High-Speed Layout Guidelines for Reducing EMI for LVDS SerDes Designs

I.K. Anyiam

Introduction

 LVDS SerDes helps to reduce radiated emissions, but does not completely eliminate them

- EMI prevention must be considered early in the design process
 - Ensure the PCB is compliant with PCB guidelines for high-speed signals

Initial considerations

- Create a diagram with the functional groups of the system
- Identify the sensitive signals (clock signals, impedance controlled signals, etc.)
- Clarify frequency requirements
- Clarify trace length and cable length requirements

PCB Stack-Up and Board Layout

- At minimum, select a PCB with at least four layers
- Use dedicated ground and power planes
 - Avoid cutting up the power and ground planes if possible
 - Keep the power and ground plane surface area equivalent in size and shape
- Keep traces as short as possible
- Keep single-ended signals away from differential traces (at least 2x the trace width)
- Place ESD susceptible circuitry at the center of the PCB

Serializer and deserializer location

• The serializer and deserializer should be located as close to the connector as possible

Device ground and power

- Use solid power and ground planes
 - Minimize current loops
- Do not route over plane-splits
 - Use 1uF or lower stitching capacitors across the split if routing is completely unavoidable

Device ground and power

- Separate digital and analog power supplies with filtering and bypassing
- Use multiple vias for both power and ground connections
- Use ferrite beads to decouple the IC power from the rest of the supply system

Device bypass

- To obtain supply noise 20 mVpp and lower, close bypassing is required
 - Put the largest value filter capacitors near power connectors and supply inputs
- Place high-quality X7R decoupling capacitors as close as possible to device pins
 - Use multiple capacitors (0.1uF, 0.01uF, 1uF) in parallel
 - Connect the pad of the capacitor directly to a via to the ground plane with 2 or 3 vias.

Device bypass

- Keep traces from decoupling caps to ground as short and wide as possible
- Ensure that decoupling capacitors are on the same layer as the device
- Do not place vias between decoupling capacitors and the IC
- Do not neglect PLL power-pin bypassing as it is the most critical of low noise operation
- 0805 or 1206 chip caps are recommended

- Traces should be 100Ω (±5%) differential impedance of microstrip or differential stripline
- The spacing between LVDS signal pairs and other signals should be a minimum of 2x the width of the trace
 - 5x would be best
- The spacing between individual conductors of an LVDS pair should be less than 2x the width of the trace

10

• Trace lengths should be matched (generally within 5mm of each other) to reduce inter-pair and intra-pair skew

Intra-Pair Skew

Inter-Pair Skew

- Avoid right-angle traces
 - 45° corners are acceptable, but rounded corners and best

• A stub should be as short as possible and no longer than 2cm to 3cm

- Place termination resistors as close as possible (no more than ½ inch away) to the deserializer input pins
- Route traces with the most direct route and minimum trace length to the connector
- Ensure the termination resistor matches within 2% of the differential impedance of the media (typically 100Ω)

- Do not route traces near or under
 - the edge of the PCB
 - Crystals
 - Oscillators
 - Clock signal generators
 - Switching power regulators
 - Mounting holes
 - Magnetic devices
 - ICs that use or duplicate clock signals
- Do not place probe or test points on any LVDS traces
- Any discontinuities that occur on one signal line of an LVDS pair should be mirrored on the other signal line

Connectors and cables

- Use shielded, high-speed connectors that have complete shielding around the connector interface
- Keep the impedance of the LVDS traces matched across transitions such as connectors
- When using a ribbon cable, place a ground line between each LVDS pair

Connectors and cables

- Twin-coax cables have the overall best performance
 - Low cable skew
 - Low EMI
 - Double shielding
 - Short and long applications
- Utilize a shield on each cable pair for twin-coax cables
 - Faster speeds
 - Longer distances
 - Reduced EMI

Identifying EMI root cause

Step	Source	Serializer	Deserializer	Other System Components	Comments
1	Off	Off	Off	On	Captures ambient noise
2	Off	On	Off	Off	Serializer by itself
3	Off	Off	On	Off	Deserializer by itself
4	On	On	On	Off	Serializer+deserializer+serializer source
5	On	On	On	On	Slow down clock rise/fall times by putting capacitance at the clock pin
6	On	On	On	On	Shield seriailizer board and connect the shield to a solid ground
7	On	On	On	On	Change to a better-shielded cable

Conclusion

- Follow the guidelines listed in this video to ensure LVDS SerDes designs are EMI compliant
- If issues are encountered, identify the root cause with the table in the previous slide
- Reference TI's EVM schematic and layouts
- Reference application note: http://www.ti.com/lit/an/snla302/snla302.pdf

Thanks for your time!

