

TI Precision Labs – ADCs

Presented by Alex Smith Prepared by Dale Li

Schottky Diode vs PN Diode

Characteristic	Schottky Diode	PN Junction Diode		
Junction Type	Metal-semiconductor	Semiconductor-semiconductor		
Forward Voltage	Small - typically 0.3V	Large - typically 0.7V		
Capacitance and Variation	Lower	Higher		
Reverse Leakage Current	Higher current but less temperature dependence	Lower current, but greater temperature dependence		
Reserve Voltage	Lower	Higher		
Switching speed and Recovery time	Faster because of majority carrier transport	Limited by the recombination time of injected minority carriers		

I-V Characteristic

Unidirectional TVS Diode (Transient Voltage Suppressor)

Bidirectional TVS Diode (Transient Voltage Suppressor)

Symbol	Parameter			
V_{BR}	Breakdown voltage			
V_R	Stand-off voltage			
V_{C}	Clamping voltage		l _{BR}	
V_{F}	Forward voltage drop	$V_C V_{BR} V_R$	<u> </u>	
I_{BR}	Breakdown Current @ V _{BR}		'R	
I _R	Reverse Leakage @ V _R			$V_R V_{RR}$
l _F	Forward Current @ V _F		`I _{BR}	
I PP	Peak Pulse current @ V _c			
	TVS Bi	•		

TVS vs. Zener

- TVS Diode
 - Solid state PN junction
 - Designed for operation in reversebreakdown region only during overvoltage events
 - Junction area sized to conduct significant current and absorb significant power
 - Specifically designed for large transients such as ESD
 - Can react to overvoltage in picoseconds

- Zener
 - Solid state PN junction
 - Designed for full-time operation in reverse-breakdown region
 - Ideal for voltage regulation
 - Slower reaction time
 - Lower current/power capability

Current and Power Ratings on TVS diodes

PART NUMBER	PULSE DURATION, t _D (µs)	PEAK PULSE POWER P _{PP} (W)		MAX. CLAMPING VOLTAGE V _C	PEAK PULSE CURRENT I _{PP} (A)	
		+25°C	+85°C	AT I _{PP} (V)	+25°C	+85°C
SMF13CA	10/1000	200	120	21.5	9.3	5.6
	8/20	950	570	21.5	44.2	26.5

Current and Power Ratings on TVS diodes

Thanks for your time! Please try the quiz.

Questions: External EOS Protection Devices

- 1. What are the main reasons to use a Schottky diode rather than a PN diode for input protection?
 - a. Low forward voltage
 - b. Fast switching
 - c. High reverse breakdown
 - d. Low leakage current
 - e. Both a and b
 - f. Both c and d
- 2. (T/F) In some cases a PN type diode may be used in place of a Schottky diode because of it's low leakage current.
 - a. True
 - b. False

Questions: External EOS Protection Devices

- 3. What are the main reasons to use a TVS diode rather than a Zener diode for input protection?
 - a. Better accuracy
 - b. Lower noise
 - c. Larger power rating
 - d. Faster switching time
 - e. Both a and b
 - f. Both c and d
- 4. (T/F) The peak power rating will be lower than the continuous power rating on a TVS diode.
 - a. True
 - b. False

Questions: External EOS Protection Devices

- 5. Which of the following is **NOT** true for a TVS diode with a peak pulse power rating of 200W for a 10/1000µs pulse?
 - a. The rise time is 10µs, and the pulse width is 1000µs
 - b. The amplitude of the current will drop to 50% at 1000µs
 - c. The amplitude of the current will drop to 10% at 1000µs
 - d. The power rating will be lower for higher temperature
- 6. If the normal linear input range of the ADC is ±10V, which parameter on the TVS diode should be set to 10V or greater?
 - a. Breakdown voltage
 - b. Stand-off voltage
 - c. Clamping Voltage
 - d. Breakdown Voltage

Thanks for your time!

© Copyright 2019 Texas Instruments Incorporated. All rights reserved.

TEXAS INSTRUMENTS