# **Power-up sequence for FPD-Link devices**

- All FPD-Link data sheets include a recommended power-up sequence.
  - Power-up sequence ensures the circuit blocks are enabled in the expected sequence.
- TI characterizes FPD-Link devices with the data sheet defined power-up sequence:
  - This ensures proper operation.
  - Random behavior results when a device is operated beyond the data sheet spec, which can differ from device to device.





# **Example of possible system/device-level issues:**

If the device is powered up using the incorrect power-up sequence that is not defined in the data sheet, the following issues may occur:

- Blank or flickering screen
- I<sup>2</sup>C communication issue
- Device is in incorrect mode
- Data-bit errors
- PLL locks to the incorrect frequency
- Device starts in a random state for each PDB or power cycle
- · Other system/device-level issues may also occur

#### The system-/device-level issues stated above can lead to the following:

- May not be able to replicate on TI bench when device is powered in the correct power-up sequence.
- Can lead to unstable device behavior, which may vary from device to device.
- Can permanently damage the device.



2

### **Example of power-up sequence: DS90UB926**

#### **Table of Contents**

| 1 | Features                             | 1                    |  |
|---|--------------------------------------|----------------------|--|
| 2 | Applications 1                       |                      |  |
| 3 | Description 1                        |                      |  |
| 4 | Revision History                     |                      |  |
| 5 | Description (continued)              | 4                    |  |
| 6 | <b>Pin Configuration and Functio</b> | ns 5                 |  |
| 7 | Specifications                       |                      |  |
|   | 7.1 Absolute Maximum Ratings         | 8                    |  |
|   | 7.2 ESD Ratings                      |                      |  |
|   | 7.3 Recommended Operating Con        | ditions8             |  |
|   | 7.4 Thermal Information              |                      |  |
|   | 7.5 DC Electrical Characteristics    |                      |  |
|   | 7.6 AC Electrical Characteristics    | 11                   |  |
|   | 7.7 DC and AC Serial Control Bus     | Characteristics 12   |  |
|   | 7.8 Timing Requirements              | 12                   |  |
|   | 7.9 Timing Requirements for the S    | erial Control Bus 13 |  |
|   | 7.10 Switching Characteristics       | 13                   |  |
|   | 7.11 Timing Diagrams                 | 14                   |  |
|   | 7.12 Typical Characteristics         | 17                   |  |
| 8 | Detailed Description                 |                      |  |
|   | 8.1 Overview                         |                      |  |

|    | 8.2  | Functional Block Diagram                        | 18 |
|----|------|-------------------------------------------------|----|
|    | 8.3  | Feature Description                             | 18 |
|    | 8.4  | Device Functional Modes                         | 31 |
|    | 8.5  | Programming                                     | 35 |
|    | 8.6  | Register Maps                                   | 36 |
| 9  | App  | lication and Implementation                     | 48 |
|    | 9.1  | Application Information                         | 48 |
|    | 9.2  | Typical Application                             | 49 |
| 10 | Pow  | er Supply Recommendations                       | 51 |
|    | 10.1 | Power Up Requirements and PDB Pin               | 51 |
| 11 | Lay  | out                                             | 52 |
|    | 11.1 | Layout Guidelines                               | 52 |
|    | 11.2 | Layout Examples                                 | 54 |
| 12 | Dev  | ice and Documentation Support                   | 55 |
|    | 12.1 | Documentation Support                           | 55 |
|    | 12.2 | Receiving Notification of Documentation Updates | 55 |
|    | 12.3 | Community Resources                             | 55 |
|    | 12.4 | Trademarks                                      | 55 |
|    | 12.5 | Electrostatic Discharge Caution                 | 55 |
|    | 12.6 | Glossary                                        | 55 |
| 13 | Mec  | hanical, Packaging, and Orderable               |    |
|    | Info | mation                                          | 55 |



# Example of power-up sequence: DS90UB926

#### 10.1 Power Up Requirements and PDB Pin

When VDDIO and VDD33\_X are powered separately, the VDDIO supply (1.8 V or 3.3 V) must ramp 100  $\mu$ s before the other supply (VDD33\_X) begins to ramp. If VDDIO is tied with VDD33\_X, both supplies may ramp at the same time. The VDDs (VDD33\_X and VDDIO) supply ramp must be faster than 1.5 ms with a monotonic rise. A large capacitor on the PDB pin is required to ensure PDB arrives after all the VDDs have settled to the recommended operating voltage. When PDB pin is pulled to VDDIO = 3 V to 3.6 V or VDD33\_X, TI recommends using a 10-k $\Omega$  pullup and a > 10- $\mu$ F capacitor to GND to delay the PDB input signal.

All inputs must not be driven until VDD33\_X and VDDIO has reached its steady-state value.



Figure 28. Power-Up Sequence of DS90UB926Q-Q1



# **Recommended equipment**

#### Measurement example:

- Oscilloscope to measure the power-up sequence
- Need to probe the following signals to make sure the power-up sequence follow the data sheet power-up sequence

#### For the DS90UB926, the following can be checked:





# **Example of incorrect power sequence**

- When VDDs & PDB are powered separately:
  - The VDDIO supply must ramp 100 µs before the other supply (VDD33) begins to ramp.
  - A large capacitor on the PDB pin is required to ensure PDB arrives after all the VDDs have settled to the recommended operating voltage.
- When PDB pin is pulled to VDDIO or VDD33, TI recommends using a 10-kΩ pullup resistor and a > 10-μF capacitor to GND to delay the PDB input signal.







## **Example of incorrect power sequence**

- If VDDIO is tied with VDD33\_X, both supplies may ramp at the same time:
  - The VDDs (VDD33\_X and VDDIO) supply ramp must be faster than **1.5 mS** with a monotonic rise.
- In the example below, the VDDs are tied together and ramp time is 62 mS
  - This power sequence can lead to system/device level issues because it's not defined in the data sheet



#### Incorrect power-up sequence 🜔

