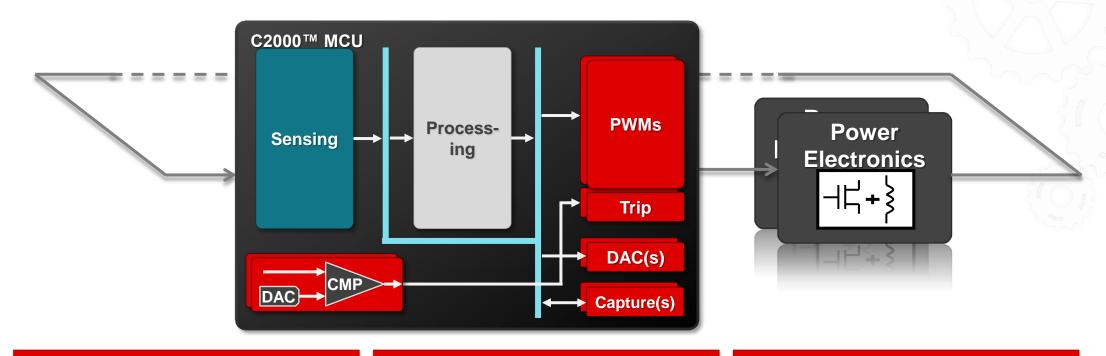
Part 4: What can I do with digital motor control?

- InstaSPIN™ motor control solutions
- DesignDRIVE software for industrial drives and motor control


Driving Driving Market Motors

Chris Clearman

Date: Nov 26th, 2018

A **WEBINAR SERIES** BY TEXAS INSTRUMENTS

C2000™ 32-bit MCU for real time control

Precision control

- High resolution PWM duty cycle
- High resolution PWM period
- High resolution PWM phase control
- · High resolution PWM dead-band
- Advanced time synchronization between PWMs

Flexible interfacing

- Advanced inter-PWM and ADC synchronization
- Variety of timer count modes
- Customizable triggering
- External DACs for reference bias waveform generation

Advanced protection

- Directly trip PWMs without CPU intervention, nor clocking
- Supports PWM shutdown or cycle-by-cycle PWM modification
- Peak current mode control support

Three-phase motor control applications

Electric Vehicles

- Traction Drives
- Construction & Agriculture
- · Auxiliary Motors
- · Power Steering
- Drones
- E-Mobility

Industrial Drives

- Servo Drives
- · AC Drives & Inverters
- CNC
- Robotics
- Flevators
- · Door controls
- Textile

Appliances

- Fans
- Small household appliances
- · Refrigeration
- Laundry
- HVAC

General Motor Control

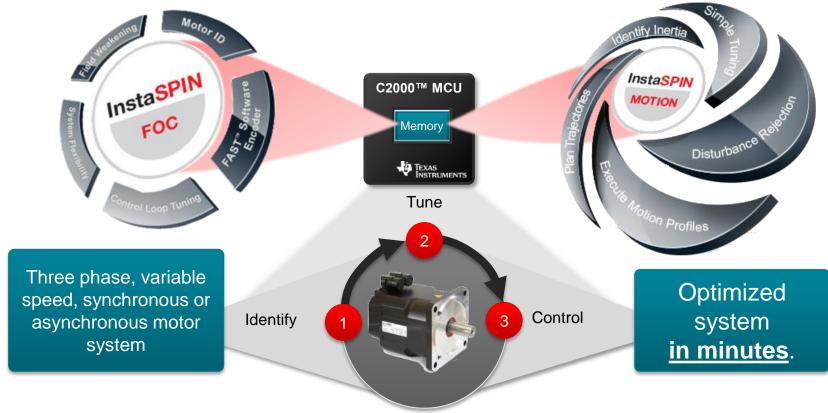
- Compressors
- · Medical pumps
- · Dental tools
- · Garden & power tools
- Fitness equipment

Field

Oriented

Control

Two development paths


InstaSPIN-FOC & -MOTION Easiest to use, more complete solutions Premium sensorless and motion control Expertise included	DesignDRIVE Motor control building blocks Premium fast current loop control solution Customer provides all other expertise
Specific C2000 devices (low-mid end MCU)	Any C2000 (usually mid-high end MCU)
On-chip ROM libraries and source code	Motor control library with source code
Motor Parameters & Inertia Identification	No motor commissioning
Unified sensorless observer for all 3ph motors	Standard observers
Self-tuned sensorless observer	User-tuned sensorless observers
Self-tuned current controller	User-tuned; servo fast current loop (FCL) option
Premium velocity/position controller	User-tuned standard PID controllers
Motion generation and state machine	User-provided motion control

InstaSPIN[™] microcontrollers

C2000™ microcontrollers with embedded InstaSPIN™ motion control software to identify, tune, and fully control three phase motors in minutes.

Customer challenges	InstaSPIN solutions					
Sensorless observer relies on accurate knowledge of motor parameters	Off-line and Run-time motor parameter identification feature FAST observer relies on fewer parameters					
Tuning observer is extremely challenging, multiple tuning sets over operating range	FAST observer self-tunes and works over entire operating range					
Observers are not high performance	FAST observer reliable at much lower frequency, under dynamic transients, can recover from stalls, and can track an already moving motor even with inverter un-powered (flying-start)					
Start-up from zero speed and transitions through zero speed are extremely challenging	Start-up from zero speed with 100% torque capability, angle convergence within 1 electrical cycle, stable through zero speed during CW/CCW movements					
Tuning torque/current controllers challenging, especially when unsure of observer tuning	Torque/current controllers automatically set to stable values, user adjustable after performance testing					
Tuning velocity controller challenging for inexperienced	Simple step response how-to provided, or advanced single-variable tuning available					
Low fidelity speed estimates based on estimated angle	High fidelity speed estimate calculated independent of angle, with high speed angle compensation feature and unique torque estimate					
InstaSPIN-FOC: Identify, tune, and run best sensorless FOC in minutes						

FAST™ Sensorless Observer

- Works on all three phase motors
- Field orientation converges within first electrical cycle
- Angle accuracy within +/-1 count of a 1024 encoder steady state
- Start-up from zero speed at full torque
- Stable across all corners in all quadrants
- Stall recovery without losing field orientation

Identify, tune, and run best sensorless FOC in minutes

InstaSPIN™-FOC

Dramatically reduce challenges of sensorless FOC system development

- Motor parameters identified
- No tuning of FAST required (vs. other algos)
- Current loop automatically tuned
- Speed loop tuning set for evaluation
- "Instant" stable system to start development
- Run-time parameter compensation
- Modes & features for common system challenges: start-up, at & through zero speed, field weakening, high modulation, high-speed, PowerWarp™ for induction motors

Benefit from high fidelity, low latency feedback signals

- Flux signal for field weakening / boosting
- Angle accuracy over widest range
- Speed of rotor with near zero phase lag
- Torque signal is high bandwidth and high accuracy, enabling monitoring and control of loads and flows

www.ti.com/instaspinfoc

InstaSPIN-MOTION

Simplifies design, Improves performance for Servo Control

Robust position/velocity control for the real mechanics of the system

- IDENTIFY: System inertia identification used as input for the most accurate control
- CONTROL: SpinTAC™ replaces standard PI and provides more accurate performance across the full operating range through real-time disturbance estimation and cancellation

Simple Tuning

- 1-variable "gain" allows for simple, instant tuning
- Eliminates gain staging single tuning is effective over the ENTIRE operating range

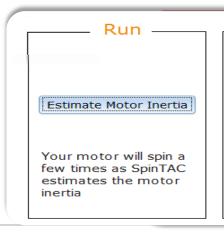
Easy motion design

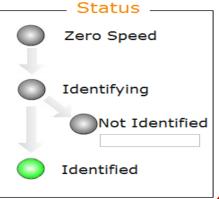
- MOVE: Motion engine calculates the ideal reference signal (with feed forward) based on user-defined parameters.
 Supports standard industry curves, and LineStream's proprietary "smooth trajectory" curve
- PLAN: Motion Sequence Planner operates user-defined state transition maps

InstaSPIN-MOTION: SpinTAC™ components

Account for mechanical inertia - Robust speed control - Simplified tuning

Identify:


Measure Inertia

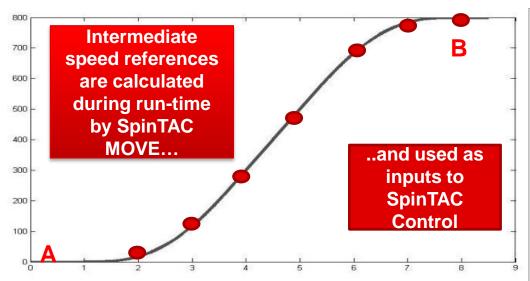

- Inertia is important for accurate control
- Short acceleration test to identify system inertia

Control

Maximum control, minimum effort

- Disturbance-rejecting controller
- Single variable to tune response
- Typically effective across full variable speed and load range

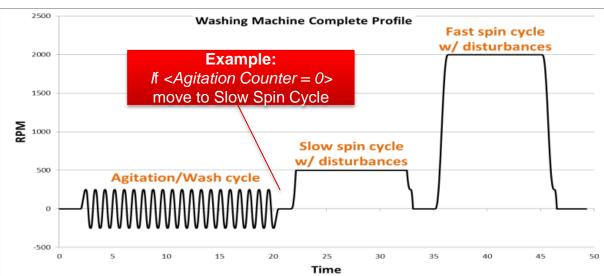
- I. Press button to measure inertia
- 2. Adjust knob to tune


InstaSPIN-MOTION: SpinTAC™ components

Integrated movement and motion design

Move:

Build trajectories


- Select Motion Type for Speed A to B
- Define constraints (accel, jerk)
- Move generates the ideal curve

Plan:

Design motion sequence

- Define operating states and transitions
- Connect logic-based Moves
- Execute the motion sequence

TI's InstaSPIN™-enabled real-time controllers

TI's InstaSPIN three-phase motor control solutions are enabled by special libraries in the read-only memory (ROM) of Piccolo microcontrollers (MCUs) that allow you to create products with improved efficiency, performance, and reliability, while reducing development time from months to minutes. TI's InstaSPIN-enabled MCUs provide expertise to designers of sensorless (velocity and torque) or sensored (position, velocity and torque) motor control applications.

16x16 mm
F2806x MCU
F2806x MCU
Texas Instruments 14x14 mm
14x14 mm
F2805x MCU

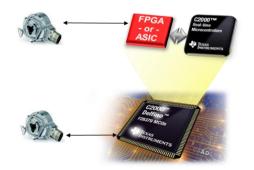
TEXAS

MENTS	
mm	
02x U	
LUMENTS	

		InstaSPIN Solution	MHz	FPU	CLA Co- Processor	Motors	Flash (KB)	12b ADC Chs	PGA	CAN	QEP	USB	SPI	UART	I2C	Pins	Temp												
	F28069M	-MOTION			Y		256																						
	F28068M	-MOTION					256																						
Í	F28069F	-FOC	90	Y	Y	1 or 2	256	16 or 12		1	1	1	2	2	1	100/ 80													
n more	F28068F	-FOC					256																						
Click a part number to learn more	F28062F	-FOC					128										-40 to 105° C												
umber	F28054M	-MOTION					128										-40 to 125° C												
a part n	F28054F	-FOC	60			1 or 2	128	16	4	1	1		1	3	1	80	Q100												
Click	F28052M	-MOTION	60			1 or 2	64	16	4	'	'		'	3	'	80													
	F28052F	-FOC					64																						
	F28027F	-FOC	60	_	_	1	64	13	_		_		1	1	1	48													
	F28026F	-FOC				60	50	,				_	-			J	_	,	32	10								40	

InstaSPIN™ additional resources

Tl.com/instaspin


InstaSPIN-FOC & InstaSPIN-MOTION

↓↑ Part number	↓↑ controlCARD	↓↑ Driver	↓↑ Power range	↓† Software	↓↑ GUI
BOOSTXL-DRV8301	Piccolo F28027F LaunchPad Piccolo F28069M LaunchPad	DRV8301	6-24V, 10A	MotorWare	UNIVERSAL InstaSPIN GUI
BOOSTXL-DRV8305EVM	Piccolo F28027F LaunchPad Piccolo F28069M LaunchPad	DRV8305	4.4-45V, 15A	MotorWare	UNIVERSAL InstaSPIN GUI
DRV8301-69M-KIT	Piccolo F28069M included Piccolo F28054M supported Piccolo F28027F + Emulator supported	DRV8301	6-60V, 40A	MotorWare	InstaSPIN-FOC & -MOTION UNIVERSAL InstaSPIN GUI
DRV8305-Q1EVM	Soldered on-board TMS320F28027F	DRV8305	4.4-45V, 25A	MotorWare	UNIVERSAL InstaSPIN GUI
DRV8312-69M-KIT	Piccolo F28069M included Piccolo F28054M supported Piccolo F28027F + Emulator supported	DRV8312	12-52V, 3.5A	MotorWare	InstaSPIN-FOC & -MOTION UNIVERSAL InstaSPIN GUI
TMDSHVMTRINSPIN	Piccolo F28069M & Piccolo F28027F included Piccolo F28054M supported	Powerex IPM	50-350V, 10A	MotorWare	InstaSPIN-FOC & -MOTION UNIVERSAL InstaSPIN GUI

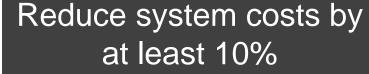
C2000[™] DesignDRIVE

System BOM savings

- Integrated analog sensing circuits
- Integrated encoder control for digital and analog sensors
- Reduced PCB space requirements

System know-how

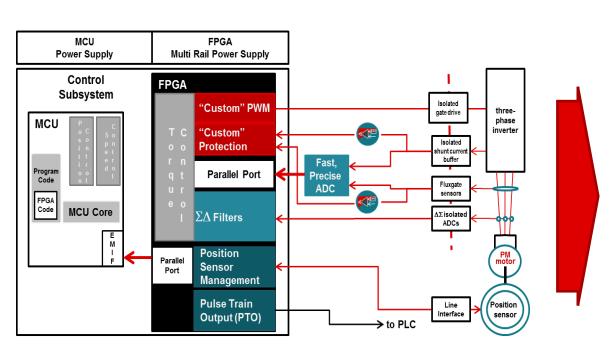
- Reference designs
- Development kits
- Example software
- On line training
- Scalable solutions

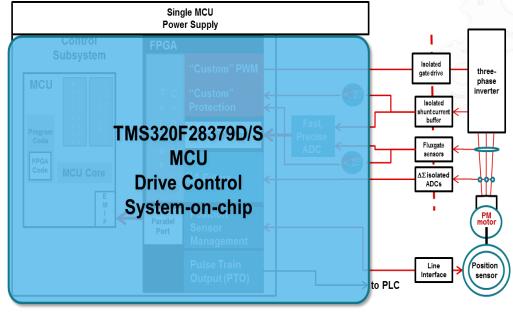

Save months of engineering effort

System performance

- Integration reduces data latency; improving critical loop times
- Precision analog for precision control
- Differentiated architecture for realtime computational power

Create high value industrial drive products

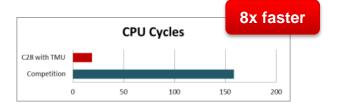


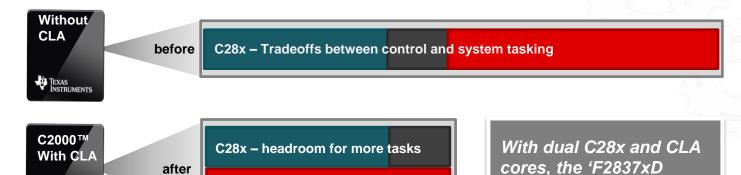

Innovative integration *DesignDRIVE BOM savings*

DesignDRIVE

Today's Industrial Drives \$\$\$\$\$

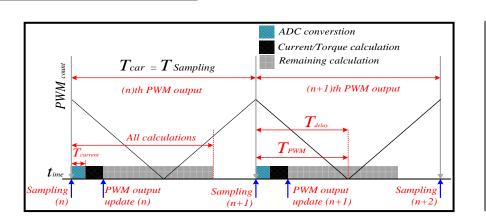
C2000™ DesignDRIVE-enabled Industrial Drives \$\$


High performance delivers high value DesignDRIVE system performance


TEXAS INSTRUMENTS

C28x™ TMU accelerated Park transform

$$\begin{array}{c} \mathbf{Park} & \begin{bmatrix} i_d \\ i_q \\ i_o \end{bmatrix} = \begin{bmatrix} \cos(\theta) & \sin(\theta) & 0 \\ -\sin(\theta) & \cos(\theta) & 0 \\ 0 & 0 & 1 \end{bmatrix} X \begin{bmatrix} i_\alpha \\ i_\beta \\ i_o \end{bmatrix}$$



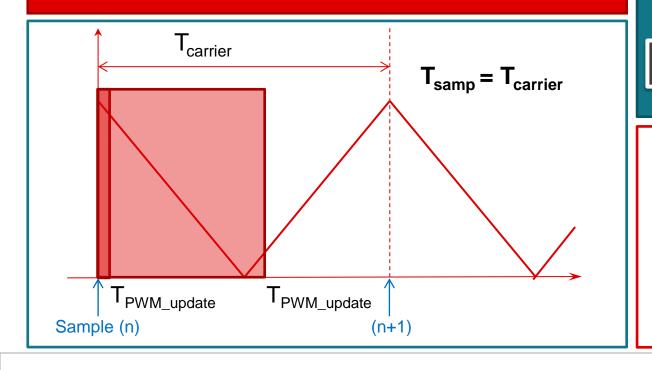
CLA – loop time improvements

Integrated **Analog to Digital Conversion** With Digital Post-Processing

- Up to 16bit, 4MSPS
- Up to 12bit, 12MSPS
- Zero wait-state reads
- Zero jitter
- Multi-port access

after

Fastest Current Loop on a Microcontroller (FCL)

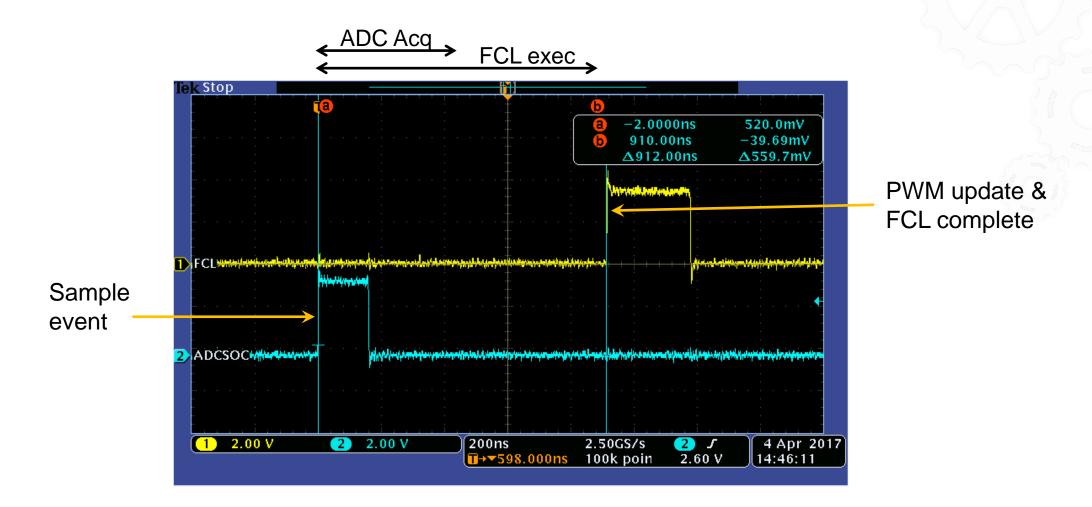

MCUs deliver 800 MIPS!

- Applies new control techniques
- Leverages C2000 performance features
- Enables submicrosecond loop times

Pulse Width Modulation (PWM) update traditional vs. sub-cycle

- Sense current and calculate as fast as possible
- Update PWM as soon as the calculation is done

Try to make $T_{PWM_update} < 1\% \text{ of } T_{samp}$


But, this needs tremendous compute power

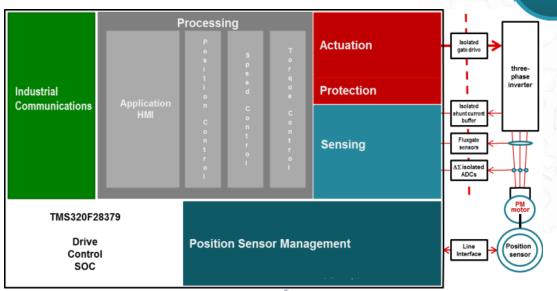
Built for real-time compute performance

FCL - PWM update timing using the 'F28379D MCU

Ready-to-use on-line solutions and support DesignDRIVE systems know-how

DesignDRIVE Kits	DesignDRIVE Software	Reference Designs	On-line Training
	DesignDRIVE Software Control Position Manager Diagnostics Safety Bias Power	TID 'ésigns	DesignDRIVE
TMDXIDDK379D LAUNCHXL-F28379D	 Download Sensored-FOC DesignDRIVE software ✓ Fast Current Loop ✓ Position Manager ✓ EtherCAT® support 	TIDM-SERVODRIVE TIDM-DELFINO-ETHERCAT	Go to video curriculum

Get started with C2000 know-how

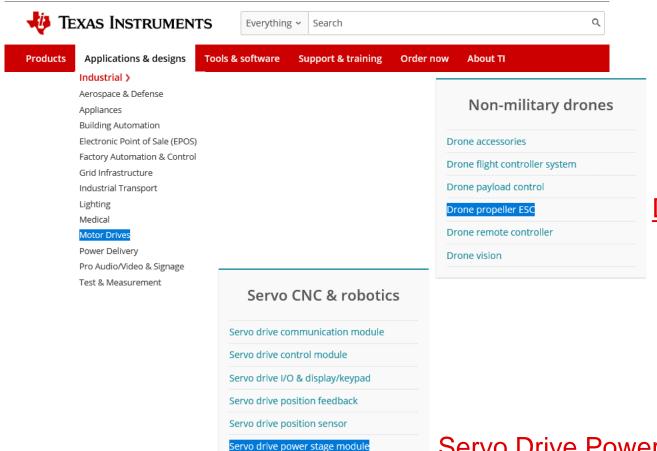



Know-how to create MANY designs for Industrial Drives...

Tl.com/c2000Drives

Jumpstart industrial drives and servo control evaluation and development with:

- Examples of vector control of motors, incorporating torque, speed and position
- Multiple current sense topologies
- Analog and digital position sensor interfaces
- Flexible real-time connectivity
- Series of platform releases



TI.com/tool/TMDXIDDK379D

DesignDRIVE

Reference designs on Tl.com

Servo drive power supply module

Visit <u>our applications page</u> to find reference designs for your specific end equipments

Drone Propeller ESC

Servo Drive Power Stage Module

Thank you

http://www.ti.com/c2000motor

