

Using fully differential amplifiers to optimize high speed signal chain interfaces

Agenda

- What is a fully differential amplifier (FDA)?
- Solving interface challenges using an FDA
 - Overcoming challenges of balun
 - Level shifting using the FDA
 - Optimizing stability of FDA for low gain
 - Buffering a clock source using FDA
 - DAC buffering to drive single-ended load
- Summary
- Q/A (15min)

What is a fully differential amplifier (FDA)?

- Processes the difference voltage between its two inputs converting differential input to differential output
- Converts single-ended input to differential output
- FDA's output common mode voltage can be controlled independently of the differential voltage via the VOCM pin

Inside a typical FDA

Integrated fully-differential high AOL amplifier

Integrated wide-bandwidth, commonmode feedback, error amplifier

Integrated resistors to detect the average output common-mode voltage

Integrated mid-supply, common mode set resistors

Differential signaling benefits

- Higher output voltage swing for a given power rail
- Increased immunity to noise as any signal common to both inputs is cancelled
- Lower even-order harmonics with differential signaling

Three rules governing FDA operation

FDA common mode voltages

FDA differential voltages

FDA output signal

Impedance matching differential input of FDA

- Signal gain of amplifier, G_V, is conventionally defined from V_{IN} signal at R_G resistor to V_{OUT} signal of FDA
- G_v is independent of source and load

Example 1: Impedance match amplifier to $R_s = 50$ ohms with $G_v = 1$ V/V $R_g = 50$ ohms, $R_F = 50$ ohms (R_F is too low!!)

Impedance matching differential input of FDA

• R_T is used when R_G must be set greater than the input impedance, R_S , in order to achieve the desired gain target

Example2: Impedance match amp to $R_s = 50$ ohms with $G_v = 1V/V$

• $R_G = 200$ ohms, $R_F = 200$ ohms, $R_T = 133$ ohms

Impedance matching single-ended input of FDA

LMH5401-SP 7.5 Electrical Characteristics: V_s = 5 V

- With only one side driven, input pins of amplifier are no longer a fixed DC voltage - there is a AC component
- Common mode compliance on the input nodes to amplifier becomes more of a concern as inputs move with AC signal

	PARAMETER	TEST CONDITIONS	SUBGROUP ⁽³⁾	MIN	ТҮР	MAX	UNIT
VICH	Input common-mode high voltage		[1, 2, 3]	(VS+) – 1.41	(VS+) – 1.2		V
VICL	Input common-mode low voltage		[1, 2, 3]		VS-	(VS–) + 0.41	V

FDA: Generalized transfer function

 $A \Rightarrow$ Forward open-loop gain of system

 $\beta \Rightarrow$ Reverse transfer function of feedback path

 $V_{\chi} \Rightarrow$ Fraction of system output fed back to input

$$V_{OUT} = A(V_{IN} - V_X) \qquad 1 \qquad V_{OUT} = A(V_{IN} - \beta \cdot V_{OUT}) \qquad 3 \\ V_{OUT} (1 + A \cdot \beta) = V_{IN} \qquad 4 \\ V_X = \beta \cdot V_{OUT} \qquad 2 \qquad Gain = \frac{V_{OUT}}{V_{IN}} = \frac{A}{(1 + A \cdot \beta)} \qquad 5$$

FDA: Generalized transfer function

7

Signal Gain =
$$-\frac{R_F}{R_G}$$

 $\beta = R_G/(R_F+R_G)$
 F_{NOISE} Gain = $\frac{1}{Feedback}$ Factor
Noise Gain = $\frac{1}{\beta} = 1 + \frac{R_F}{R_G}$
Signal Gain \neq Noise Gain

$$A_{CL} = \frac{A_{OL}}{1 + A_{OL}\beta}, \text{ As } A_{OL} \to \infty, \quad A_{CL} = \frac{1}{\beta} \text{ . } 9$$

$$A_{OL}\beta \to \text{Loop Gain.}$$
Frequency @ which $|A_{OL}\beta| = 1$, is the (A_{CL}) -3dB BW

FDA solving signal chain challenges

Solving interface challenges using an FDA

- Overcoming challenges of balun
- DC level shifting
- Optimizing stability of FDA for low gain
- Clock buffer using FDA
- DAC output buffering

FDA replacing balun to drive high speed ADC

Conventional Balun Approach

FDA compared to balun

Parameter	Balun	FDA		
Size	Larger size (66 mm ²)	Smaller size (LMH5401-SP: 33mm ²)		
DC coupled	Not suitable for DC coupled application	Suitable for DC coupled applications		
Frequency response	Not suitable for wide bandwidth: Large insertion loss and varies with frequency	Suitable for wide bandwidth: Minimal insertion loss and almost constant across frequency		
Power gain	No power gain - Impedance matching and voltage/current gain are dependent	Supports power gain - Impedance matching and gain are independent		
Buffering	 No buffering Requirement on previous stage to drive filter and ADC input load No reverse isolation 	 Buffered Previous stage is isolated from filter and ADC input load Reverse isolation: Avoids ADC switching components going back to previous stages (ex: antenna) 		
Distortion	Worse distortion due to phase unbalance	Better distortion with wideband amplifiers		
Noise	Less noise (dependent on insertion loss)	Adds noise		
Temperature range	Limited temp range (ex: -20 to 85C) Large gain variation across temperature	Wide temp range (ex: -55°C to +125°C for LMH5401-SP) Small gain variation across temperature		
Reliability	Less reliable due to mechanical construction (ex: vibration during flight)	Reliable due to monolithic implementation		

FDA excel calculator tool

https://e2e.ti.com/support/amplifiers/f/14/t/771636	
---	--

 Calculator solves for voltage gain at AMPOUT node, node internal to device inside series 10 ohms on each output. Aligns with datasheet specifications.

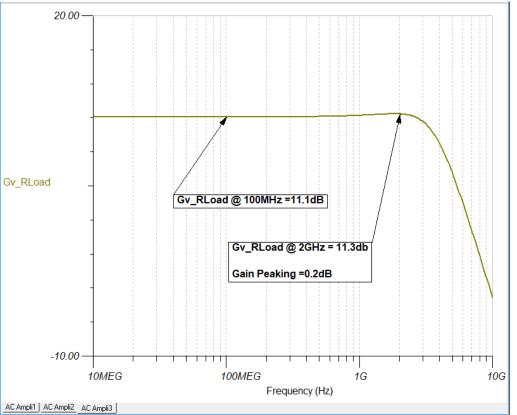
Power gain, voltage gain and reference plane

Power gain, voltage gain and reference plane

SE-DE Small Signal Frequency Response vs Gain

- Frequency response normalized to 0dB
- Both power gain, G_P, and voltage gain, G_V shown in legend
- Power gain assumes matched input and output impedance.

Unmatched load impedance


5dB improvement in OIP3 for same signal at load

TINA simulation single-ended in to differential out

Low gain single-ended to differential input

	LMH5401-SP	SE-DIF	c F	D		
1	CALCULA	TOR				
	Given Gv, Rs, and Rf, solve for Rt, Rg1, and Rg2 such that					
	input impedance is matched in single-ended input to					
2	differential output configuration					
3						
4						
5						
6						
7	INPUT Parameter	Value	Units			
8	Enter Target Voltage Gain, Gv (at AMPOU	2.810	v/v			
9	Enter Source Impedance, Rs	50	ohms			
10	Enter Target Feedback Resistance, Rf	225	ohms			
11						
12						
13	CALCULATED Solution	Value	Units			
14	Voltage Gain, Gv (V/V)	2.793	V/V			
15	Voltage Gain, Gv (dB)	8.922	dB			
16	Realizable Rf*	200.0	ohms			
	Realizable Rt	84.5	ohms			
18	Realizable Rg1	69.8	ohms			
19	Realizable Rg2	100.0	ohms			
20	Zin (looking into Rt) Noise Gain, G _N	50.0 3.250	ohms V/V			

 Design for 0dB power gain from source to load. (Gv_load = 3 dB, Gv_AMPOUT = 2.8 V/V = 9dB)

FDA Stability

Barkhausen Stability Criterion

 $A_{CL} = \frac{A_{OL}}{1 + A_{OL}\beta}, \qquad 1$

When $|A_{OL}\beta| = 1$, and phase shift around the loop is 180°,

 $A_{CL} = \frac{A_{OL}}{1-1} = \infty$

the denominator is unbounded and the system is unstable.

Loop Gain = $A_{OL}\beta = \frac{A_{OL}}{\left(\frac{1}{\beta}\right)} = \left(\left(A_{OL}\right) - \left(\frac{1}{\beta}\right)\right)_{dB}$ 3

Loop Gain crossover occurs when $|A_{OL}\beta| = 1$, $\Rightarrow |A_{OL}| = \left|\frac{1}{\beta}\right|$

4

Low gain single-ended to differential input

- Design Targets:
 - **Gp** = **0**d**B**
 - Gv_load = 3 dB
 - Gv_AMPOUT = 9.0 dB
 - Gv_AMPOUT = 2.8 V/V
- Simulated Results:
 - Gp = -0.07dB
 - Gv_load = 2.93 dB
 - Gv_AMPOUT = 8.3dB
 - Gv_AMPOUT = 2.6 V/V
 - AC Peaking = 5.8 dB

Noise gain compensation for low signal gains

Noise gain compensation for low signal gains

Noise shaping for improved stability

- Shunt C can be added in series with resistor to shape noise
- At low frequencies capacitor is open, noise gain is unaffected (remains low) where stability is not a problem
- At higher frequencies, capacitor shorts presenting shunt path to circuit and increasing noise gain, thus, decreasing AC gain peaking.

Low gain single-ended to differential freq. response

- Sds21 is:
 - S-parameter measurement using vector network analyzer instrument
 - Power gain
- Optimal noise gain compensation resistor determined for each signal gain curve

G _P (dB)	G _{VAMPOUT} (dB)	AC Peaking (dB)	3DB_BW (MHz)	G _N (V/V)
3.0	12.0	0.84	3742	4.77
0.0	9.0	0.84	3706	4.76
-3.3	5.7	0.65	3670	5.07
-6.0	3.0	1.40	3670	4.74

FDA used as a clock buffer

- FDA replaces balun where single ended clock source drives differential input of clock distributor
- Gain of FDA overcomes the challenge of balun insertion loss and transmission line losses where clock source and clock distribution device are not in close proximity
- Additive jitter of FDA minimal

FDA used as a clock buffer

- R&S SMA100B Signal Generator Phase Noise
- Integrated RMS jitter = 28.789 fsec at 1.5GHz

- SMA100B + LMH5401-SP Phase Noise
- Integrated RMS jitter = 31.826 fsec at 1.5GHz

FDA used as a DAC buffer

 Spice model available to evaluate current sink DAC model (DAC5675A) driving LMH5401-SP

FDA differential input to single-ended output

• Using one output of FDA is feasible if HD2 and HD3 requirements are relaxed

FDA used to level shift common mode

• [insert content]

TI devices referenced in this presentation

TI devices referenced in this presentation

Summary

- Fully differential amplifiers are extremely flexible in their use case configurations
- A single FDA part number, such as the LMH5401-SP, that offers wideband operation and is space qualified with TID and SEE reports published, alleviates the challenge of procuring several unique devices for different signal chain needs.
- TI support is available to help you meet your design requirements. Please ask.
 - <u>https://e2e.ti.com/support</u>

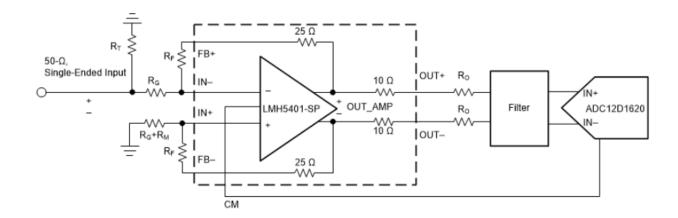
Resources

- <u>TI Space Products Guide Updated September, 2018</u>
- New TI Aerospace & Defense Portal
- <u>Radiation Handbook: Comprehensive radiation guide built using decades of knowledge from across TI's</u>
 <u>expert teams</u>
- LMH5401-SP Tools
 - LMH5401-SP Spice Model
 - LMH5401-SP: Single-ended to Differential Circuit Design Calculator
- Content References
 - TI Precision Labs Training FDAs
 - Analysis of fully differential amplifiers, Application note
 - Fully differential amplifiers, Application note
 - Input impedance matching with fully differential amplifiers, Application note
 - Output impedance matching with fully differential amplifiers, Application note
 - Using fully differential op amps as attenuators, Part 1, Application note
 - Using fully differential op amps as attenuators, Part 2, Application note
 - Using fully differential op amps as attenuators, Part 3, Application note
 - Stabilizing Differential Amplifiers as Attenuators, TI Design
 - How to use a fully differential amplifier as a level shifter, TI Blog

Online technical training from Texas Instruments

Coming up: Implementing high current applications using POL devices – <u>March 20th, 2018</u> Learn about how to parallel Point of Load (POL) LDOs and DC-DC converters to help meet high current requirements. <u>Register</u>

Coming up: Understanding cosmic radiation effects on electronics – <u>March 27th, 2018</u> During this webinar we will cover different radiation effects, how it impacts electronic circuits and compare space rated and commercial off the shelf (COTS) devices. <u>Register</u>


Aerospace & Defense Training Series – Available Now

The Aerospace and Defense Training Series is your one-stop portal for product specific and system applications training material. Learn about the latest solutions to help you simplify designs, improve performance and meet stringent project requirements. <u>Browse videos now</u>!

Additional information

ti.com/product/LMH5401-SP
ti.com/product/THS4511-SP
ti.com/product/THS4513-SP

© Copyright 2019 Texas Instruments Incorporated. All rights reserved.

This material is provided strictly "as-is," for informational purposes only, and without any warranty. Use of this material is subject to TI's **Terms of Use**, viewable at TI.com