the platform. The layered approach demonstrates how several abstraction layers can be combined to define a platform abstraction.

https://standards.ieee.org/findstds/standard/1003.1-2017.html
https://standards.ieee.org/findstds/standard/1003.1-2017.html
https://standards.ieee.org/findstds/standard/1003.1-2017.html
https://standards.ieee.org/findstds/standard/1003.1-2017.html
https://standards.ieee.org/findstds/standard/1003.1-2017.html
https://standards.ieee.org/findstds/standard/1003.1-2017.html

Linux application hardware abstraction
• “Everything is defined as a file in Linux.”
• Files are accessed with the very basic APIs open(), read(), write(), close(), and

ioctl() file I/O abstraction.
• Code example: Writing to file in the /home directory on a TI EVM running Linux.

8

#include <stdio.h>

int main () {
FILE *fd;

fd = fopen("/home/root/example.txt","w");
fprintf(fd, "example of a file write\n");
fclose(fd);

}

root@am335x-evm:/proc# mount
/dev/mmcblk0p2 on / type ext4 (rw,relatime,data=ordered)

root@am335x-evm:~# ls /dev/mmc*
/dev/mmcblk0
/dev/mmcblk0p1
/dev/mmcblk0p2
/dev/mmcblk1boot0
/dev/mmcblk1boot1
/dev/mmcblk1
/dev/mmcblk1p1
/dev/mmcblk1p2 • The directory path is abstracted to the mounted root

file system, which is abstracted to a particular device.

SD Card on EVM

Presenter
Presentation Notes
Before looking at how the Linux kernel possibly uses an abstraction for porting lets look at what a Linux application uses to access hardware and why this allows applications to be portable.

The Linux application interface uses these very basic API calls of open, read, write, close, ioctl file I/O abstraction. This is a very basic representation, the POSIX API standard has quite a bit more APIs. This file I/O abstraction is used across all Linux platforms and what allows applications to be portable.

As mentioned previously a hardware abstraction can layered. For example most of the peripheral drivers in linux are layered. Here is an example of how a file written to the user’s home directory is abstracted to a hardware device. One note here that on a TI EVM running Linux the default user is root.

The code snippet shows the basic open, write, close for a file. While this code is compiled and run from the user’s home directory the full path is shown to highlight the file IO abstraction path to the SD card. The user’s home directory is in the root file system which is shown at right to be mounted on mmcblk0p2 which looking at the dev directory shows is the second partition on the mmc0. For this particular EVM the user is pretty much aware that they are writing to the second partition on MMC0 that is configured as an ext4 filesystem. The code itself does not care so long as the path requested in the fopen call exists on the system.

Most of the peripherals in a Linux system have similar device abstractions to some Linux kernel representation such as sockets for networking or video4linux for capture. Again this is a very basic representation but one that hopefully describes the file IO aspect of Linux.

OS Abstraction Layer (OSAL)
• As with application porting, abstractions are used to accelerate porting an OS to

a new platform.
• Some operating systems provide a Hardware Abstraction Layer (HAL), also

known as an Operating System Abstraction Layer (OSAL).

9

Hardware Abstraction Layer

Device
Driver

Device
Driver

Operating System

Application

Linux does not have a single layer or
conventional HAL.

So how then is Linux put on new
platforms?

Library APIs

Presenter
Presentation Notes

Those familiar with porting an RTOS would be expecting a hardware abstraction layer (HAL). This layer is a set of APIs that the OS expects for communicating with device drivers, memory and initialization of the processor specific to the platform it is running on.

Expanding the previous slide of the application stack, this diagram shows the abstraction layers that the application will use to get all the way down to a device driver. The application goes through the library abstraction, which then goes through the OS abstraction which then goes through the HAL abstraction to finally access the device driver.

Linux does not have a published HAL that could be used for porting.

So how then is Linux put on new platforms?

TI processors Linux board port abstraction

10

Processor Initialization Code

Processor Privileged Modes

Interrupt Setup

HW or OS Abstraction Layer
(HAL/OSAL)

Architecture Support

Driver Support

Presenter
Presentation Notes
This is the start of defining the TI processors Linux board port abstraction.

This is the Linux board port abstraction for processors that TI provides to custom board developers. This is where all the basic processor initialization questions are answered.

Starting with the processor selected for the custom board, the linux sdk has already demonstrated that Linux is running on the processor. This resolves the questions from earlier such as the processor initialization setup. Later on in this presentation will be referred to the Architecture support.

What makes the SOC differentiating is the peripherals that are included. The Linux SDK provide full entitlement to these interfaces, this means that all the device drivers of the SOC are already ported to Linux. Later on this will be referred to the SOC portion of support.

So to answer the previous question of how is Linux ported to a new platform it requires a one time architecture port and the SOCs device drivers. The architecture port is done by ARM for TI processors and TI does the device driver development for the SOC.

Here is the key point, the port to architecture has been done, the porting to SOC has been done. What is left to port? The actual board.

Base port concept

11

The Base Port = Processor Core + SOC + TI EVM
Known good: This is the starting point for custom boards.

TI EVM SOC ARCH

Presenter
Presentation Notes
A Base Port is the porting of Linux to a processor architecture. This is what is provided by the Processors SDK Linux package.

The base port = Processor Core + SOC + TI EVM

To achieve the full SOC entitlement the Base Port is developed on a Sitara EVM
This becomes what is called “The known good” which is the EVM OOB experience of the TI Processor Linux SDK. This is the recommending starting point for a custom board developer.

Lets review the board port abstraction, the Architecture portion, the SOC portion and now (animate) the third portion of the board port abstraction the board itself. These are the three elements of the board port abstraction.

One caveat of the base port and EVM process is that it is impossible to make a cost effective EVM for every possible SOC peripheral or HW combination. The TI EVMs will target a superset of use cases such on the Industrial Development kit shown here.

So now for this porting story the Base port proves that arch and SOC layers can be realized on a board. Now the question is how to make this go to a custom board.

So to summarize this key point, the board port abstraction of Architecture, SOC, Board will be used in follow on board port material. The Architecture and SOC work has been done by TI, the binding to a board is done by the custom board developer.

Implementing a Linux board port

12

Custom board

Board port = Base port +/- custom board peripheral set and kernel requirements

SOC ARCH

Presenter
Presentation Notes
Lets look at a high level example of taking the known good which is the EVM OOB of the TI Processor Linux SDK and applying to a custom board.

This is the task in a nutshell, implementing the board block diagram on an actual custom board.

The starting point is the Arch/SOC abstraction defined earlier in the presentation for the selected processor that is provided with the TI processors Linux SDK.

The block diagram shown is not using the full SOC entitlement but rather a possible solution for an application use case that is a subset. Here only certain peripherals need to be allocated to realize a new product.

From a block diagram the port is accomplished by

only enabling the peripherals that are required for the new board. Later in the presentation it will be shown the steps that are necessary to enable or disable a peripheral on the board and the steps and tools provided to accomplish the task.

To summarize the slide, a board port is equal to a base port +/- peripherals and kernel requirements. A board port is taking the base port from the TI SDK and enabling the desired peripherals to create a custom board application.

Section Conclusion: What is a Linux board port?
• The typical perception of porting an OS to a board

• Finding an abstraction for board porting

• TI Processor SDK Linux board port abstraction

• The base port concept

• Implementing a Linux board port

13

Presenter
Presentation Notes
Stepping through and reviewing each of the overview points. The key point of this section is show that porting to a custom board is expected and there is a method that can be followed to expedite a port. The TI EVM are the starting point that board developers will modify to create their port.

For more information
• Processor SDK Training Series:

https://training.ti.com/processor-sdk-training-series
• Linux Board Port for Sitara AM-Class Devices Training Series

https://training.ti.com/linux-board-port-sitara-series
• Giving Linux the Boot

https://training.ti.com/sitara-arm-processors-boot-camp-giving-linux-boot
• Pin Mux Tool training: https://training.ti.com/pinmux-v4-cloud
• Device Tree Overview

https://training.ti.com/debugging-embedded-linux-locate-device-driver
• For questions about this training, refer to the E2E Community Forums for Sitara

Processors at http://e2e.ti.com/support/arm/sitara_arm/f/791/t/277411

14

https://training.ti.com/processor-sdk-training-series
https://training.ti.com/linux-board-port-sitara-series
https://training.ti.com/sitara-arm-processors-boot-camp-giving-linux-boot
https://training.ti.com/pinmux-v4-cloud
https://training.ti.com/debugging-embedded-linux-locate-device-driver
http://e2e.ti.com/support/arm/sitara_arm/f/791/t/277411

TI Information – Selective Disclosure

Presenter
Presentation Notes
This slide should be retained for the recording… Leave on screen for 5 seconds.

	Linux Board Port Overview�for Sitara AM-Class Devices: AM33x, AM43x, and AM57x
	Presentation overview
	Disclaimer
	What is a Linux Board Port?
	Section overview: What is a Linux board port?
	Board port questions you might have
	Finding an abstraction for board porting
	Linux application hardware abstraction
	OS Abstraction Layer (OSAL)
	TI processors Linux board port abstraction
	Base port concept
	Implementing a Linux board port
	Section Conclusion: What is a Linux board port?
	For more information
	Slide Number 15

