Applications for isolated gate drivers

Presented and Prepared by Derek Payne

Example Topologies

Power Supply)

Motor Drive

TEXAS INSTRUMENTS

Three Phase Power Factor Correction

Three Phase Power Factor Correction

Three Phase Power Factor Correction

• $\Delta i_{pp_{max}} = \frac{\frac{V_{bus}}{2} * T_S}{4 * L_i} \Rightarrow L_i$ $\frac{2}{4*F_{SW}*\Delta i_{ppmax}}$

- Inductor size is inversely proportional to switching frequency
- Slower F_{sw} => Larger inductors
- Line filter attenuates fundamental switching frequency and harmonics
- Attenuation at F_{SW} is proportional to filter component size, # of stages
- Slower F_{SW} => Bigger EMI filter

Size for F_{SW} / 2

Motor Drive

Debounce + Setpoint Controller

7

Traction Inverters

E-MACHINE POSITION	ASIL RATING	СОМ
P0	ASIL-B/C	Basic level of (48V) hybridization (BSG)
P1	ASIL-B/C	E-Machine at the crankshaft, very limited electric only drive
P2	ASIL-B/C	E-Machine placed in between combustion engine and trans
P3	ASIL-C/D	Transmission integrated E-Machine (ISG)
P4	ASIL-C/D	E-Axle, adds electric propulsion to the axle directly. Enable

ASIL rating derived from ISO 26262

Looking Ahead

7.10 Switching Characteristics

Over recommended operating conditions unless otherwise noted. All typical values are at T_A = 25°C, V_{CC1} = 5 V, V_{CC2} -GND2 = 15 V, GND2 – V_{EE2} = 8 V

PARAMETER		TEST CONDITIONS		MIN	TYP	MAX	UNIT
t _r	Output-signal rise time at OUTH	C _{LOAD} = 1 nF		12	18	35	ns
t _f	Output-signal fall time at OUTL	C _{LOAD} = 1 nF		12	20	37	ns
t _{PLH} , t _{PHL}	Propagation Delay	ropagation Delay $C_{LOAD} = 1 \text{ nF}$ ulse skew $ t_{PHL} - t_{PLH} $ $C_{LOAD} = 1 \text{ nF}$ art-to-part skew $C_{LOAD} = 1 \text{ nF}$			76	110	ns
t _{sk-p}	Pulse skew t _{PHL} – t _{PLH}					20	ns
t _{sk-pp}	Part-to-part skew					30 ⁽¹⁾	ns
t _{GF (IN,/RST)}	Glitch filter on IN+, IN–, RST	C _{LOAD} = 1 nF		20	30	40	ns
t _{DS (90%)}	DESAT sense to 90% $V_{OUTH/L}$ delay	C _{LOAD} = 10 nF			553	760	ns
t _{DS (10%)}	DESAT sense to 10% V _{OUTH/L} delay	C _{LOAD} = 10 nF			2	3.5	μS
t _{DS (GF)}	DESAT-glitch filter delay	C _{LOAD} = 1 nF			330		ns
t _{DS (FLT)}	DESAT sense to FLT-low delay See Figure 46					1.4	μS
t _{LEB}	Leading-edge blanking time	See Figure 44 and Figure 45		310	400	480	ns
t _{GF(RSTFLT)}	Glitch filter on RST for resetting FLT			300		800	ns
Cı	Input capacitance ⁽²⁾	$V_{I} = V_{CC1} / 2 + 0$ $V_{CC1} = 5 V$	$.4 \times \sin(2\pi ft), f = 1 MHz,$		2		pF
CMTI	MTI Common-mode transient immunity V_{CM} = 1500 V, see Figure 47		100	120		kV/μs	

(1) Measured at same supply voltage and temperature condition(2) Measured from input pin to ground.

Thanks for your time! Please try the quiz.

Multiple Choice Quiz

TI Precision Labs – Isolation

- 1. must be used for the interface between high voltage and user-accessible circuitry (like connectors or communications ports) to meet many equipment safety standards.
 - **Reinforced** isolation а.
 - Line drivers b.
 - Fiber optics C.
 - d. Low-voltage microcontrollers
- 2. converts stable, monofrequency AC power to stable, clean DC power; _____ stable, clean DC power to stable, monofrequency AC power
 - Solar string inverters / Motor drives a.
 - Power factor correction circuits / Traction inverters b.
 - Power factor correction circuits / Solar string inverters C.
 - Motor drives perform both functions d.
- Thanks to their high voltage ratings and high current capability, _____ 3. in switching power systems up to hundreds of kilowatts
 - Silicon carbide transistors a.
 - Insulated-gate bipolar transistors (IGBTs) b.
 - Silicon MOSFETs C.
 - Gallium nitride transistors d.

converts

have been historically used

The high-voltage bus in solar string inverter designs has been ______ over time because _____ 4.

- Increasing; it reduces I²R losses and component size a.
- Increasing; it increases switching frequency b.
- Decreasing; it becomes easier to use inexpensive non-isolated gate drivers C.
- Decreasing; it permits the use of faster, lower-voltage MOSFETs d.
- Silicon carbide MOSFETs are one potential way to improve size, cost, and performance of motor drives 5. and traction inverters. It requires gate drivers that can:
 - Operate at automotive temperature ranges of -40°C to 125°C to enable high-temperature applications a.
 - Switch with low propagation delay and low pulse width distortion to enable fast switching b.
 - Integrate protection features to minimize external component count and cost C.
 - Both b and c d.

Traction inverters help to define the next generation of isolated gate drivers because: 6.

- Automotive ASIL ratings place strict requirements on critical systems, including gate drivers a.
- Size, cost, and heatsinking material constraints emphasize gate drivers with highly-integrated features b.
- Silicon carbide MOSFETs have unique drive requirements compared to IGBTs or MOSFETs C.
- All of the above d.

Multiple Choice Quiz – Solutions

TI Precision Labs – Isolation

- 1. must be used for the interface between high voltage and user-accessible circuitry (like connectors or communications ports) to meet many equipment safety standards.
 - **Reinforced** isolation **a.**
 - b. Line drivers
 - Fiber optics C.
 - d. Low-voltage microcontrollers
- converts stable, monofrequency AC power to stable, clean DC power; _____ 2. stable, clean DC power to stable, monofrequency AC power
 - Solar string inverters / Motor drives a.
 - Power factor correction circuits / Traction inverters b.
 - Power factor correction circuits / Solar string inverters C.
 - Motor drives perform both functions d.
- Thanks to their high voltage ratings and high current capability, ______ have been historically used 3. in switching power systems up to hundreds of kilowatts
 - Silicon carbide transistors a.
 - Insulated-gate bipolar transistors (IGBTs) b.
 - Silicon MOSFETs C.
 - Gallium nitride transistors d.

converts

The high-voltage bus in solar string inverter designs has been ______ over time because _____ 4.

- Increasing; it reduces I²R losses and component size **a.**
- Increasing; it increases switching frequency b.
- Decreasing; it becomes easier to use inexpensive non-isolated gate drivers C.
- Decreasing; it permits the use of faster, lower-voltage MOSFETs d.
- Silicon carbide MOSFETs are one potential way to improve size, cost, and performance of motor drives 5. and traction inverters. It requires gate drivers that can:
 - Operate at automotive temperature ranges of -40°C to 125°C to enable high-temperature applications a.
 - Switch with low propagation delay and low pulse width distortion to enable fast switching b.
 - Integrate protection features to minimize external component count and cost C.
 - Both b and c d.

Traction inverters help to define the next generation of isolated gate drivers because: 6.

- Automotive ASIL ratings place strict requirements on critical systems, including gate drivers a.
- Size, cost, and heatsinking material constraints emphasize gate drivers with highly-integrated features b.
- Silicon carbide MOSFETs have unique drive requirements compared to IGBTs or MOSFETs C.
- All of the above d.

