
Using Deep Learning for Predictive 
Maintenance
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Evolution of maintenance
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Predictive

Use analytics to predict 
failures.



Industry 4.0 and predictive maintenance
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Predictive maintenance employs advanced analytics on the machine data collected from end sensor nodes  to 
draw meaning insight to predict machine failures.
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Why predictive maintenance?
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Lower maintenance 
costs

Extended 
equipment life

Reduced 
downtime

Recover lost 
revenue

Improved 
production
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Examples from real-life scenarios
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• Find defective bearings long before defects are visually seen.

• Find misalignment between two rotating pieces of equipment.

• Recognize when fans become unbalanced.

• Identify when bearings need lubrication.

• Report when an electrical connection needs to be tightened.

• Alert when oil is contaminated or in need of replacement.



Predictive maintenance problems

• Will this equipment fail in a given period of time (next 7 days, next 1 month, 
etc.): Yes or no?

• What is the Remaining Useful Life (RUL) or the Time to First Failure (TFF)? 

• How to quantify wear and tear (of expandable components)?
– Subset of RUL, focused on shorter-leaving subsystems

• Is there an anomaly in equipment behavior?
– Further analysis may provide failure classification.

• How best to optimize equipment settings?

6



Predictive maintenance approaches
• Problem definition: Classification or regression approach

– Classification: Will it fail? 
Multi-class classification: Will it fail for reason X?

– Regression: After how long will it fail?

• Methods: 
– Traditional machine learning:

• Decision trees: Random forests, gradient boosting trees, isolation forest
• SVM (Support Vector Machines)

– Deep learning approach:
• CNN (Convolution Neural Network)
• RNN (Recurrent Neural Network)/LGTM (Long Short Term Memory)/GRU (Gated Recurrent Unit)

– Hybrid of deep learning and Physics-Based Modeling (PBM): 
• Use PBM to generate training data where lacking
• Use PBM to reduce the problem space (feature engineering)
• Use PBM to inform and validate DL models (e.g., to identify catastrophic failures, most notably in 

scenarios with low amounts of training data and a high degree of mission criticality)
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Classification Regression



When to use deep learning to predict failures
• Is accuracy of prediction more important than interpretability?

• Are there frequent changes in asset configurations / operational conditions?

• Are traditional approaches costly?

• Do you have access to a dataset that covers all kinds of events needed to 
discriminate?
– Access to ample baseline data:

• Dataset is relevant to “normal” asset behavior, the more the better
• Big enough to ensure good statistics

– For RUL/TTF scenarios, lots of baseline data eventually leading to failure

– Access to failure history

– Labeled, for supervised learning only

– Up-to-date so that it covers any new events or behaviors

– Access to maintenance and repair history
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Deep learning algorithm development flow
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Two-step process: Training and inference



Comparing training approaches for deep learning-
based predictive maintenance models
• Deep learning model training can be done offline, online or as a hybrid approach:

– Offline training: Training is done on the static dataset.

– Online training: Training is done as the data comes in. 

• Offline training approach:
– Complete dataset, fully determining system behavior is available

– Similar deployment environment

– Approximately static behavior

– Same across all product instances (all product features perfectly aligned – no tuning required)

• Online training approach:
– Datasets are not available and connectivity is either not enabled or narrow band:

• System model identification is done at the edge, and prediction deviation used as outlier indicator.
• Anomalies / faults are detected as outliers using unsupervised learning.

• Hybrid training approach: 
– Create initial model using offline training.

– Adapt (transfer learning) using online training at the edge to take care of environment differences, and/or individual 
setup differences.
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Deep learning inference: Cloud versus edge
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For more information
• Sitara Processors Product Overview: http://www.ti.com/sitara

• Introduction to Deep Learning: https://training.ti.com/introduction-deep-learning

• WEBINAR: Why predictive maintenance is fundamental in Industry 4.0: 
https://training.ti.com/webinar-why-predictive-maintenance-fundamental-industry-40-0

• Texas Instruments Deep Learning (TIDL) Overview:
https://training.ti.com/texas-instruments-deep-learning-tidl-overview

• Predictive maintenance of smart meters:
https://training.ti.com/predictive-maintenance-smart-meters

• Predictive maintenance with robust IEPE vibration sensing over IO-Link interface:
https://training.ti.com/predictive-maintenance-robust-iepe-vibration-sensing-over-io-link-
interface

• For questions about this training, refer to the E2E Community Forums for Sitara
Processors at http://e2e.ti.com


