

Using fully differential amplifiers to optimize high speed signal chain interfaces

Agenda

- **What is a fully differential amplifier (FDA)?**
- **Solving interface challenges using an FDA**
	- Overcoming challenges of balun
	- Level shifting using the FDA
	- Optimizing stability of FDA for low gain
	- Buffering a clock source using FDA
	- DAC buffering to drive single-ended load
- **Summary**
- **Q/A (15min)**

What is a fully differential amplifier (FDA)?

- **Processes the difference voltage between its two inputs converting differential input to differential output**
- **Converts single-ended input to differential output**
- **FDA's output common mode voltage can be controlled independently of the differential voltage via the VOCM pin**

Inside a typical FDA

• **Integrated fully-differential high AOL amplifier**

Integrated wide-bandwidth, common-
AV_{OUT} mode foodbook orror amplifier **mode feedback, error amplifier**

> • **Integrated resistors to detect the average output common-mode voltage**

• **Integrated mid-supply, common mode set resistors**

Differential signaling benefits

- **Higher output voltage swing for a given power rail**
- **Increased immunity to noise as any signal common to both inputs is cancelled**
- **Lower even-order harmonics with differential signaling**

Three rules governing FDA operation

FDA common mode voltages

FDA differential voltages

FDA output signal

Impedance matching differential input of FDA

- **Signal gain of amplifier, G^V , is conventionally** defined from V_{IN} signal **at R_G** resistor to V_{OUT} **signal of FDA**
- **G^V is independent of source and load**

Example 1: Impedance match amplifier to $R_s = 50$ **ohms with** $G_v = 1$ **V/V** R_G = 50 ohms, R_F = 50 ohms (R_F is too low!!)

Impedance matching differential input of FDA

• R _T is used when R _G must be set greater than the input impedance, R _S, in **order to achieve the desired gain target**

Example2: Impedance match amp to $R_s = 50$ **ohms with** $G_v = 1$ **V/V**

 \cdot **R**_G = 200 ohms, R_F = 200 ohms, R_T =133 ohms

Impedance matching single-ended input of FDA

LMH5401-SP Electrical Characteristics: $V_s = 5 V$ 7.5

- **With only one side driven, input pins of amplifier are no longer a fixed DC voltage - there is a AC component**
- **Common mode compliance on the input nodes to amplifier becomes more of a concern as inputs move with AC signal**

FDA: Generalized transfer function

 $A \Rightarrow$ Forward open-loop gain of system

 $\beta \Rightarrow$ Reverse transfer function of feedback path

 $V_x \Rightarrow$ Fraction of system output fed back to input

$$
V_{OUT} = A(V_{IN} - V_X)
$$
\n
$$
V_{OUT} = A(V_{IN} - \beta \cdot V_{OUT})
$$
\n
$$
V_{OUT} = A(V_{IN} - \beta \cdot V_{OUT})
$$
\n
$$
V_{OUT} = A(\gamma_{IV} - \beta \cdot V_{OUT})
$$
\n
$$
V_{OUT} = A(\gamma_{IV} - \beta \cdot V_{OUT})
$$
\n
$$
Gain = \frac{V_{OUT}}{V_{IN}} = \frac{A}{(1 + A \cdot \beta)}
$$
\n
$$
\tag{5}
$$

FDA: Generalized transfer function

$$
A_{CL} = \frac{A_{OL}}{1 + A_{OL}} \beta, \text{ As } A_{OL} \to \infty, \quad A_{CL} = \frac{1}{\beta}.
$$

9

$$
A_{OL} \beta \to \text{Loop Gain.}
$$

Frequency @ which $|A_{OL} \beta| = 1$, is the (A_{CL}) -3dB BW

FDA solving signal chain challenges

• **Solving interface challenges using an FDA**

- Overcoming challenges of balun
- DC level shifting
- Optimizing stability of FDA for low gain
- Clock buffer using FDA
- DAC output buffering

FDA replacing balun to drive high speed ADC

Conventional Balun Approach

FDA compared to balun

FDA excel calculator tool

- <https://e2e.ti.com/support/amplifiers/f/14/t/771636> C D E F. G **LMH5401-SP SE-DIFF CALCULATOR** Given Gv, Rs, and Rf, solve for Rf*, Rt, Rg1, and Rg2 such that input impedance is matched in single-ended input to differential output configuration. $\overline{2}$ $\overline{4}$ **Example Circuit showing naming Convention** $\overline{5}$ **INPUT Parameter** Value **Units LMH5401-SP Default EVM Config: 7.1V/V** V/V 8 Enter Target Voltage Gain, Gv (at AMPOUT) 7.100 50 9 Enter Source Impedance, Rs ohms **VCC** P_D 10 Enter Target Feedback Resistance, Rf 225 ohms Rt 1.15k 11 Rf1* 200 **U2 LMH5401 SP** VIN: ∼ $12[°]$ $Point + 40$ **Rs 50** Ro1112.7 **13 CALCULATED Solution** Value **Units** 14 Voltage Gain, Gv (V/V) 7.114 V/V Rload 10 VOCMI **LMH5401 SP** 15 Voltage Gain, Gv (dB) 17.043 dB 灬 **Rout-40** 16 Realizable Rf* 200.0 ohms Rg2 60.4 Rf2* 200 17 Realizable Rt 1150.0 ohms $\lambda \lambda \lambda -$ 18 Realizable Rg1 12.7 ohms 19 Realizable Rg2 60.4 ohms **VEE** 20 Zin (looking into Rt) 49.8 ohms 21 Noise Gain, G_N 4.725 V/V
- **Calculator solves for voltage gain at AMPOUT node, node internal to device inside series 10 ohms on each output. Aligns with datasheet specifications.**

Power gain, voltage gain and reference plane

Power gain, voltage gain and reference plane

SE-DE Small Signal Frequency Response vs Gain

- **Frequency response normalized to 0dB**
- **Both power gain, G^P , and voltage gain, G^V shown in legend**
- **Power gain assumes matched input and output impedance.**

Unmatched load impedance

TEXAS INSTRUMENTS

SBOS

TINA simulation single-ended in to differential out

Low gain single-ended to differential input

• **Design for 0dB power gain from source to load. (Gv_load = 3 dB, Gv_AMPOUT = 2.8 V/V = 9dB)**

FDA Stability

Barkhausen Stability Criterion

 $A_{CL} = \frac{A_{OL}}{1 + A_{OL}}$

When $|A_{OL}\beta| = 1$, and phase shift around the loop is 180°,

 $A_{CL} = \frac{A_{OL}}{1 - 1} = \infty$ 2

the denominator is unbounded and the system is unstable.

Loop Gain = $A_{OL}\beta = \frac{A_{OL}}{\left(\frac{1}{\beta}\right)} = \left(\left(A_{OL}\right) - \left(\frac{1}{\beta}\right)\right)_{dB}$ 3

Loop Gain crossover occurs when $|A_{OL}\beta| = 1$, $\Rightarrow |A_{OL}| = \left|\frac{1}{\beta}\right|$

4

Low gain single-ended to differential input

- **Design Targets:**
	- **Gp = 0dB**
	- \cdot **Gv_load** = 3 **dB**
	- **Gv_AMPOUT = 9.0 dB**
	- **Gv_AMPOUT = 2.8 V/V**
- **Simulated Results:**
	- $Gp = -0.07dB$
	- **Gv_load = 2.93 dB**
	- **Gv_AMPOUT = 8.3dB**
	- **Gv_AMPOUT = 2.6 V/V**
	- **AC Peaking = 5.8 dB**

Noise gain compensation for low signal gains

Noise gain compensation for low signal gains

Noise shaping for improved stability

- **Shunt C can be added in series with resistor to shape noise**
- **At low frequencies capacitor is open, noise gain is unaffected (remains low) where stability is not a problem**
- **At higher frequencies, capacitor shorts presenting shunt path to circuit and increasing noise gain, thus, decreasing AC gain peaking.**

Low gain single-ended to differential freq. response

Sds21 (dB)

- **Sds21 is:**
	- **S-parameter measurement using vector network analyzer instrument**
	- **Power gain**
- **Optimal noise gain compensation resistor determined for each signal gain curve**

FDA used as a clock buffer

- **FDA replaces balun where single ended clock source drives differential input of clock distributor**
- **Gain of FDA overcomes the challenge of balun insertion loss and transmission line losses where clock source and clock distribution device are not in close proximity**
- **Additive jitter of FDA minimal**

FDA used as a clock buffer

- **R&S SMA100B Signal Generator Phase Noise**
- **Integrated RMS jitter = 28.789 fsec at 1.5GHz**

- **SMA100B + LMH5401-SP Phase Noise**
- **Integrated RMS jitter = 31.826 fsec at 1.5GHz**

FDA used as a DAC buffer

• **Spice model available to evaluate current sink DAC model (DAC5675A) driving LMH5401-SP**

FDA differential input to single-ended output

• **Using one output of FDA is feasible if HD2 and HD3 requirements are relaxed**

FDA used to level shift common mode

• **[insert content]**

TI devices referenced in this presentation

TEXAS INSTRUMENTS

TI devices referenced in this presentation

Summary

- **Fully differential amplifiers are extremely flexible in their use case configurations**
- **A single FDA part number, such as the LMH5401-SP, that offers wideband operation and is space qualified with TID and SEE reports published, alleviates the challenge of procuring several unique devices for different signal chain needs.**
- **TI support is available to help you meet your design requirements. Please ask.**
	- **<https://e2e.ti.com/support>**

Resources

- **[TI Space Products Guide –](http://www.ti.com/lit/pdf/SLYT532F) [Updated September, 2018](http://www.ti.com/lit/pdf/SLYT532F)**
- **[New TI Aerospace & Defense Portal](http://www.ti.com/applications/industrial/aerospace-defense/overview.html)**
- **[Radiation Handbook: Comprehensive radiation guide built using decades of knowledge from across TI's](http://www.ti.com/radbook) [expert teams](http://www.ti.com/radbook)**
- **LMH5401-SP Tools**
	- **[LMH5401-SP Spice Model](http://www.ti.com/general/docs/lit/getliterature.tsp?baseLiteratureNumber=sbomam0&fileType=zip)**
	- **[LMH5401-SP: Single-ended to Differential Circuit Design Calculator](https://e2e.ti.com/support/amplifiers/f/14/t/771636)**
- **Content References**
	- **[TI Precision Labs Training –](https://training.ti.com/ti-precision-labs-op-amps) [FDAs](https://training.ti.com/ti-precision-labs-op-amps)**
	- **[Analysis of fully differential amplifiers,](http://www.ti.com/lit/an/slyt157/slyt157.pdf) Application note**
	- **[Fully differential amplifiers](http://www.ti.com/lit/an/slyt165/slyt165.pdf), Application note**
	- **[Input impedance matching with fully differential amplifiers,](http://www.ti.com/lit/an/slyt310/slyt310.pdf) Application note**
	- **[Output impedance matching with fully differential amplifiers](http://www.ti.com/lit/an/slyt326/slyt326.pdf), Application note**
	- **[Using fully differential op amps as attenuators, Part 1,](http://www.ti.com/lit/an/slyt336/slyt336) Application note**
	- **[Using fully differential op amps as attenuators, Part 2,](http://www.ti.com/lit/an/slyt341/slyt341.pdf) Application note**
	- **[Using fully differential op amps as attenuators, Part 3,](http://www.ti.com/lit/an/slyt359/slyt359.pdf) Application note**
	- **[Stabilizing Differential Amplifiers as Attenuators,](http://www.ti.com/lit/ug/tiduai1/tiduai1.pdf) TI Design**
	- **[How to use a fully differential amplifier as a level shifter](https://e2e.ti.com/blogs_/b/analogwire/archive/2016/07/13/how-to-use-a-fully-differential-amplifier-as-a-level-shifter), TI Blog**

Online technical training from Texas Instruments

Coming up: Implementing high current applications using POL devices – March 20th, 2018 Learn about how to parallel Point of Load (POL) LDOs and DC-DC converters to help meet high current requirements. [Register](https://training.ti.com/space-series-iii-implementing-high-current-applications-using-pol-devices?cu=977199)

Coming up: Understanding cosmic radiation effects on electronics – March 27th, 2018 During this webinar we will cover different radiation effects, how it impacts electronic circuits and compare space rated and commercial off the shelf (COTS) devices. [Register](https://training.ti.com/space-series-iv-understanding-cosmic-radiation-effects-electronics?cu=977199)

Aerospace & Defense Training Series – Available Now

The Aerospace and Defense Training Series is your one-stop portal for product specific and system applications training material. Learn about the latest solutions to help you simplify designs, improve performance and meet stringent project requirements. [Browse videos now!](https://training.ti.com/space-High-Reliability-learning-center)

Additional information

•**ti.com/product/LMH5401-SP** •**ti.com/product/THS4511-SP** •**ti.com/product/THS4513-SP**

© Copyright 2019 Texas Instruments Incorporated. All rights reserved.

This material is provided strictly "as-is," for informational purposes only, and without any warranty. Use of this material is subject to TI's Terms of Use, viewable at TI.com